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A Fast Space-Time BEM Method for 3D Elastodynamics
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Abstract: The classical BEM approach for elastody-
namics can produce poor results when high gradients
are generated by impulses. High gradient areas evolve
over time and their locations are unknown a priori, so
they usually can not be captured by uniform meshes. In
this paper, we propose a novel method which interpo-
lates both spatial and temporal domains. A direct space-
time discretization scheme is used to capture the wave
fronts accurately and to forestall generation of spurious
oscillations there. Some numerical examples are given to
demonstrate the power and scope of the method.

keyword: Time-domain BEM, Elastodynamics, Im-
pulse load, Fast spatial search

1 Introduction

The boundary element method is commonly used to
solve acoustic and elastodynamic problems in un-
bounded domains. However, the algorithmic instabil-
ity of the time-domain Boundary Element method for
elastodynamics and scalar wave propagation has been a
major numerical difficulty [Beskos (1997), Mansur and
Brebbia (1985), Banerjee and Kobayashi (1992), Mano-
lis and Beskos (1988), Pozrikidis (2002)]. To address
this problem, various spatial and temporal interpola-
tion schemes have been implemented to improve accu-
racy and stability, such as combinations of constant, lin-
ear and quadratic functions [Dominguez (1993), Mansur
and Carrer (1998)], B-splines interpolation schemes [Ri-
zos and Karabalis (1994)] and quadratic time interpola-
tion schemes [Wang and Wang (1996)]. Other strate-
gies to improve stability include the linear θ method
[Yu and Mansur (1998)], the time discontinuous trac-
tion method [Mansur and Carrer (1998)], the half-step
method [Birgisson, Siebrits, and Peirce (1999)], and an
integral formulation combining several time steps [Mar-
rero and Dominguez (2003)]. Some new approaches
are developed to solve elastodynamics problems, such
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as employing nonsingular approaches for acoustic prob-
lems[Callsen, von Estorff, and Zaleski (2004), Qian,
Han, Ufimtsev, and Atluri (2004)], BEM/FEM coupling
to solve structural-acoustic problems [Soares and Mansur
(2005), Lie, Yu, and Zhao (2001)], time-domain BEM for
crack analysis [Zhang and Savaidis (2003)]. However,
most of these methods do not address the problem of how
to approximate wave fronts accurately. It is well known
[Peirce and Siebrits (1997), Frangi and Novati (1999)]
that the time-domain BEM often produces poor results
because the locations of wave fronts are unknown a pri-
ori, and they can not be properly approximated by uni-
form meshes and ordinary polynomial functions. Spu-
rious oscillations and instabilities are often observed in
these regions. Alternatively, dispersion occurs if lower-
order approximations or larger time steps are used to
damp the oscillations. These high-gradient areas must
be tracked and accurately modeled by more flexible ap-
proximation schemes.

In this paper we propose a novel approach to solve large-
scale elastodynamic problems, in which the space-time
domain is discretized in a true sense, combined with a
fast spatial search algorithm to accelerate the generation
of the influence matrices. The rest of the paper is orga-
nized as follows: in Section 2, the space-time approach
for 3D elastodynamics BEM is introduced. The fast spa-
tial search algorithm is presented in Section 3. Some il-
lustrative examples of the application of this method are
given in Section 4.

2 Space-time BEM for 3D elastodynamics

The standard BEM employs a finite difference method-
ology in time and a boundary element discretization in
space. However, regions of high stress or high strain
evolve over time and exhibit a high degree of localization
at any instant. Using smaller time steps for all regions is
computationally wasteful. Thus, building a BEM model
in which the space-time continuum is discretized in a true
sense should be more efficient.
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2.1 Boundary integral formulation for space-time
BEM elastodynamics

The governing equations of elastodynamics are:
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with initial and boundary conditions
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(2)

where the boundary Γ = Γ1 + Γ2, u(xxx, t) is the displace-
ment in 4D space-time, p(xxx, t) are tractions on the bound-
ary, xxx denotes the spatial coordinates (x,y, z) , f j = b j/ρ,
b j is the body force, ρ is the density, c1 is the dilata-
tional wave speed and c2 is the shear wave speed. As-
suming zero body forces and initial conditions, the 3D
elastodynamic BEM integral equation can be written as
[Dominguez (1993)]:
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where, xixixi refers to a specific collocation point on Γ. The
Green’s function u∗lk is given by Dominguez (1993)
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where r =
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∣∣, H(x) is the Heaviside function and
δ(x) is the Dirac-delta function. The traction kernel
function p∗lk
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)
can be obtained from the Green’s

function u∗lk , using Hooke’s law and equilibrium, which
yields:
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where the coefficients A,B,C can be found in Mansur and
Brebbia (1985).

In equation (3), the integrals of the products of pk(xxx,τ)
and the Heaviside function H

(
t − r

c

)
or the Dirac-delta

function δ
(
t − r

c

)
in space-time become spatial integrals

of pk(xxx,τ) over the boundary. Most of the integrals of the
product of uk(xxx,τ) and the fundamental traction solution
can be similarly reduced to spatial integrals. The inte-
gral of the product of displacement uk(xxx,τ) and the time
derivative of the Dirac-delta function reduces to:
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Here, we introduce a new interpolation scheme. Not only
is the spatial domain interpolated via shape functions, but
also both spatial and temporal domains are interpolated
using Nk (ξ,η,τ) as a space-time interpolation function.
Thus:
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k; pk = ∑
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k;
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Then, distance in space-time is defined as:
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where, ∑Nk (ξ,η,τ) · tk
j = Φ (ξ,η,τ).

After this numerical approximation, Eq. (3) takes the
form
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then the system of equations for all boundary nodes can
be expressed in the matrix form:

N

∑
j=1

Hi j
lku j
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Gi j
lk p j

k (12)

where N is the total number of nodes in the space-time
domain.

The causality law requires that boundary values at later
times are only influenced by quantities at early time, but
not vice versa. Thus, numerical methods constructed
from these space-time boundary integral equations are
global in time, i.e., it is necessary to compute the solution
for all time steps from the beginning to obtain the current
solution. The system is solved step-by-step: once u and
p are known for the previous time steps, the solution for
the nth time step is obtained from:

H(nn)i j
lk u(n) j
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The boundary consists of the spatial boundary extruded
into the space-time, like a cylinder extruded from 2D to
3D space. The increase in dimensionality is however
offset by special features of the problem, which are dis-
cussed in Section 2.3.

2.2 Shape functions in space-time

For illustrative purpose, piece-wise linear interpolation
functions are used for tractions and displacements. Thus,
eight nodes must be defined in 3D space-time for linear
interpolation. Denoting the node numbers by the sub-
script α, we express all eight shape functions (α = 1−8)
as follows:

Nα(ξ1,ξ2,ξ3) =
1
8
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2 ξ2)(1+ξα

3 ξ3) (14)

where (ξ1,ξ2,ξ3) denotes the intrinsic coordinates of
the αth node, of which two represent the space dimen-
sions and the third represents the time dimension. For
quadratic interpolation in space-time, the element is de-
fined by twenty nodes. For the eight corner nodes (α =
1−8) , the shape functions are [Gao and Davies (2002)]
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and for the twelve remaining mid-side nodes (α = 9−
20), the shape functions are
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2.3 Time and space integration

For the given shape functions, the influence matrices [G]
and [H] are obtained by integrating over the boundary
elements using Eq. (10). If the space-time domain Γ(xxx, t)
is divided into n parts along the time axis, the integrals in
Eq. (9) for the mth time interval (tm−1, tm) is the integral
over the surface elements that lies within two concentric
spherical surfaces of radius rm = c(tn − tm) and rm+1 =
c(tn − tm+1). Here c = c1 or c = c2 depending on which
term is being integrated (Fig. 1).
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Figure 1 : Element j receives a signal from the colloca-
tion point i only during the time interval tn −τm+1 < r

c <

tn−τm.

For this reason, the system matrices are highly sparse.
This special structure follows from the convolution of
the Dirac delta function in time in the integral equations.
The integration does not extend over the whole boundary
of the space-time cylinder, but only over its intersection
with the surface of the backward propagating wave cone.
This means that the integrals have the same dimensional-
ity as for the static problems, and that current response is
not affected, in general, by the events that extend far into
the past. These features are important for 3D scalar wave
equation in three space dimensions and elastodynamics,
but do not apply to the 2D wave equation, nor to the heat
equation.
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Figure 2 : Eight of the nine possible configurations of triangle-sphere intersection (triangle outside the sphere is
omitted).

Figure 3 : Intersection of a mechanical component with a pair of spheres. The sub-triangulation boundaries are
marked in gray (terms to be added) and black (terms to be subtracted).

If the source node is not within the current space-time
element, standard 3 × 3 × 3 Gauss quadrature is suf-
ficient. Otherwise, the singular integrals need careful
treatment. For the displacement singularity, the singu-
larity is O(1/r) and can be treated by employing an el-
ement subdivision technique to divide the original el-
ements into several tetrahedrons. Then, each tetrahe-
dral subelement can be mapped into a cubical intrinsic
element space where the weak singularity is nullified
and the integral can be performed using normal Gauss
quadrature [Gao and Davies (2002)]. For the traction
singularity of O(1/r2), an indirect method is used which
employs the rigid body motion condition to calculate the
ci

lk coefficient and Hii
lk by using Eq (11). By looping over

each node and element, all terms are calculated and as-
sembled into matrices [G] and [H]. Once the matrices [G]
and [H] have been obtained, the resulting matrix equation
is solved by using standard techniques.

3 A fast algorithm for triangle subdivision and
global intersection search

For an efficient implementation of the computational
framework described here, two purely geometrical prob-
lems must be addressed. The first one is the triangle-
sphere intersection problem, resulting from the integra-
tion over the boundary surface contained between the

two spheres. The second problem concerns an effec-
tive global search for the intersecting triangle and sphere
pairs.

3.1 Triangle subdivision

The triangle-sphere intersection problem is solved by
first identifying which intersection configuration applies
(Fig. 2), and sub-triangulating the area contained in the
sphere. In order to minimise the number of sub-triangles,
while maintaining a good approximation of the intersec-
tion boundary, six-node second-order sub-triangles are
used. Further, rather than calculating the area contained
between the two spheres, two separate sub-triangulations
are obtained by intersecting the triangle with the bigger
and the smaller sphere. The terms integrated over the first
sub-triangulation are added, while those integrated over
the second sub-triangulation are subtracted (Fig. 3). This
approach is simpler and more efficient than an explicit
derivation of the sub-triangulation contained between the
two spheres.

3.2 Global intersection search

For typical benchmark problems, composed only of a
small number of triangles, the issue of efficient identi-
fication of the intersecting triangle-sphere pairs can be
ignored. This is not true for fine meshes, where the
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Figure 4 : Example of a sphere-tree hierarchy for an airplane represented by 10904 triangular facets.

global search for the intersecting pairs becomes a com-
putational bottleneck. Working with n nodes and m tri-
angles, it is evidently far from optimal to perform a brute
force O(n ·m) check, testing all possible pairs of spheres
and triangles. This is a spatial search problem [Samet
(1990)], which is common to many fields such as contact
mechanics, computer graphics, etc. The specific features
here can be summarised as follows:

1. The mesh geometry and connectivity does not
change during the course of simulation (This as-
sumption must be relaxed for the case of an adaptive
mesh refinement).

2. The search for an intersection takes place within the
volume contained between two spheres whose radii
increase with time, while the difference in radii re-
mains constant.

The sphere pairs (the query spheres) are centred at the
mesh nodes. At each time step, the set of query spheres
S intersects a set of surface triangles T . This gener-
ates for each node two sub-triangle lists - one for adding
and one for subtracting terms during the system matrix
assembly. In order to facilitate an efficient identifica-
tion of intersecting pairs from S × T , two techniques
were investigated and one of these is advocated here.
The first method exploits a multi-level range and seg-
ment tree structures implemented in a state-of-the-art al-
gorithm HYBRID [Zomorodian, et al. (2002)]. This
approach proves to be inferior to the considerably sim-
pler sphere-tree structure [Hubbard (1996)] (called SPH-
TREE).

To make use of HYBRID all objects from the sets S and
T need to be packed into their axis aligned bounding
boxes. The algorithm proceeds by processing the two
lists of boxes (of query spheres and surface triangles) and
recursively building segment and range tree structures
along each of the coordinate directions [Samet (1990);

Zomorodian, et al. (2002)]. Assuming the total geom-
etry entity number N = n + m, the gain from the use of
recursion is O(N) space utilisation2, while the runtime
complexity is O

(
N log3 (N)+k

)
, where k is the number

of reported box overlaps. This algorithm performs well
in many practical cases, although here it cannot show
its full strength. Firstly, it is not able to take advan-
tage of the fact that the mesh geometry remains frozen -
the tree structures are built partially and stored only tem-
porarily during the recursive processing. A more serious
drawback is the fact as the radii of the query spheres in-
creases, it reports many missed sphere-triangle intersec-
tions. When query spheres reach a size comparable to the
size of the overall domain, the computational overhead is
significant. Thus, HYBRID performs well only as long
as the size of the query spheres remains comparable to
the size of the surface triangles.

The SPHTREE approach is better suited for the cur-
rent case. At the initial stage of computations, the sur-
face triangulation is wrapped into a sphere-tree hierar-
chy (Fig. 4), which provides the data structure which
is later queried with the sphere pairs. This strategy ex-
ploits the fact that the structure remains unchanged dur-
ing the computations. Here the sphere-tree is built in a
simple, top-down manner by the recursive application of
a median-plane coordinate bisection along the direction
aligned with the longest distribution of surface triangles.
At each but the last level of the tree, eight nodes are cre-
ated. At the last level, nodes store no more than sixty-
four leaf spheres bounding mesh triangles. This strategy
is sufficient for our purposes, although further research
is needed to assess the efficiency of more sophisticated
approaches.

The sphere-tree also naturally addresses the issue of find-
ing intersections with a pair of expanding spheres. At
each level of the tree, the computations proceed only if

2 Conventionally O
(
n log3 n

)
for a self-intersection test among n

boxes [Zomorodian, et al. (2002)].
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Algorithm 1 Surface triangles sphere-tree (T ) traversal
with a pair of query spheres (P, Rmin, Rmax).

I = query spheres traverse (T,P,Rmin,Rmax)
1. d = ‖P−T.P‖
2. if d < (Rmax +T.R)∧d >

(Rmin −T.R) then
3. if is node (T) then
4. for each Q in T.Children
5. query spheres traverse

(Q,P,Rmin,Rmax)
6. endfor
7. else if T.Triangle intersects

(P,Rmin,Rmax) /* it’s a leaf */

8. V = vertex of (P,Rmin,Rmax)
9. T sub = intersection

(T.Triangle,P,Rmin)
10. T add = intersection

(T.Triangle,P,Rmax)
11. I = I ∪(

V,Tsub,T add
)

12. endif
13. endif

the bounding sphere of the current node passes through
the volume described by the pair of query spheres. Thus
nodes placed inside of the smaller, or outside of the
bigger of the query spheres, are easily omitted. Query
traversal is fast, as the necessary numerical tests com-
prise only a few inexpensive operations [Algorithm 1].
The SPHTREE algorithm performs well not only for
query spheres with small radii, but also for those of a
size comparable to that of the domain itself.

4 Numerical Examples

Two examples are presented in order to show the ef-
ficiency of triangle-sphere intersection algorithm and
demonstrate the potential of the space-time BEM ap-
proach.

4.1 The triangle-sphere intersection with a hourglass
mesh

Two numerical examples are presented. Although both
involve surface meshes of a size still inaccessible to our
current boundary element solver, this comparison is use-
ful as a prelude to further research. In both cases the zero

order approximation is assumed, so the actual “nodes”
are placed at mass centers of the mesh triangles. Con-
sequently the number of query spheres is equal to the
number of triangles. In these tests, the radii of the query
spheres grow from 1

100L up to L, where L is the largest
dimension of the mesh bounding box. The difference be-
tween the bigger and the smaller of sphere radii is set
equal to the minimal distance between the adjacent mesh
nodes. Each time, the complete search is performed (in-
cluding calculation of the sub-triangulations). Although
the results apparently depend on the geometry of the in-
put surfaces (Fig. 5, 6), the general performance con-
forms to theoretical expectations formulated in the Sec-
tion 3. It is clear that the performance of HYBRID de-
grades for larger query spheres, while SPHTREE’s per-
formance improves. These runs were performed on a 1.7
GHz Pentium PC.

4.2 Wave propagation in a prismatic rod

The second problem, shown in Fig. 7, had been used
as a benchmark test by several researchers [Mansur and
Brebbia (1985), Banerjee and Kobayashi (1992), Mar-
rero and Dominguez (2003)] in the field of time domain
BEM. It is essentially one-dimensional in space since it
is symmetric in the yz plane and has an analytical solu-
tion. Here, we solve it in 4 dimensional space-time with
a boundary mesh consisting of 320 constant triangular
elements in space, as shown in Fig. 7. As a benchmark,
the shape functions for u and P in time are assumed to
be constant as well. The time step size is defined by the
dimensionless parameter β = cΔt/Δh; c is the wave ve-
locity and Δh is equal to the radius of the circle inside
the triangle. In order to find the best ratio, values of β
in the range vary 0.1 to 1.5 are explored in the numer-
ical experiment. The rod dimensions(m) are 8× 4× 4.
A Heaviside loading function is applied at the free end,
where x = 0m. The opposite side (at x = 8m ) is fixed.
The material properties are: wave velocity c = 200m/s,
Young’s modulus E = 105N/m2. In Fig. 7, the displace-
ments on the boundary at various times are shown.

The computed time history of the normal traction at the
fixed end is shown in Fig. 8. Results are shown for values
of β = 0.3 up to 1. Stable results were obtained for β >

0.3. However, damping increases for larger values of β.
The best results for high gradient areas are obtained for
β = 0.6−0.7.



A Fast Space-Time BEM Method for 3D Elastodynamics 137

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250  300  350  400

R
un

 ti
m

e 
[s

]
Big sphere radius [mm]

Sphere-surface intersection timings

HYBRID
SPHTREE

Figure 5 : Sphere-triangle intersection search. Wall-clock timings for a hourglass mesh comprising 1784 triangles.
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Figure 6 : Sphere-triangle intersection search. Wall-clock timings for a ball set mesh comprising 4480 triangles.

5 Conclusion

For 3D transient acoustic waves or elastodynamic prob-
lems, BEM has some advantages over other numeri-
cal methods because boundary-only discretisation means
that mesh dispersion is less significant. However, the
method is not immune to the difficulties of approximat-
ing high gradient areas with high accuracy while retain-
ing computational efficiency. In order to achieve the
flexibility of approximating high gradient areas in arbi-
trary locations, we propose a new method which employs
shape functions in both space and time domain. Further
research in progress focuses on implementing higher or-
der triangular elements, adaptive algorithms and paral-
lelization in 4D space-time acoustic waves and elastody-
namics.
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