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Investigations on the Accuracy and Condition Number for the Method of
Fundamental Solutions

C.C. Tsai1, Y.C. Lin2, D.L. Young2,3 and S.N. Atluri4

Abstract: In the applications of the method of funda-
mental solutions, locations of sources are treated either
as variables or a priori known constants. In which, the
former results in a nonlinear optimization problem and
the other has to face the problem of locating sources.
Theoretically, farther sources results in worse condition-
ing and better accuracy. In this paper, a practical proce-
dure is provided to locate the sources for various time-
independent operators, including Laplacian, Helmholtz
operator, modified Helmholtz operator, and biharmonic
operator. Wherein, the procedure is developed through
systematic numerical experiments for relations among
the accuracy, condition number, and source positions
in different shapes of computational domains. In these
numerical experiments, it is found that in general very
good accuracy is achieved when the condition number
approaches the limit of equation solver, which is a num-
ber dependent on the solution scheme and the precision.
The proposed procedure is verified for both Dirichlet and
Neumann boundary conditions. The general characteris-
tics in these numerical experiments demonstrate the ca-
pability of the proposed procedure for locating sources of
the method of fundamental solutions for problems with-
out exact solutions.

keyword: Method of fundamental solutions, Condition
number, Location of sources, Laplacian, Helmholtz oper-
ator, Modified Helmholtz operator, Biharmonic operator

1 Introduction

In the recent years, the meshless or mesh-free meth-
ods have received a considerable attention as alternative
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numerical schemes to the classical mesh-dependent nu-
merical methods, such as the finite difference method
(FDM), the finite element method (FEM), the finite vol-
ume method (FVM), and the boundary element method
(BEM). Roughly speaking, the meshless or mesh-free
methods can be divided into two categories. The first
one is domain-type methods in which both the differ-
ential equations and boundary conditions are approxi-
mated, such as the Kansa’s method (or multiquadrics
(MQ) method) [Kansa (1990A, 1990B), Li, Cheng and
Chen (2003), Young, Jane, Lin, Chiu and Chen (2004),
Young, Chen and Wong (2005)] as well as the mesh-
less local Petrov-Galerkin method (MLPG) [Wordel-
man, Aluru and Ravaioli (2000), Lin and Atluri (2000),
Kim and Atluri (2000), Atluri (2004), Han and Atluri
(2004)]. The second one is boundary-type methods
where only boundary conditions are collocated, such as
the method of fundamental solutions (MFS) [Kupradze
and Aleksidze (1964), Mathon and Johnston (1977),
Lyngby (1981), Bogomolny (1985), Smyrlis and Kara-
georghis (2001), Tsai, Young and Cheng (2002), Smyrlis
and Karageorghis (2004), Chen, Fan, Young, Muruge-
san and Tsai (2005), Hon and Wei (2005), Young and
Ruan (2005), Young, Tsai, Lin and Chen (2006)] and the
MLPG [Atluri (2004)]. In this paper, we only concen-
trate on how to locate the sources of the MFS.

The MFS is first proposed by Kupradze and Aleksidze
(1964). Originally, the sources of MFS are considered as
unknown variables and solved by nonlinear optimization
[Mathon and Johnston (1977)]. Later, Bogomolny (1985)
improved the theoretical fundamentals of the MFS in
considering a priori known positions of sources. As a re-
sult, the MFS becomes easier and more efficient in prac-
tical implementations. However, the ill-conditioning and
the locations of source points are numerically problem-
atic. Smyrlis and Karageorghis (2001) have researched
the issue for the standard MFS, with the same number
of source and collocation points, for harmonic problems
in a disk. They suggested rotation and normalization to
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overcome the problems of ill-conditioning and provided
mathematical analysis for the issues. Later, Smyrlis and
Karageorghis (2004) revisited the same issue by using
the least-square MFS, which has more collocation points
than source points.

In this paper, we provide a practical procedure to lo-
cate the sources in the MFS, which is based on general
relations among the error, source locations, and condi-
tion number. Theoretically, it is proved that worse con-
ditioning [Lyngby (1981)] and better accuracy [Mathon
and Johnston (1977), Bogomolny (1985)] are resulted
when the sources are located farther. In our numerical
experiments, it is found that best accuracy can be ob-
tained when the condition number approaches the limit
of the equation solver, which is a number dependent on
the precision and solution scheme. The following com-
putational domains are considered: a circle, a square, a
rectangle, and a peanut. Moreover, the following op-
erators are included: the Laplacian, Helmholtz opera-
tor, modified Helmholtz operator and biharmonic opera-
tor. The MFS formulations, condition number and error,
boundary collocation points and source points, theoreti-
cal statements, numerical results and discussions, as well
as conclusions are provided in the following sections.

2 MFS formulations

We consider the boundary value problem

{
Lu = 0 in Ω
Bu = f on Γ (1)

where u is the dependent variable to be solved, Ω is the
considered computational domain, Γ is the boundary of
Ω, L is the partial differential operator of the problem,
and B is the differential operator associated with the aug-
mented function f of the boundary condition.

In the MFS, the solution u is approximated by

uN(x; s,c) =
N

∑
i=1

ciG(x; si) (2)

where N is the number of source points, c =
(c1,c2, ...,cN) are the undetermined source intensities,
s = (s1, s2, ..., sN) are the positions of the a priori known
sources whose locations are the major considerations of
the present paper, and G(x; s) is the fundamental solution

defined by

−LG(x; s) = δ(x− s) (3)

for the operators considered in this paper, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uN(x; s,c) =
N
∑

i=1
ciLn(|x− si|)

for Laplacian;

uN(x; s,c) =
N
∑

i=1
ciH(1) (|x− si|)

for Helmholtz operator;

uN(x; s,c) =
N
∑

i=1
ciK0 (|x− si|)

for modified Helmholtz operator;

uN(x; s,c) =

⎧⎪⎪⎨
⎪⎪⎩

N
∑

i=1
c1iLn(|x− si|)

+
N
∑

i=1
c2i |x− si|2 Ln(|x− si|)

for biharmonic operator.

(4)

where, H
(1)
0 (kr) is the Hankel function of the first kind

of order zero, and K0 is the modified Bessel function of
the second kind of order zero. In the MFS, the source in-
tensities c are determined so that the boundary condition
is satisfied at N boundary points, (x1,x2, ...,xN). This
yields a linear system of the following form, and can then
be solved.

Gc = f (5)

where f is composed by the boundary conditions and G
is the system matrix such that Gi j = G(xi; s j).

3 Condition number and error

In order to analyze the accuracy of the MFS, we define
the condition number as following:

CDN =
maximum singular value
minimum singular value

(6)

There are several algorithms provide estimates of CDN
that do not actually obtain the exact singular values. In
this paper we utilize the LINPACK’s Cholesky decom-
position [Anderson, Bai, Bischof, Blackford, Demmel,
Dongarra, Croz, Greenbaum, Hammarling, McKenney
and Sorensen (1979)] to obtain the CDN. However, it
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Figure 1 : Schematic diagram of the source and bound-
ary field points.

should be noticed that the accuracy of CDN itself is de-
pendent on the precision which will be discussed in the
section of results and discussions.

On the other hand, we define the following root-mean-
square error for our analysis:

r.m.s =

√√√√√ M
∑

i=1
(unumerical,i−uexact,i)2

M
(7)

in which M is the total number of points considered,
uexact,i is the exact solution at point i, and unumerical,i is
the numerical solution at the point i.

4 Boundary collocation points and source points

The distributions of the source points and boundary col-
location points are significant in the MFS. Bogomolny
(1985) located the sources uniformly in a circle enclosing
the computational domain. On the other, Heise (1976)
chose the sources by stipulating auxiliary source curve
to be equidistant from boundary. In our experiences,
Heise’s method generally gives better results for com-
putational domain of slender shapes. Accordingly, we
suggest the following procedure to locate the sources.

Consider a radial convex computational domain as
depicted in Fig 1, where Ω is the computational domain

and Γ is the boundary of Ω. Here, a radial convex shape
is defined by crossing boundary exactly twice for any
line passing the geometric center of the shape. Then,
we introduce a procedure to locate source points and
boundary collocation points for radial convex shapes:

Part I (Locations of boundary collocation & source
points)

Step 1: The boundary collocation points are uniformly
distributed on the boundary Γ
Step 2: According to the boundaries of the physical do-
main, the geometric center,xc, is then obtained.

Step 3: The distributions of the source points are ar-
ranged by the following equation:

xs = x f +λ(x f −xc) (8)

where xs and x f are the spatial coordinates of the source
and boundary points, respectively. Also, λ is defined
as the parameter of source location. Therefore, the
distributions of the source points can be obtained once
the parameter of source location,λ, is determined. The
geometrical configuration of the procedure is described
in Fig. 1. For problems without exact solutions, the
following procedure is suggested to locate the sources:

Part II (Determination of λ)

Step 1: Set up some exact solutions and carry out several
numerical experiments to sketch figures of CDN v.s. λ
and r.m.s v.s. λ. Then, determine the limit of equation
solver from the figures. Details about the determination
are stated in the section of numerical results.

Step 2: Solve the desired problem by the MFS and draw
the figure of CDN v.s. λ.

Step 3: Select λ for which CDN near the limit of equa-
tion solver from the figure in the last step. And, solve the
problem by the selected λ.

In our numerical experiments, four shapes are consid-
ered: a circle, a square, a rectangle, and a peanut (Fig.
2 & Fig. 3). Generally, it is not easy to define a proce-
dure to locate the source points for arbitrary shapes, such
as concave shapes or degenerate boundaries. In this kind
of situations, nonlinear optimization [Mathon and John-
ston (1977)] or domain decomposition method [Young,
Fan, Tsai and Chen (2006)] is suggested. Nevertheless,
it is convinced that the proposed procedure is sufficient
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Figure 2 : Schematic diagrams of different shapes of computational domains.

for most of the computational domains according to our
numerical results.

Figure 3 : Schematic diagrams of the distribution of
source and boundary field points. (x f : •;xc : �;xs : �)

5 Theoretical statements

The proposed procedure of locating sources is developed
based on general relations among the error, source loca-

Figure 4 : Analytical values of Log(CDN) v.s. parameter
of source location (R/a−1) for a circle with radius a = 1.

tions, and condition number. Theoretically, it is proved
that worse conditioning [Lyngby (1981)] and better accu-
racy [Mathon and Johnston (1977), Bogomolny (1985)]
are resulted when the sources are located farther in a
proper way.

Consider a Laplace problem defined in equation (1) with
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Figure 5 : Comparison of the shapes of computational domains in Laplace equation with Dirichlet boundary condi-
tion, for (a) circle (b) square (c) rectangle (d) peanut.

L = ∇2 and Ω = {x = (x,y)|x2 + y2 ≤ a2}. Bogomolny
(1985) proved the following error estimate:

MAX
x∈Γ

|u(x)−uN(x)| ≤ K(ε,R)
nq+γ−ε (9)

where uN(x) is the MFS approximation defined by equa-
tion (2), ε > 0 is a prescribed parameter, R = (1+λ)a is
the radius of the source points, n is the number of har-
monic modes considered, and q & γ are the exponents
of smoothness for f and Γ respectively. In the estimate,

K(ε,R) is proved to be a monotonically decreasing func-
tion of R. Details can be found in the reference [Bogo-
molny (1985)].

On the other hand, Lyngby (1981) derived the following



108 Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.103-114, 2006

formula for the CDN of the resulted system matrix:

CDN =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2( R

a )|LogR| for

〈
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a )

N
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a )

N
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N
2 (R

a )
N
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〈
e

−a
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a )

N
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e
1
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N
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2R

N |LogR| (R
a )
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−a
2R

e
a

2R < R

(10)

Figure 4 depicts the plots of Log(CDN) v.s. parameter of
source location (R/a−1) for a = 1, in which it is found
CDN is a monotonically increasing function of R. More-
over, the cases of finer nodes give higher CDN if same
parameter of source location is utilized.

In order to obtain the best accuracy, our basic idea is to
increase R as large as possible once the CDN does not
exceed the limit of equation solver. For computational
domains other than a circle, our numerical results also
demonstrate similar behaviors among the error, CDN,
and parameter of source location.

6 Numerical results and Discussions

In order to check the relations among the error, source
locations, and condition number, the following five cases
are tested: Laplace equation with Dirichlet boundary
condition, Helmholtz equation with Dirichlet boundary
condition, Helmholtz equation with Neumann boundary
condition, modified Helmholtz equation with Dirichlet
boundary condition, and biharmonic equation with es-
sential boundary conditions. On the other hand, four
shapes are considered in all these five cases: a circle, a
square, a rectangle, and a peanut (Fig. 2).

Laplace equation with Dirichlet boundary condition

The following Laplace problems are solved by the MFS:

G.E. : ∇2u = 0 in Ω

B.C. : u(x,y) =
{

cos(x)cosh(y)
+sin(x) sinh(y)

on Γ (11)

The exact solution of the problem is

u(x,y) = cos (x)cosh(y)+ sin(x) sinh(y) (12)

The results of the condition number tests are demon-
strated in Fig. 5. There are four curves in all fig-
ures. The upper two curves are the CDN v.s. parame-
ter of source location for coarse and fine source points.
In all the figures, accurate CDNs are obtained up to
1017 ∼ 1018 in which the LINPACK’s Cholesky decom-
position [Anderson, Bai, Bischof, Blackford, Demmel,
Dongarra, Croz, Greenbaum, Hammarling, McKenney
and Sorensen (1979)] and double precision (8 BYTE) are
adopted. The other two curves are the r.m.s v.s. param-
eter of source location for coarse and fine source points.
From Fig. 5, it is easy to conclude that r.m.s reaches
it best value 10−11 ∼ 10−14 once CDN approaches the
limit of equation solver 1017 ∼ 1018. On the other hand,
the cases of finer nodes generally give higher CDN, and
better accuracy is achieved if same parameter of source
location is utilized. Moreover, the numerical CDN of the
circle problem shows good agreements with the analyti-
cal values depicted in Fig. 4.

Helmholtz equation with Dirichlet boundary condi-
tion

On the other hand, the following Dirichlet Helmholtz
problems in a circle, a square, a rectangle, and a peanut
respectively, depicted in Fig. 2, are adopted:

∇2u+
[( π

2.1

)2
+

( π
2.3

)2
]

u = 0 in Ω

u(x,y) = sin
( πx

2.1

)
sin

( πy
2.3

)
on Γ (13)

∇2u+
[( π

1.1

)2
+

( π
1.3

)2
]

u = 0 in Ω

u(x,y) = sin
( πx

1.1

)
sin

( πy
1.3

)
on Γ (14)

∇2u+
[( π

1.1

)2
+

( π
1.1

)2
]

u = 0 in Ω

u(x,y) = sin
( πx

1.1

)
sin

( πy
1.1

)
on Γ (15)

∇2u+
[( π

2.1

)2
+

( π
2.3

)2
]

u = 0 in Ω

u(x,y) = sin
( πx

2.1

)
sin

( πy
2.3

)
on Γ (16)

in which their exact solutions are

u(x,y) = sin
( πx

2.1

)
sin

( πy
2.3

)
(17)
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Figure 6 : Comparison of the shapes of computational domains in Helmholtz equation with Dirichlet boundary
condition, for (a) circle (b) square (c) rectangle (d) peanut.

u(x,y) = sin
( πx

1.1

)
sin

( πy
1.3

)
(18)

u(x,y) = sin
( πx

1.1

)
sin

( πy
1.1

)
(19)

u(x,y) = sin
( πx

2.1

)
sin

( πy
2.3

)
(20)

The results of the condition number tests are described
in Fig. 6. It is also observed that r.m.s reaches it best
value 10−11 ∼ 10−14 once CDN approaches the limit of
equation solver 1017 ∼ 1018.

Helmholtz equation with Neumann boundary condi-
tion

Similarly, the following Neumann Helmholtz problems
in a circle, a square, a rectangle, and a peanut respec-
tively, depicted in Fig. 2, are solved by the MFS:

∇2u+
[( π

2.1

)2
+

( π
2.3

)2
]

u = 0 in Ω

∂u(x,y)
∂n

= n ·∇(sin
( πx

2.1

)
sin

( πy
2.3

)
) on Γ (21)
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Figure 7 : Comparison of the shapes of computational domains in Helmholtz equation with Neumann boundary
condition, for (a) circle (b) square (c) rectangle (d) peanut.

∇2u+
[( π

1.1

)2
+

( π
1.3

)2
]

u = 0 in Ω

∂u(x,y)
∂n

= n ·∇(sin
( πx

1.1

)
sin

( πy
1.3

)
) on Γ (22)

∇2u+
[( π

1.1

)2
+

( π
1.1

)2
]

u = 0 in Ω

∂u(x,y)
∂n

= n ·∇(sin
( πx

1.1

)
sin

( πy
1.1

)
) on Γ (23)

∇2u+
[( π

2.1

)2
+

( π
2.3

)2
]

u = 0 in Ω

∂u(x,y)
∂n

= n ·∇(sin
( πx

2.1

)
sin

( πy
2.3

)
) on Γ (24)

with the following exact solutions:

u(x,y) = sin
( πx

2.1

)
sin

( πy
2.3

)
(25)

u(x,y) = sin
( πx

1.1

)
sin

( πy
1.3

)
(26)
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Figure 8 : Comparison of the shapes of computational domains in Helmholtz equation with Neumann boundary
condition, for (a) circle (b) square (c) rectangle (d) peanut.

u(x,y) = sin
( πx

1.1

)
sin

( πy
1.1

)
(27)

u(x,y) = sin
( πx

2.1

)
sin

( πy
2.3

)
(28)

Also, the condition number tests are depicted in Fig. 7. It
is also observed that r.m.s reaches it best value 10−11 ∼
10−14 once CDN approaches the limit of equation solver
1017 ∼ 1018.

Modified Helmholtz equation with Dirichlet bound-
ary condition

The numerical experiments can be extended to modified
Helmholtz equation with Dirichlet boundary condition
easily. The following problem is considered.

∇2u−(
12 +12)u = 0 in Ω

u(x,y) = exp(x+y) on Γ (29)
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Figure 9 : Comparison of the shapes of computational domains in biharmonic equation with essential boundary
condition, for (a) circle (b) square (c) rectangle (d) peanut.

with exact solution

u(x,y) = exp(x+y) (30)

The condition number tests in the four shapes are de-
picted in Fig. 8. In which the r.m.s also reaches it best
value 10−11 ∼ 10−14 once CDN approaches the limit of
equation solver 1017 ∼ 1018.

Biharmonic equation with essential boundary condi-
tions

Numerical experiments are also carried out for bihar-

monic equation with essential boundary conditions. The
numerical results are generally same although the gov-
erning equation is fourth order.

∇4u = 0 in Ω

u(x,y) =
{

cos (x)cosh(y)
+sin(x) sinh(y)

on Γ

∂u(x,y)
∂n

=
{

n ·∇(cos (x)cosh(y)
+sin(x) sinh(y))

on Γ (31)
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with exact solution

u(x,y) = cos (x)cosh(y)+ sin(x) sinh(y) (32)

Similar results of condition number tests are also ob-
tained as sketched in Fig. 9. However, the CDN is gen-
erally higher since the governing equation is fourth order
and bigger system matrix should be solved.

7 Conclusions

A procedure is suggested to locate the sources points of
computational domains of radial convex shapes. The fol-
lowing numerical experiments are carried out: Laplace
equation with Dirichlet boundary condition, Helmholtz
equation with Dirichlet boundary condition, Helmholtz
equation with Neumann boundary condition, modified
Helmholtz equation with Dirichlet boundary condition,
and biharmonic equation with essential boundary con-
ditions. Moreover, four typical shapes are considered
in these five cases: a circle, a square, a rectangle,
and a peanut. The LINPACK’s Cholesky decomposi-
tion [Anderson, Bai, Bischof, Blackford, Demmel, Don-
garra, Croz, Greenbaum, Hammarling, McKenney and
Sorensen (1979)] and double precision (8 BYTE) are
adopted in these numerical experiments. In the numerical
experiments, higher condition numbers and smaller er-
rors are observed when the sources are located farther in
a proper way. And, the r.m.s of numerical results gener-
ally reach their best values 10−11 ∼ 10−14 once CDN ap-
proaches the limit of equation solver 1017 ∼ 1018. More-
over, the cases of finer nodes give higher CDN, and better
accuracy is achieved if same parameter of source location
is utilized in the same case.

Therefore, it is convinced that the proposed procedure
of locating sources can be practically applied to time-
independent partial differential equations without exact
solutions and general high accurate solutions are ob-
tained. Of course, it is not easy to define a general proce-
dure to locate the source points for arbitrary shapes. We
suggest the nonlinear optimization [Mathon and John-
ston (1977)] or domain decomposition method [Young,
Fan, Tsai and Chen (2006)] for problems with these com-
plex computation domains. Nevertheless, the procedure
is practically useful for most of the computational do-
mains.
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