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3D Multi-Material Structural Topology Optimization with the Generalized
Cahn-Hilliard Equations

Shiwei Zhou1 and Michael Yu Wang2

Abstract: This paper describes a self-mass-
conservative Cahn-Hilliard (C-H) model with elastic
strain energy (mean compliance) for the optimization of
multi-material structure topology. The total free energy
of the generalized C-H system can be represented as a
Lyapunov functional so that the elastic strain energy, as
a part of the total free energy, decreases gradually to
attain optimal material distribution. The interface energy
relating to phase gradient in the total free energy plays
an important role in regularizing the original ill-posed
problem by restricting the structure’s boundaries. On
the other hand, interface coalescence and break-up
due to phase separation and grain coarsening result in
spontaneous and flexible topology changes. To solve the
generalized C-H system with elasticity in 3D, which is
described by a set of fourth-order nonlinear parabolic
PDEs, we develop a powerful implicit multigrid algo-
rithm and prove non-increasing in total free energy and
the convergence. Our results are compared with the re-
sults of the well-known SIMP model for single material
structural topology in 3D. Furthermore, applications
to several well-known 3D examples for multi-material
structural topology optimization are presented.

keyword: Structural Topology Optimization, Cahn-
Hilliard Equation, Multi-Material, 3D.

1 Introduction

Since the original concept of topology optimization prob-
lems was proposed by [Bendsoe and Kikuchi (1988)],
many methods have been developed for their various
applications. However, especially for structural topol-
ogy optimization, only a few approaches give examples
in three-dimensional conditions, which were reported in
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[Allaire, Bonnetier, Francfort, and Jouve (1997)] by ho-
mogenization method with a topology optimization algo-
rithm, [DeRose and Diaz (2000)] by SIMP alike model
with a meshless, wavelet-based scheme, [Allaire, Jouve,
and Taoder (2004)] by level set method and [Borrvall
and Petersson (2001)] by a regularized intermediate den-
sity control scheme. There are also other indirect meth-
ods with post-smoothing techniques by geometric recon-
struction [Tang and Chang (2001)] or cellular automata
[Kita and et al. (2004)]. But a limitation of these
schemes comes from the fact that the structures are sup-
posed to be composed of single material. For the opti-
mization of multi-material structural topology in 3D, the
existing methods have limited range of applications.

The main condition in multi-material structural topology
optimization is to maintain material volume ratio con-
straints for different material phases. In this paper, we
are concerned with the problem of finding the material
distribution in a given design domain such that the struc-
ture is the stiffest [Bendsoe and Sigmund (2003)]. Obvi-
ously, the more materials the structure has, the stronger
the structure is. So the process of optimization should be
mass-conservative. Traditional methods usually satisfy
these constraints with Lagrange multipliers added to the
objective function or indirect asymptotic MMA (Method
of Moving Asymptotes) scheme [Svanberg (1987)]. But
these methods are not self-conservative, just leading to a
gradient flow in the norm of L2.

In this paper, we introduce a self-conservative gradient
flow in the norm of H−1 for the problem of multi-material
structural topology in 3D with a generalized C-H model
with elasticity. The prototype of C-H model [Cahn and
Hilliard (1958); Cahn (1961)], explaining phase separa-
tion and grain coarsening for quenched alloy, is mass-
conservative, energy-dissipative and topology-flexible.
Such properties are invariable even when disturbing elas-
tic energy is added to the total free energy, which origi-
nally only consists of bulk energy and interface energy.
Thus the generalized C-H model with elasticity is espe-
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cially suitable for the topology optimization to minimize
the mean compliance (elastic energy) with given materi-
als.

This new model is represented by a set of fourth-order
nonlinear parabolic equations, which are really ineffi-
cient to be solved by common methods like finite dif-
ference and FEM scheme. Here we develop a power-
ful implicit multigrid algorithm in 3D with mathemati-
cal proof of non-increasing total free energy and conver-
gence. We can’t prove the dissipation of elastic energy,
but from real examples, actually it declines gradually all
the time. The simulation for the quadternary C-H system
without elasticity in 3D demonstrates this algorithm is
fast and correct. Such simulation is pioneer for the C-H
model composed of more than three phases in 3D to our
best knowledge.

This paper is organized as follows: Section 2 gives
a mathematic model for the structural topology opti-
mization and some basic concept about SIMP model.
Then Section 3 details the generalized C-H model with
elasticity and its numerical implementation by multi-
grid algorithm is described in Section 4. The proofs
of non-increasing total free energy and convergence for
this multigrid algorithm are discussed in Appendix A:
and Appendix B: respectively. Finally, we give some
examples in 3D for the SIMP model and C-H model
with/without elasticity in Section 5 and Section 6.

2 Statement of the Problem

Fig. 1 illustrates the structural topology optimization
(minimum compliance) problem of a statically loaded
linear elastic structure under a single loading case with
some Dirichlet boundary conditions on Γ1 and Neumann
boundary conditions on Γ2 and traction boundary Γ3.
[Bendsoe and Kikuchi (1988); Rozvany (1989)]. The de-
sign domain Ω ⊆Rd (d = 2 or 3) is defined as a 2/3 di-
mensional open/bounded set occupied by linear isotropic
elastic materials, void material with negligible elastic-
ity tensor, and some fixed non-designable domains. The
whole boundary of the design domain Ω consists of three
parts: Γ = ∂Ω = Γ1 ∪Γ2 ∪Γ3.

External force f and the boundary traction h cause the
unique displacement field u in Ω which is the solution of
the linear elastic system

−div σ(u) = f in χΩ(x) = 1

Figure 1 : The problem for the optimization of structural
topology in 2D domain

u = u0 on Γ1

σ(u) ·n = 0 on Γ2

σ(u) ·n = h on Γ3 (1)

where the strain tensor ε and the stress tensor σ at any
point x ∈ Ω are given in the usual form as

ε(u) =
1
2

(
∇u+∇uT ) ; σ(u) = Eε(u) (2)

with E as the elasticity tensor, u0 the prescribed displace-
ment on Γ1, and n the outward normal to the boundary.

In this paper, we consider to use N types of different ma-
terial phases whose densities or material concentrations
at given position x are represented as an order parame-
ter field c(x) = [c1,c2, . . . ,cN ]T

(
c ∈ RN

)
. It is obvi-

ous that the summation of ci at each position is unity:
N
∑

i=1
ci (x) = 1. The whole material domain of the structure

is separated into regions Ω = (Ω1,Ω2, · · · ,ΩN) for each
distinct material phase. This partition leads to

Ω =
N∪

i=1
Ωi and Ωi ∩Ω j = /0, i �= j (3)

The boundary of Ωi is specified by ∂Ωi and the inter-
face between them is given by ∂Ωi ∩∂Ω j . The material
properties in each region are given by the corresponding
material phase. For example, the elasticity tensor in Ω is
given by E (x) = E1, E2, or EN depending on if x ∈ Ω1,
Ω2, or ΩN respectively.



3D Multi-Material Structural Topology Optimization with the Generalized Cahn-Hilliard Equations 85

Thus, the “basic” problem of structure optimization is
specified with respect to a specific objective function de-
scribed as the work done by external forces.

minmize
Ω

J (u,c) =
∫

Ω
f ·udΩ+

∫
Γ3

h ·udΓ

s.b. :
∫

Ω
cidΩ ≤Vi

1
2

∫
Ω

εi j (u) : Ei jkl (c)εkl (v)dΩ

=
∫

Ω
f · vdΩ +

∫
Γ3

h · vdΓ

for all v ∈ Uad (4)

where ‘:’ representing the second order tensor operator,
Vi is the limit on the amount of each material phase in
terms of its maximum admissible volume and v is the
virtual displacement in the kinematically admissible dis-
placement fields:

Uad =
{

u : u ∈ H1 (Ω) ; u = u0 on Γ1
}

(5)

The goal of optimization is to find a minimizer Ω such
that the design has the following characteristic functions
[Bendsoe and Kikuchi (1988); Bendsoe and Sigmund
(1999); Bendsoe and Sigmund (2003)]:

χi (x) : Ωi → {0, 1}
such that χi (x) =

{
1 for x ∈ Ωi

0 for x ∈ Ω\Ωi
(6)

with the domain partition conditions in Eq. (3) satisfied.
The basic optimization problem as stated is known to be
ill-posed as it involves the “free-discontinuities” of the
boundaries ∂Ωi of Ωi [Cheng and Olhoff (1981)].

2.1 The SIMP model

Here we only discuss the SIMP model for structure with
single material. If the design domain Ω is discretized
into mutually disjoint brick elements Θi, i = 1, · · · ,Ne,
where Ne is the number of elements, according to elastic
theory, the objective function in Eq. (4) is equal to:

min
Ω

imize J (u,c) = U : KU =
Ne

∑
i=1

ue : Keue

s.b. :
∫

Ω
cdΩ ≤ V

c−cmin = 0

1−c = 0 (7)

where U is the global displacement derived from f = KU
with external force f and global stiffness matrix K =
Ne

∑
i=1

cpKe. The element displacement ue can be extracted

from U . Here we use 1 and cmin 
 1 to represent solid
and void material respectively for the design variables.
SIMP method proposes a model with a penalization fac-
tor p for the element stiffness matrix:

Ke = cpK0, p ≥ 3 (8)

where K0 is a constant matrix relating to the element ge-
ometry. In all the following examples both for SIMP and
C-H mdoel, the derivation of K0 is similarly based on
standard brick element.

We extend the famous SIMP model from 2D to 3D based
on Sigmund’s 99 line code in Matlab [Sigmund (2001)].
It uses filter technique to average shape sensitivity among
neighboring elements and OC algorithm to update the de-
sign variables, all of them are encoded in a short 177 line
Matlab program.

3 Structural Topology Optimization using C-H
Model

When liquid alloy is quenched, phase separation (spin-
odal decomposition) takes places. Such phenomena can
be successfully explained by C-H model in binary [Cahn
and Hilliard (1958); Cahn (1961)] and multiphase [De-
fontaine (1967); Eyre (1993)] conditions. As the theoret-
ical studying and numerical simulation for the classical
C-H model seem now to have reached maturity, the inter-
est tends to shift toward its derivative models. For exam-
ple, how about the shape and topology change for differ-
ent phases during phase separation and grain coarsening
if considering elastic role, which is the type of setting
discussed in this paper.

Many people have done this work about C-H model with
elasticity [Garcke (2000); Garcke, Nestler, and Stoth
(1999); Garcke, Nestler, and Stinner (2004); Garcke,
Rumpf, and Weikard (2001); Leo, Lowengrub, and Jou
(1998); Fratzl, Penrose, and Lebowitz (1999); Nabarro,
Cress, and Kotschy (1996)]. But they evaluated elastic
effect just in microscopic scale by assuming the strains
come from lattice deformation caused by atom migra-
tion and lattice reconstruction. Based on a sharp inter-
face model in [Eshelby (1957)], they introduced a kind
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of elastic energy:

W (c,ε) =
1
2

∫
Ω

(
εi j (u)−ε∗i j (c)

)
: Ei jkl (εkl (u)−ε∗kl (c))

(9)

where ε∗ (c) is interpolated according to Vegard’s law:

ε∗ (c) =
N

∑
i=1

ciε∗ (ci) (10)

where ε∗ (ci) is “intrinsic strain” or “spontaneous strain”,
defined as the strain tensors when the material is made
up of pure component of ci and is unstrained.

It is reasonable for such assumption of elasticity for alloy
solidification. Microscopic elastic energy plays a domi-
nant role in phase separation and grain coarsening lead-
ing to irregular phase morphology and variation of solid-
ification speed. But for imaginary problem of structural
topology optimization with C-H model, such real elastic-
ity is usually too small to reflect large phase metamor-
phosis both in shape and topology. In this new scenario,
all strains are definitely caused by external body force f
and boundary traction h. Then, as discussed in Section
2, the new elastic energy is defined as the work done by
external forces:

W ∗ (c,ε) =
∫

Ω
f ·udΩ+

∫
Γ3

h ·udΓ

=
1
2

∫
Ω

εi j (u) : Ei jkl (c)εkl (u)dΩ (11)

Based on the elastic energy in Eq. (11) and the C-H the-
ory, it is straightforward to transport these ideas into a
computational model for the continuous topology opti-
mization. The modified C-H model relies on the mini-
mization of the following generalized total “free-energy”
functional:

Ψ(c,∇c,ε) =
∫

Ω
{F(c)+

1
2

∇c : Γε∇c+ηW ∗(c,ε)}dΩ

(12)

where Γε is a constant semidefinite matrix relating to in-
terface thickness, η is a weighting constant. The well
function function F usually has several minima corre-
sponding to distinct phase. The first variation of the free
energy is the chemical potential:

µk =
∂F (c)

∂ck
− (∇ ·Γε∇c)k +η

∂W ∗ (c,ε)
∂ck

(13)

where k = 1, · · · ,N.

By regarding the negative chemical potential as the ther-
modynamic forces like the derivation of classic C-H in
[Cahn and Hilliard (1958); Elliott (1989)], we get the
generalized C-H equations with elasticity:

∂ck (x, t)
∂t

= ∇ · (M (c)∇µk) k = 1, · · · ,N (14)

and Neumann boundary conditions

∂c
∂n

=
∂µ
∂n

= 0 x ∈ ∂Ω (15)

For simplicity, it assumes the system is in quasi-static
equilibrium state [Garcke (2000)]. In other words, the
elastic deformation is much quicker than phase changes:

∇ · ∂W ∗

∂ε
= 0 (16)

The corresponding topology optimization problem is
then transferred to find the solution of c∗ for the Eqs.
(14)-(16).

These two types of elastic energy are analogical in nature
and the proof of resolution existence/uniqueness, mass-
conservative and energy dissipative for the generalized
C-H with elastic energy in Eq. (9) by [Garcke (2000)] is
still valid for its derivative form [Zhou and Wang (2005)].

4 Multigrid Algorithm for the Generalized C-H
Equations in 3D

Eqs. (14) are a set of fourth-order nonlinear parabolic
equations and rigorous to be solved by traditional
schemes like FEM and finite difference. Here we de-
velop a powerful multigird algorithm in 3D with proof of
non-increasing total free energy and convergence. This
algorithm was first proposed for classic C-H model with-
out elasticity by [Kim (2002); Kim, Kang, and Lowen-
grub (2004b); Kim, Kang, and Lowengrub (2004a)] and
more details should be found in relating references.

4.1 Generalized quadternary C-H model with elastic-
ity

We first expand the Eqs. (14) for a system composed of
four phases. Considering unit summation for the mass
concentration, we get{ ∂c

∂t = ∇ · (M(c)∇µ)
µ = f (c)− Γ̂εΔc+w(c,ε)

(17)
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where

c =

⎛
⎝ α

β
γ

⎞
⎠ , µ =

⎛
⎝ ξ

ζ
ψ

⎞
⎠ ,

Γ̂ε =

⎛
⎝ ε2

1 +ε2
4 ε2

4 ε2
4

ε2
4 ε2

2 +ε2
4 ε2

4
ε2

4 ε2
4 ε2

3 +ε2
4

⎞
⎠

f (c) =

⎛
⎜⎝

∂F
∂α
∂F
∂β
∂F
∂γ

⎞
⎟⎠ , w(c,ε) = η

⎛
⎜⎝

∂W ∗
∂α

∂W ∗
∂β

∂W ∗
∂γ

⎞
⎟⎠

(18)

The bulk energy is defined as

F (c) = κ[α2(β2 + γ2 +ν2)+β2(γ2 +ν2)
+ γ2ν2 +α2β2(γ2 +ν2)+β2γ2ν2] (19)

where ν = (1−α−β− γ) is the fourth phase. κ is a pa-
rameter to control the well function in Eq. (19). Γ̂ε is a
derivation from Γε =

[
e1ε2

1 e2ε2
2 e3ε2

3 e4ε2
4

]
, where

ei, i = 1, · · · ,4 are eigenvectors.

Combining Eqs. (17)-(19), we get⎧⎪⎨
⎪⎩

∂α
∂t = ∇ · (M(c)∇ξ)
∂β
∂t = ∇ · (M(c)∇ζ)
∂γ
∂t = ∇ · (M(c)∇ψ)

(20)

where⎧⎨
⎩

ξ = f1 − (ε2
1 +ε2

4)Δα−ε2
4Δ(β+ γ)+w1

ζ = f2− (ε2
2 +ε2

4)Δβ−ε2
4Δ(α+ γ)+w2

ψ = f3− (ε2
3 +ε2

4)Δγ−ε2
4Δ(α+β)+w3

(21)

Here, w(c) is the sensitivity of the elastic strain energy
of the structure with respect to the phase concentration c,
which is given by using the adjoint method [Bendsoe and
Sigmund (2003)], for example, for c1 = α,

w1 = η
∂W ∗

∂c1
= −ηpcp−1

1 u : E1u (22)

where p > 1

4.2 Approximation of nonlinear bulk function deriva-
tive

Discretize the first items in Eqs. (20) and (21) by Crank-
Nicholson scheme:

αn+1
i jk −αn

i jk

τ
= ∇ ·

[
M
(
cn

i jk

)
∇
(

ξn+1/2
i jk

)]
(23)

ξn+1/2
i jk = f̂1

(
cn,cn+1)

− 1
2

(
ε2

1 +ε2
4

)
Δ
(

αn
i jk +αn+1

i jk

)
− 1

2
ε2

4Δ
(

βn
i jk +βn+1

i jk + γn
i jk + γn+1

i jk

)
+

1
2

(
w1
(
cn

i jk

)
+w1

(
cn+1

i jk

))
(24)

Here we use αn
i jk and αn+1

i jk to represent the values before

and after one step of iteration. αn+1/2
i jk is a functional of

αn
i jk and αn+1

i jk and is written as α
(
cn,cn+1

)
sometimes.

The rest items in Eqs. (20) and (21) can be discretized
similarly as Eqs. (23) and (24), but we omit them here
for brief reason. These six equations make up of a linear
equation system with six unknowns relating to updated
phase concentration cn+1 and chemical potential µn+1 .
The process of solving these equations is called smooth-
ing operator (relaxation) in multigird algorithm. With
similar smoothing operator in standard V cycle iteration,
Kim et. al. [Kim (2002); Kim, Kang, and Lowengrub
(2004b); Kim, Kang, and Lowengrub (2004a)] success-
fully get the resolution of traditional C-H model without
elasticity in binary and ternary conditions. Our algorithm
is an extension of Kim’s work, for details about this al-
gorithm, people are advised to read [Kim (2002); Kim,
Kang, and Lowengrub (2004b); Kim, Kang, and Lowen-
grub (2004a)].

How to approximate the highly nonlinear items
f̂ (cn,cn + 1) = ( f̂1, f̂2, f̂3)T in the C-H model, which are
the first derivative of the bulk function to the design vari-
ables, plays an important role for the multigrid algorithm.
Traditional scheme is the Crank-Nicholson method by
f̂ (cn,cn+1) = 1

2 ( f̂ (cn)+ f̂ (cn+1)). But it can’t ensure the
total free energy is non-increasing for ternary C-H sys-
tem [Kim (2002)]. Thus, to avoid the same disadvantage
in 3D quadternary C-H system, We propose a new ap-
proximation for these items:

f̂1
(
cn,cn+1)= f1

(
cn+1)

− 1
2!

[
∂ f1
(
cn+1

)
∂α

α+
∂ f1

(
cn+1

)
∂β

β+
∂ f1

(
cn+1

)
∂γ

γ

]

+
1
3!

∂2 f1
(
cn+1

)
∂α2 α2 +

1
3!

∂2 f1
(
cn+1

)
∂β2 β

2

+
1
3!

∂2 f1
(
cn+1

)
∂γ2 γ2 +

2
3!

∂2 f1
(
cn+1

)
∂α∂β

αβ
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(a) Cantilever beam (b) MBB beam (c) Bridge beam

Figure 2 : The design domains of the three cases

+
2
3!

∂2 f1
(
cn+1

)
∂α∂γ

αγ+
2
3!

∂2 f1
(
cn+1

)
∂β∂γ

βγ

= f1
(
cn+1)− 1

2!
∇ f1

(
cn+1) · c

+
1
3!

cT H
(

f1
(
cn+1)) · c (25)

where α = αn+1 −αn, β = βn+1 −βn γ = γn+1− γn, c =
cn+1 −cn and H (·) is the Hessian matrix.

In the same way, we can derive f̂2
(
cn,cn+1

)
and

f̂3
(
cn,cn+1

)
as

f̂2
(
cn,cn+1)= f2

(
cn+1)

− 1
2!

∇ f2
(
cn+1) · c +

1
3!

cT H
(

f2
(
cn+1)) · c (26)

f̂3
(
cn,cn+1)= f3

(
cn+1)

− 1
2!

∇ f3
(
cn+1) · c +

1
3!

cT H
(

f3
(
cn+1)) · c (27)

Appendix A: proves the total free energy is non-
increasing with the above discretization in Eqs. (25-27).
They also make sure the multigrid algorithm is conver-
gent, which is proved in Appendix B:.

5 Numerical Examples for SIMP Model:

In this section we illustrate the SIMP model in 3D with
three cases extended from standard beams in 2D for the
mean compliance optimization problems. The first ex-
ample is a cantilever beam with a concentrated vertical
force F = 1 at the bottom center of its free vertical sur-
face (Fig. 2a). The second case is a so called MBB beam
loaded with a unit concentrated vertical force applied on

the center of the top surface (Fig. 2b). The two points at
the bottom corner of the left surface are fixed while the
two points at the bottom corner of the right surface are
simply supported. The last case is a bridge-structure with
same boundary conditions as the MBB beam. But it has
three evenly located external forces applied on the center
line of the bottom surface (in Fig. 2c, the beam is rotated
90o to display the bottom surface). The middle force is
twice larger than the other ones and F = 1. The design
domain for the cantilever beam and the bridge-structure
has a 2:1:1 ratio for the length:width:height, but it is 4:1:1
for the MBB beam.

5.1 Cantilever Beam

In this example, the mesh is defined as nx = 24; ny = 12;
nz = 12 in the direction of x,y and z. The volume ratio
is 30% and the initial density for all elements is equal to
= 0.3. Penalty factor is p = 3 and filtering radius is r =
1.8. Fig. 3 is the ISO-surface of c ≥ 0.3 for each iteration
(m). From the energy trend in Fig. 4, the SIMP model
converges so quickly that only 17 iterations (24 seconds
on a computer with Intel(R) Xeron(TM) 3.06 GHz CPU
and 1 GB of RAM are needed. The last three snapshots
in Fig. 3 are the view of the final structure from different
angles.

5.2 MBB Beam

For this example, the parameter are the same as the above
example except a finer mesh nx = 40; ny = 20; nz = 20
(16,000 cube elements). This example is computed by
the same computer with C code to overcome the defi-
ciency of computer memory in Matlab environment. It
takes about 35,999.21 seconds for 32 iterations. This
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(a) m=1 (b) m=2 (c) m=5 (d) m=10

(e) m=16 (f) angle 1 (g) angle 2 (h) angle 3

Figure 3 : Design process for the cantilever beam

Figure 4 : Energy trend for the cantilever beam

SIMP-based method is much faster than the homoge-
nization based method [Allaire, Bonnetier, Francfort, and
Jouve (1997)] which takes one day for 24,000 hexahedral
elements on a supercomputer HP9000/755. Fig. 5 gives
its design process and Fig. 6 is the enlargement of the
final result for clear image.

Fig. 7 illustrates the effect of the penalty factor. The
holes on the lateral surfaces disappear as p increases.

This is due to the higher penalty factor is able to draw
the middle value of density to its two extremes greatly.

5.3 Bridge Beam

This bridge beam example (Fig. 8) is implemented with
the same parameters as the cantilever example.



90 Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.83-101, 2006

(a) m=1 (b) m=2 (c) m=5 (d) m=15

(e) m=20 (f) m=25 (g) m=32 (h) angle 1

(i) angle 2 (j) angle 3

Figure 5 : Design process for the MBB beam

Figure 6 : Enlarged final structure of the MBB beam

6 Numerical Experiments for C-H Model

6.1 Quadraternary C-H Equations

we first illustrate the evolution process for the
quadternary C-H equations without elasticity in a cubic
domain of [0,1]× [0,1]× [0,1] to guarantee the correct-
ness of multigrid algorithm. To our best knowledge at
present, no simulation has been made for a C-H system
with more than three phases in 3D.

6.1.1 Quadternary C-H Equations with Constant Mo-
bility

The mesh size for this example is 32 × 32 × 32 with
quadrilateral elements. The volume ratios are 0.15 for
the red, 0.2 for the green and 0.25 for the blue. The C-H
parameters are all equal to ε1 = ε2 = ε3 = ε4 = 0.005.
The time step is set as τ = 0.1h. Mobility is constant
M = 1. The initial values are nearly homogeneous mate-
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(a) p=3 (b) p=4 (c) p=5

Figure 7 : The final structure of MBB beam with different penalty factor

(a) m=1 (b) m=2 (c) m=5 (d) m=8

(e) m=13 (f) angle 1 (g) angle 2 (h) angle 3

Figure 8 : Design process for the bridge beam

rials as

α (,0) = 0.15+0.05cos[2π(0.5− rand[0,1])]
β(,0) = 0.20+0.05sin[2π(0.5− rand[0,1])]
γ (,0) = 0.25+0.05sin[2π(0.5− rand[0,1])] (28)

Fig. 9 lists some external surface snapshots for this evo-
lution. To view the inner structure clearly, we draw the
ISO surface with the fourth phase ν ≥ 0.3 in Fig. 11.

Fig. 10 illustrates the variation of the interface energy,
bulk energy (potential energy) and total free energy in
linear and logarithmic coordinates. At the beginning,
bulk energy drops sharply and interface energy increases

because of phase separation. Then the interface energy
drops slowly due to grain size grows up resulting in in-
terface mergence. The total free energy decreases all the
time agreeing with the nature of C-H system.

6.1.2 Quadternary C-H Equations with Varied Mobility

Here we give another example (Fig. 12) with same pa-
rameters as the above example except M = 0.5 + α(β+
γ+ν) + β(γ+ν) + γν and τ = 0.05h. Fig. 13 illustrates
the inner structure with ISO surface for two snapshots.
Fig. 14 compares the energy trend for this example (blue
line) with the one with constant mobility (red line). The
horizonal axis is nondimensional time. Although the dif-
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(a) m=0 (b) m=20 (c) m=80 (d) m=200 (e) m=325

(f) m=700 (g) m=1,800 (h) m=4,800 (i) m=17,000 (j) m=79,000

Figure 9 : Surface of quadternary C-H system in 3D with constant mobility
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Figure 10 : Energy trend for quadternary C-H system in 3D with constant mobility

ference of these two curves is small, the example with
varied mobility takes much longer time to converge to
the final equilibrium state.

6.2 The Optimization of Single Material Structural
Topology

In this section, we want to compare the results by SIMP
model with the ones by C-H model. As we have devel-
oped the codes for ternary C-H system with elasticity for

the beams with two materials, we just make use of this
program for single material structure by choosing two
hard materials (phases) with same stiffness tensor. The
stiffness tensor for the rest phase is negligible to repre-
sent void. It should be noted the mesh for multigrid is
twice finer than the one for FEM to save computing time
for all topology optimization examples by C-H model.
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(a) m=700 (b) m=4,800

Figure 11 : ISO surface for quadternary C-H system in 3D with constant mobility

(a) m=0 (b) m=80 (c) m=200 (d) m=450 (e) m=700

(f) m=1,800 (g) m=8,800 (h) m=17,000 (i) m=148,000 (j) m=280,000

Figure 12 : Surface of quadternary C-H system in 3D with varied mobility

6.2.1 MBB Example

The stiffness tensor of the solid material (two phases) is 1
without unit. To avoid computing singularity, we set the
stiffness tensor for the void material as 0.001 other than
0 in all examples. The volume ratio for solid material is
equal to 0.4. Parameters of the C-H system are set with
ε1 = ε2 = ε3 = 0.01 and η = 0.025. A practical time step
for the multigrid algorithm is taken as τ = 0.01h with
32×16×16 quadrilateral elements. The initial condition

for each phase at each element vibrates smally around the
volume ratios. Fig. 15 demonstrates the design process.
Because of geometry symmetry, only the left part of the
MBB beam is designed.

Fig. 16 compared the result by SIMP model with the one
by C-H model for MBB beam. The two examples are
computed with same volume ration, penalty factor and
mesh grid. From the similar results with these two mod-
els, it is obvious the C-H model for topology optimiza-
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(a) m=4,800 (b) m=8,800

Figure 13 : ISO surface for quadternary C-H system in 3D with varied mobility
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Figure 14 : The energy difference between the example
with constant mobility and the one with varied mobility

tion is correct at least for the single material structure.

6.3 The Optimization of Structural Topology in 3D
with Ternary Phases

Here we consider the optimization of two-material (three
phases) structural topology for the same cases as the
above section.

6.3.1 Cantilever Beam

The mesh size for this example is 32 × 16 × 16 with
quadrilateral elements. The volume rations for the hard
material (green color, E = 2) and soft material (red color,
E = 1) are 0.2. The C-H parameters are all equal to
ε1 = ε2 = ε3 = 0.01. Time step is set as τ = 0.002h. Fig.
17 includes some snapshots of ISO-surface with γ ≥ 0.5
for this example.

6.3.2 MBB Beam

The parameters for this example are the same as the can-
tilever example in Fig. 17. Fig. 18 demonstrates the
design process for this example.

6.4 The Optimization of Structural Topology in 3D
with Quadternary Phases

For a structure composed of three solid materials and one
void, it is possible to be modeled by the quadternary C-H
system for its topology optimization.

6.4.1 MBB Beam

The volume rations are 0.1, 0.15 and 0.15 for three solid
materials with stiffness tensor 1, 2 and 4 respectively.
The mesh gird for multigrid is 32× 16× 16, which is
double finer than the one of 16× 8× 8 for FEM. Each
mesh discretized the design domain into a set of iden-
tical cube elements. The C-H parameters are all equal
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(a) m=80 (b) m=200 (c) m=450 (d) m=1,800

(e) m=4,800 (f) m=8,800 (g) m=17,000 (h) m=48,000

(i) m=148,000 (j) m=280,000

Figure 15 : The optimization of single material structural topology by C-H model (MBB beam)

(a) SIMP model (b) C-H model

Figure 16 : The result by C-H model compared with the result by SIMP model (MBB beam)

to ε1 = ε2 = ε3 = ε4 = 0.01 and time step is set as
τ = 0.002h. The elastic parameter is equal to η = 0.015
for this example. Fig. (19 a) displays the right half of
the optimized structure. It has to note the final result is
not strictly accurate due to the FEM is computed on a

coarser grid for saving time. But from the energy trend
in Fig. (19 b), both total free energy and elastic energy
drops gradually indicating such FEM approximation is
reasonable.
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(a) m=80 (b) m=200 (c) m=450 (d) m=1,800

(e) m=4,800 (f) m=8,800 (g) m=17,000 (h) m=48,000

(i) m=148,000 (j) m=280,000

Figure 17 : The optimization of two material structural topology by C-H model (cantilever beam)
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Appendix A: Proof of Non-Increasing Total Free
Energy

The difference of the total energy after one iteration
can be simplified as Eq. (29), which is derived from
integral by part and the approximation of Δcn+1/2 =
(Δcn+1 +Δcn)/2 and µn+1/2 = f̂ (cn+1,cn)− Δcn+1/2 +
ŵ(cn+1,εn+1,cn,εn).

Ψ
(
cn+1)−Ψ(cn)

=
∫

F
(
cn+1)−F (cn)

+
Γε

2

∫ (
∇cn+1 ·∇cn+1 −∇cn ·∇cn)

+W ∗(cn+1,εn+1)−W ∗(cn,εn)

=
∫ [

F
(
cn+1)−F (cn)

]
+

Γε

2

∫ (
∇cn+1 +∇cn) · (∇cn+1 −∇cn)
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+W ∗(cn+1,εn+1)−W ∗(cn,εn)

=
∫ [

F
(
cn+1)−F (cn)

]
−
∫

Γε

(
Δcn+1 +Δcn

)
2

·c
+W ∗(cn+1,εn+1)−W ∗(cn,εn)

=
∫ [

F
(
cn+1)−F (cn)

]
+
∫

(µn+1/2− f̂ (cn+1,cn)) · c

−
∫

(ŵ(cn+1,εn+1,cn,εn)) · c
+W ∗ (cn+1,εn+1)−W ∗ (cn,εn)

=
∫ [

F
(
cn+1

)−F (cn)
]−∫ f̂ (cn+1,cn)·c

−τ
∫ (

∇µn+1/2
)2

−
∫

ŵ(cn+1,εn+1,cn,εn)·c
+W ∗ (cn+1,εn+1

)−W ∗ (cn,εn) (29)

Substitute Eqs. (25)-(27) to the second item in Eq. (29),
get

f̂ (cn+1,cn) · c
= f

(
cn+1) · c− 1

2!
c∇ f

(
cn+1) · c

+
1
3!

⎡
⎣ cT H

(
f1
(
cn+1

)) · c
cT H

(
f2
(
cn+1

)) · c
cT H

(
f3
(
cn+1

)) · c
⎤
⎦ · c (30)

Extend the elastic part also with Taylor series and assure
equilibrium deformation resulting in ∂W ∗(cn,εn)

∂ε = 0, get

W ∗ (cn+1,εn+1)= W ∗ (cn,εn)

+
∂W ∗ (cn,εn)

∂c
· c+

1
2

∂W ∗2 (cn,εn)
∂c2 · c2 (31)

Extend the derivative of elastic energy in Eq. (31)

ŵ(cn+1,εn+1,cn,εn)

= w(cn,εn)+
∂w(cn,εn)

∂c
c (32)

Expand F(cn) at F(cn+1) according to Taylor series:

F(cn) = F(cn+1)−c · ∂F(cn+1)
∂c

+
1
2!

[
3

∑
i=1

((cn+1
i −cn

i ) ·
∂

∂ci
)]2F(cn+1)

− 1
3!

[
3

∑
i=1

((cn+1
i −cn

i ) ·
∂

∂ci
)]3F(cn+1)

+
1
4!

[
3

∑
i=1

((cn+1
i −cn

i ) ·
∂

∂ci
)]4F(cn+1)

=⇒ F(cn+1)−F(cn)

= ∇F
(
cn+1) · c− 1

2!
cH
[
F
(
cn+1)] · c

+
1
3!

⎡
⎣ cH

(
f1
(
cn+1

)) · c
cH
(

f2
(
cn+1

)) · c
cH
(

f3
(
cn+1

)) · c
⎤
⎦ · c

− 1
4!

[
3

∑
i=1

((cn+1
i −cn

i ) ·
∂

∂ci
)]4F(cn+1) (33)

Put Eqs. (30)-(33) back to Eq. (29), get

Ψ
(
cn+1)−Ψ(cn)

= − 1
4!

[
3

∑
i=1

((cn+1
i −cn

i ) ·
∂

∂ci
)]4F(cn+1)

−τ
∫ (

∇µn+1/2
)2

− 1
2

∫ ∂w(cn,un)
∂c

· c2 (34)

From the first derivative of elastic energy introduce
by adjoint method [Bendsoe and Sigmund (2003)],
∂W (cn,εn)

∂c = −pcp−1ueKeue, it is easy to get:

∂w(cn,εn)
∂c

=
{

0 i f p = 1
PueKeue ≥ 0 i f p ≥ 2

(35)

where P = p(p−1)cp−2

According to the bulk function in Eq. (19) and the unit
summation constraint for design variables c, it is directly
to derive

1
4!

[
3

∑
i=1

((cn+1
i −cn

i ) ·
∂

∂ci
)]4F(cn+1)

=
κ
4!

[
∂F(cn+1)4

∂4α
α4 +

∂F(cn+1)4

∂4β
β

4

+
∂F(cn+1)4

∂4γ
γ4 +4

∂F(cn+1)4

∂3α∂β
α3β

+4
∂F(cn+1)4

∂3α∂γ
α3γ+4

∂F(cn+1)4

∂3β∂α
β

3
α
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+4
∂F(cn+1)4

∂3β∂γ
β

3
γ+4

∂F(cn+1)4

∂3γ∂α
γ3α

+4
∂F(cn+1)4

∂3γ∂β
γ3β+6

∂F(cn+1)4

∂2α∂2β
α2β

2

+6
∂F(cn+1)4

∂2α∂2γ
α2γ2 +6

∂F(cn+1)4

∂2β∂2γ
β

2
γ2

+12
∂F(cn+1)4

∂α∂β∂2γ
αβγ2 +12

∂F(cn+1)4

∂α∂γ∂2β
αγβ

2

+12
∂F(cn+1)4

∂β∂γ∂2α
βγα2]

= R1 +R2 (36)

Where R1 is the extension for the first part of bulk func-
tion F1 = κ[α2(β2 + γ2 +ν2)+β2(γ2 +ν2)+ γ2ν2]. It is
equal to:

R1 = κ(α4 +β
4
+ γ4 +2α3β +2α3γ

+2β
3
α+2β

3
γ+2γ3α+2γ3β +3α2β

2

+3α2γ2 +3β
2
γ2 +2βγα2 +2αγβ

2
+2αβγ2)

= κ[(α2 +β
2
+ γ2)(α+β + γ)2

+α2β
2
+α2γ2 +β

2
γ2] ≥ 0 (37)

R2 is the one for the rest part of bulk function F2 =
κ[α2β2(γ2 +ν2)+ β2γ2ν2]. We can prove all coefficients
for R1 + R2 are greater than the ones for CminR1 by ex-
panding 1 = (α+β+ γ+ν)2 as following:

T1 +S1 = (1+β2) ≥ CminT1

T2 +S2 = (1+(α2 + γ2)≥ CminT2

T3 +S3 = (1+β2) ≥CminT3

T4 +S4 = (2+(−4βν+2β2 +4αβ)) ≥CminT4

T5 +S5 = (2+2β2)≥ CminT5

T6 +S6 = (2+(−4αν+2α2 +4αβ+2γ2))≥CminT6

T7 +S7 = (2+(2α2−4γν+2γ2 +4βγ)) ≥CminT7

T8 +S8 = (2+2β2)≥ CminT8

T9 +S9

= 3+(2γ2 +ν2 −4βν+β2 −4αν+8αβ+α2)
≥CminT9

T10 +S10 = (3+3β2) ≥CminT10

T11 +S11

= 3+(2α2 +ν2 −4γν+ γ2 −4βν+8βγ+β2)
≥CminT11

T12 +S12 = (2+(2β(2γ−2ν)+2β2 +8αβ+4βγ))
≥ CminT12

T13 +S13

= 2+(4α(γ−ν)+2α2 +8αβ−4γν+2γ2 +8βγ)
≥ CminT13

T14 +S14 = (2+(8αβ−4βν+2β2 +8βγ)) ≥CminT14

(38)

Where Ti and Si are the coefficients for αiβ
j
γk, i ≥ 0, j ≥

0,k ≥ 0, i + j + k = 4 in R1 and R2 respectively. Cmin is
a positive constant. We also use α to represent αn+1 for
brief reason. Thus, it is easy to derive:

1
4!

[
3

∑
i=1

((cn+1
i −cn

i ) ·
∂

∂ci
)]4F(cn+1)

= R1 +R2 ≥CminR1 ≥ 0 (39)

Eqs. (34), (35) and (39) indicate the total free energy is
a Lyapunov functional without minimal time step restric-
tion.

Ψ
(
cn+1)−Ψ(cn) ≤ 0 (40)

Appendix B: Proof of Convergence

The approximation in Eqs. (25)-(27) also leads to:

∣∣∣∣ f

(
cn +cn+1

2

)
− f̂

(
cn,cn+1

)∣∣∣∣
≤ C

∣∣cn+1 −cn+1
∣∣2 (41)

which is a prerequisite for the convergence of this algo-
rithm within fixed time step. To prove Eq. (41), we first

discretize f1

(
cn+cn+1

2

)
= f1

(
cn+1 + cn−cn+1

2

)
at cm+1 by

Taylor series:

f1

(
cn+1 +cn

2

)

= f1
(
cn+1)+∇ f1

(
cn+1) ·(cn −cn+1

2

)

+
1
2!

(
cn −cn+1

2

)
∇ f1

(
cn+1) ·(cn −cn+1

2

)
(42)
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then,

f1

(
cn+1 +cn

2

)
− f̂1

(
cn,cn+1)

= − 1
24

cT H ( f1 (cn)) · c

= − 1
24

∂2 f1
(
cn+1

)
∂α2 α2 − 1

24

∂2 f1
(
cn+1

)
∂β2 β

2

− 1
24

∂2 f1
(
cn+1

)
∂γ2 γ2 − 1

12

∂2 f1
(
cn+1

)
∂α∂β

αβ

− 1
12

∂2 f1
(
cn+1

)
∂α∂γ

αγ− 1
12

∂2 f1
(
cn+1

)
∂β∂γ

βγ (43)

Applying Young’s inequality to Eq. (43) and considering
the bound of f1 and its derivative in the first/second order,
we get∣∣∣∣ f1

(
cn+1 +cn

2

)
− f̂1

(
cn,cn+1)∣∣∣∣

≤C(α2 +β
2
+ γ2) (44)

where C is a constant. Similarly, we get∣∣∣∣ f2

(
cn+1 +cn

2

)
− f̂2

(
cn,cn+1)∣∣∣∣

≤C(α2 +β
2
+ γ2) (45)

∣∣∣∣ f3

(
cn+1 +cn

2

)
− f̂3

(
cn,cn+1)∣∣∣∣

≤C(α2 +β
2
+ γ2) (46)

Finally get,∣∣∣∣ f
(

cn +cn+1

2

)
− f̂

(
cn,cn+1)∣∣∣∣

≤C
∣∣cn+1 −cn

∣∣2 (47)

from Eq. (47), it is easy to prove [Kim, Kang, and
Lowengrub (2004a)] the convergence of the algorithm
within fixed time step.

‖un−cn‖ ≤C
(
h2 +τ2) (48)

where un is the smooth solution.




