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Efficient Green’s Function Modeling of Line and Surface Defects in Multilayered
Anisotropic Elastic and Piezoelectric Materials1

B. Yang2 and V. K. Tewary3

Abstract: Green’s function (GF) modeling of defects
may take effect only if the GF as well as its various
integrals over a line, a surface and/or a volume can be
efficiently evaluated. The GF is needed in modeling
a point defect, while integrals are needed in modeling
line, surface and volumetric defects. In a matrix of mul-
tilayered, generally anisotropic and linearly elastic and
piezoelectric materials, the GF has been derived by ap-
plying 2D Fourier transforms and the Stroh formalism.
Its use involves another two dimensions of integration in
the Fourier inverse transform. A semi-analytical scheme
has been developed previously for efficient evaluation of
the GF. In this paper, an efficient scheme for evaluation
of the line and surface integrals of the GF is presented.
These integrals are obtained by carrying out the integra-
tion over the physical domain analytically and then over
the transform domain numerically. The efficiency is thus
comparable to that in the evaluation of the GF. The high
efficiency in the evaluation of the surface integral is of
particular value to the modeling of dislocations due to
the lack of a line-defect treatment of this group of de-
fects (originally, of uniform planar distribution of force
dipoles) in a multilayered heterogeneous matrix. Nu-
merical examples of nitride semiconductors with strong
piezoelectric effect are presented to demonstrate the effi-
ciency and accuracy of the present scheme.
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1 Introduction

Defects are of great importance in materials science and
engineering as well as in applied mechanics. They may
occur at a “point” (such as vacancies and interstitials at
the lattice level), along a line (such as surface and inter-
facial steps), over a surface (such as dislocations, discli-
nations, and cracks) and over a finite volume (such as
quantum dots, and reinforcing particles in composites)
(Eshelby, 1956; Mura, 1982; Hirth and Lothe, 1991;
Nemat-Nasser and Hori, 1999). When they are modeled
in a continuum matrix as concentrated sources of force,
dipole, or multipole of any higher order, the stress and
strain fields are singular or nearly singular in their vicin-
ity. Obviously such rapidly varying fields would be trou-
blesome to a completely numerical scheme and hence re-
quire analytical treatment (Weygand et al., 2002; O’Day
and Curtin, 2004). It has been well known that a point-
source Green’s function (GF) is ideal for modeling de-
fects. It can be directly applied to model point defects. To
model line, surface and volumetric defects, it then needs
to be integrated over the corresponding defect space. The
GF method has long been recognized for high efficiency
and high accuracy in modeling defects in an infinite, ho-
mogeneous, isotropic matrix, where the GF, namely, the
Kelvin fundamental solution, is available in an explicit
analytical form (Love, 1944; Mura, 1982).

Within the theory of generally anisotropic linear elastic-
ity and piezoelectricity, the GFs of infinite-space, half-
space, bimaterials, trimaterials and multilayers have been
derived in a series of papers in recent years (Wang, 1997;
Pan and Tonon, 2000; Pan and Yuan, 2000a, b; Yang and
Pan, 2002a, b; Pan and Yang, 2003; Yuan et al., 2003;
Yang et al., 2004). The infinite-space GF was given in
an analytical form. However, because it involves numer-
ical solution of an eigen-equation, its evaluation is less
efficient than that of the explicit Kelvin solution in an in-
finite isotropic matrix. The other GFs of heterogeneous
systems were derived by applying two-dimensional (2D)
Fourier transforms and the Stroh formalism (Stroh, 1958;
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Ting, 1996). The bimaterial GF, including the half-space
GF as a special case, was derived as a 1D integral by an-
alytically integrating over the radial axis in the inverse
transform. The trimaterial GF was obtained as an infinite
series of 1D integrals, equivalent to the series solution by
an image method (Yu and Sanday, 1993). When both the
field and source points are located on the same interface,
special care must be taken to deal with the finite-part inte-
grals. Finally, the multilayer GF was divided in two parts,
special (seed) and general (complimentary). The special
part is taken to be one of the above GFs, which can be
evaluated either analytically or numerically in a 1D inte-
gral. The general part inevitably involves a 2D numeri-
cal integral in the Fourier inverse transform. There are
subtle issues in carrying out the inverse transform effi-
ciently, which however are not discussed here. Rather
we would like to point out that when these GFs are ap-
plied to solve a defect problem that requires integration
over a physical space, the problem size would soon reach
the limit set by currently available computer power. In
this paper, an efficient scheme is developed to evaluate
the line and surface integrals of the GF in multilayered
elastic and piezoelectric materials. The evaluation is ac-
complished by carrying out the integration first over the
physical domain analytically and then over the transform
domain numerically. The efficiency attained in this way
is nearly as high as that in the evaluation of the GF (Yang
and Pan, 2002b). Such high efficiency would be criti-
cal to a simulation of a large system of defects including
steps and dislocations in the heterogeneous materials.

The present work was motivated by recent great inter-
est in studying steps and dislocations in thin films and
multilayers and hence demand for their efficient model-
ing and simulation (Liu et al., 1997; Heying et al., 1999;
Han and Ghoniem, 2005). Thin films and multilayers are
often found as the base structure in advanced electronic
devices as well as in protective coatings and thermal bar-
riers. The presence of surfaces and interfaces poses a sig-
nificant challenge to the computational modeling of de-
fects. Steps may be buried at an interface or exposed at a
free surface. For instance, an interfacial step may emerge
as a dislocation penetrating an interface. In turn, a sur-
face step may form as a dislocation terminating at a sur-
face, through surface instability over a strained substrate,
and during incomplete deposition of a monolayer in epi-
taxy. The continuum modeling of steps as line defects
is straightforward. Its nature, i.e., order and intensity of

singularity, whether a force, dipole, or multipole of any
higher order, may be determined through atomistic simu-
lations and first-principles calculations (Balamane et al.,
1992; Van de Walle et al., 1998).

In its nature, a dislocation was initially modeled as a sur-
face defect of uniform displacement discontinuity (Mura,
1963, 1982). The induced displacement and stress fields
can be conveniently expressed as a surface integral with
the GF of the matrix as kernel over the dislocation slip
plane. If the matrix is homogeneous and infinite and
thus holds complete translational symmetry, the surface
integral for evaluation of stress due to a surface disloca-
tion can be reduced to a line integral with its source dis-
tributed along the dislocation edge (Mura, 1963, 1982).
The dislocation is consequently regarded as a linear “line
defect”. However, it must be remarked that such a line-
defect treatment for evaluation of displacement due to
a dislocation has not been derived even in the simplest
case of an infinite, homogeneous matrix. The line-defect
treatment of dislocations for evaluation of stress has been
extended to the case of a homogeneous traction-free half-
space (Gosling and Willis, 1996). The image forces of a
dislocation in the presence of a free surface can be ac-
counted for by compensating the traction at the surface
caused by the dislocation in an infinite homogeneous
space. That is, a boundary value problem is solved, in
which the traction-free surface condition is imposed, and
in which the Mura’s fundamental (referring to an infinite
space) solution of stress due to an infinitesimal “line-
dislocation” segment is taken as the special (seed) so-
lution. This is feasible because the fundamental solu-
tion for displacement, which is unavailable as remarked
above, is not required in the imposition of traction-free
surface condition in this case. For the same reason, the
line-defect treatment of dislocations can be extended to
a free-standing film for evaluation of stress. Arias and
Lund (1999) proposed a formulation for a line-integral
treatment of dislocation in finite samples. They pre-
sented as examples the traction-free half-space and the
free-standing plate, the same two cases discussed above.
It is unclear how their formulation could be applied to
other cases where the (unavailable) fundamental solution
for displacement is required to enforce boundary condi-
tions and/or interfacial continuity conditions.

Ghoniem and Han (2005) developed a line-integral for-
mulation of dislocation in multilayered materials by solv-
ing the boundary-value problem of a “line-dislocation”
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segment, similarly to solving the boundary-value prob-
lem of a point force by Yang and Pan (2002b) and Yuan
et al. (2003). Unlike the aforementioned cases of a
traction-free half-space and a free-standing film, this case
requires the fundamental solution for displacement due
to a “line-dislocation” segment in order to impose the
complete continuity condition of both displacement and
traction across an interface. Ghoniem and Han proposed
to bypass this requirement by imposing the continuity
condition of displacement gradient along the interfaces
(Hill, 1961). However, their expression for displace-
ment gradient (equation (2) in the paper) lacks a term
of displacement discontinuity across the dislocation slip
plane, given in the Dirac delta function, according to
Mura (1982) (page 39). This invalidates their formula-
tion, as may be evidenced by an obvious discrepancy be-
tween their solutions (Figure 2 in the paper) by the line-
integral method and the original surface-integral method
(Han and Ghoniem, 2005). A line-integral expression
for displacement gradient due to a dislocation would be
available only if the Dirac delta function can be dissolved
into a line integral along the dislocation edge as well,
which is unknown yet and seems difficult, if not impos-
sible.

The present paper is organized as follows. In Section
2, the theory of anisotropic and linear piezoelectricity
is summarized, including elasticity and electrostatics as
special cases. Within the framework, various point, line
and surface defects are modeled by using GFs. In Section
3, the GFs of a point source (i.e., force or charge) in mul-
tilayered elastic and piezoelectric materials are summa-
rized. Based on the characteristics of the GF, a scheme is
proposed for efficient evaluation of their line and surface
integrals in the physical space, which are required in the
modeling of various line and surface defects. In Section
4, numerical examples of dislocations in nitride semicon-
ductors with strong piezoelectric effect are presented to
demonstrate the efficiency and accuracy of the present
scheme. The solutions due to the elastic and piezoelec-
tric models are compared. In Section 5, conclusions are
drawn.

2 Green’s Function Method of Defects

In this section, the general formulation of defects in
multilayered piezoelectric materials is described. Since
the short-hand notation of Barnett and Lothe (1975) is
adopted, it is symbolically identical to the elastic case.

x1

x2

x3

Dislocation

(surface defect)

Step (line defect)

Point

defects

Figure 1 : A multilayered matrix embedded with various
point, line and surface defects.

They are only different in the range of indices in certain
quantities. In the other words, the formulation of piezo-
electricity includes elasticity and electrostatics as special
cases. Let us consider a semi-infinite multilayered matrix
consisting of multiple planar layers of generally different
homogeneous, anisotropic and linearly piezoelectric ma-
terials, as schematically shown in Fig. 1. The top surface
is free of traction. The interfaces are perfectly bonded.
There may exist various point, line and surface defects
embedded in or attached to the matrix. The global Carte-
sian coordinate system (x1,x2,x3) is defined such that the
x1 − x2 plane lies on the top surface and the matrix oc-
cupies x3 ≥ 0.

The mechanical and electrical equilibrium equations are
given by

σ ji, j + fi = 0, Di,i −q = 0, (1)

where σ ji is the stress component, Di is the electric dis-
placement component, fi is the body force component,
and q is the electrical charge. The comma in the sub-
scripts indicates partial differentiation with respect to
the coordinate that follows. Repeated subscript indices
imply the conventional Einstein summation over their
ranges.

The constitutive laws for each homogeneous layer are
given by

σ ji = Cjilmγlm −ek jiEk, Di = ei jkγ jk +εi jE j, (2)

where gγlm is the infinitesimal strain component, Ek is the
electric field component, and Cjilm, ek ji, and εi j are re-
spectively components of the elastic stiffness, piezoelec-
tric coefficient, and dielectric constant tensors. The strain
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and electric field are respectively related to the elastic
displacement u and the electric potential φ by

γi j = 1
2(ui, j +u j,i), Ei = −φ,i. (3)

For convenience in analyzing the anisotropic piezoelec-
tric problem, the notation of Barnett and Lothe (1975) is
adopted in the present work. This notation introduces the
extended displacement, strain, stress and materials con-
stants as follows:

uI =
{

ui I(= i) = 1,2,3
φ I = 4

, (4)

γI j =
{

γi j I(= i) = 1,2,3
−E j I = 4

, (5)

σiJ =
{

σi j J(= j) = 1,2,3
Di J = 4

, (6)

CiJKl =

⎧⎪⎪⎨
⎪⎪⎩

Ci jkl J(= j),K(= k) = 1,2,3
eli j J(= j) = 1,2,3; K = 4
eikl J = 4; K(= k) = 1,2,3
−εil J = K = 4

, (7)

where the upper-case subscripts range from 1 to 4, and
the lower-case subscripts from 1 to 3.

In terms of this short-hand notation, the equilibrium
equations in Eq. (1) can be unified as

σ jI, j + fI = 0, (8)

with

fI =
{

fi I(= i) = 1,2,3
−q I = 4

. (9)

Similarly, the constitutive laws in Eq. (2) are recast into

σiJ = CiJKlγKl. (10)

Substituting Eq. (10) in Eq. (8) and realizing the symme-
try in the strain tensor (before extension), the equilibrium
equation of displacement is given by

(CjIKluK,l), j + fI = 0. (11)

Defects of any kind may be originally modeled as a sys-
tem of concentrated forces and charges, or say, concen-
trated forces in the extended notation. The forces are
taken to be the Kanzaki force, including the unrelaxed

physical force derived by differentiating the interatomic
potential with respect to atomic position about a ground
state plus a term due to the change of interatomic force
constant and associated lattice distortion (Kanzaki, 1957;
Tewary, 1973, 2004). Thus, the GF of the multilayered
matrix in the absence of any defects can be applied to
derive the field due to these forces by the principle of
superposition as

uP(X) = ∑
n

GPI(X,x(n))F0(n)
I , (12)

where x(n) is the location of the nth individual force F0(n),
and GPI(X,x) is the GF of the Ith displacement com-
ponent at field point x due to a unit point force applied
along the Pth direction if P ≤ 3 and due to a unit point
charge if P = 4 at source point X. Throughout the text,
letters ithroughn are used to indicate the association of
a subscript index with field point x, while the other let-
ters are associated with source point X unless indicated
otherwise.

The above forces modeling defects are grouped in small
volumetric, surface and line elements according to their
spatial distribution and location. Within each group, the
GF GPI(X,x) associated with an individual force in Eq.
(12) is expanded in the Taylor series around the average
site x(group). By rearranging, Eq. (12) may be recast into

uP(X) = ∑
group

{
GPI(X,x(group))F0(group)

I

+GPI, j(X,x(group))M0(group)
jI +

+GPI, jk(X,x(group))T0(group)
jkI

+∑
n

o((x(n)−x(group))3)
}

, (13)

with

F0(group)
I = ∑

n
F0(n)

I , (14)

M
0(group)
jI = ∑

n
(x(n)

j −x(group)
j )F0(n)

I , (15)

T 0(group)
jkI = ∑

n
(x(n)

j −x(group)
j )(x(n)

k −x(group)
k )F0(n)

I , (16)

where F
0(group)

I , M0(group)
jI , and T 0(group)

jkI are called the net
force, dipole, and tripole tensors, and the summations in
these expressions are within each group. If necessary,



Efficient Green’s Function Modeling of Line and Surface Defects 169

more terms of multipole tensor at any higher order can
be added to characterize a defect.

Point and Line Defects. Common point defects including
vacancies, substitutions, interstitials and surface adatoms
are normally characterized as a dipole. They introduce
no net force to a matrix. Rarely a surface point defect
may behave like a tripole (Swamy et. al, 1999). An in-
terfacial step may be caused by the penetration of a dislo-
cation through an interface. If the host materials contain
uneven residual stresses, net force would appear along
the step. The force density may be roughly estimated
as the product of step height and difference of residual
stresses across the interface. An interfacial step may also
behave like a dipole if the residual stresses are the same
across the interface, including the case that the host ma-
terials are free of residual stress. In contrast, a surface
step may be formed in several ways, including termina-
tion of a dislocation at a surface, surface instability over a
strained substrate, and incomplete deposition of a mono-
layer in epitaxy. Because severe atomic rearrangement is
likely to occur due to the high mobility of atoms at a sur-
face, a surface step would exhibit at most the behavior of
a dipole. The displacement fields due to these point and
line defects are given by

uP(X) = ∑
PD

GPI, j(X,x(PD))M0(PD)
jI for point defects,

(17)

uP(X) = ∑
LD

Z
l(LD)

[GPI(X,x)F0(LD)
I (x)

+GPI, j(X,x)M0(LD)
jI (x)]dl(x) for line defects, (18)

where M0(PD) is the dipole tensor of a point defect (PD),
and F0(LD) and M0(LD) are the densities of force and
dipole tensors (per unit length) along a line defect (LD).

Surface Defects. A dislocation is a surface defect with
atoms on one side of the surface sliding relative to those
on the other side. The relative displacement is uniform
except near the edge where severe (nonlinear) lattice dis-
tortion may occur. Solution to the entire force system
in this case would be difficult due to the huge defect
space. Fortunately, the portion of lattice undergoing se-
vere (nonlinear) distortion is small compared to the total
defect space. Treating a dislocation as a singular surface
of uniform displacement discontinuity neglecting the ef-
fect of nonlinear core near the edge has been commonly

accepted. Within the approach, the Kanzaki force can be
easily estimated. It can be originally obtained within the
lattice theory, equaled to the force-constant change times
the displacement in the defect space along the disloca-
tion slip plane. It would then be turned into the contin-
uum counterpart. This linkage of lattice and continuum
length scales in modeling a dislocation is interesting and
will be discussed in detail elsewhere. The forces of a dis-
location are self-balanced if any net charge is excluded.
Their separation normal to the dislocation slip plane pro-
duces a surface source of dipole. Thus, the induced dis-
placement field by dislocations is given by

uP(X) = ∑
SD

Z
S(SD)

GPI, j(X,x)M0(SD)
jI dS(x), (19)

with

M0(SD)
jI = −CjIKlbKnl, (20)

where n is the outward normal vector on one side of the
slip plane, and b is the displacement jump across the slip
plane (defined by the displacement on the side where n
is defined minus that on the other side), i.e., the Burg-
ers vector. In case that the dislocation lies entirely in
an interface of two distinct materials, the elastic stiffness
matrix C in Eq. (20) may be taken from either side of the
interface. An identical expression should result because
the derivative of G being multiplied by C and further by
n, i.e., the GF of traction, is continuous across the inter-
face. Note that it is unlikely for b (in the extended no-
tation) to contain a nontrivial component of charge, i.e.,
discontinuity of charge. In contrast, it is likely to have
charge and/or charge dipole distributed along the edge of
a dislocation (Look and Sizelove, 1999). In this case, the
charged dislocation edge can be modeled as a line defect
described in Eq. (18).

Upon obtaining the displacement field, the stress field of
defects can be easily derived by differentiating the ex-
pression with respect to X and applying the constitutive
law in Eq. (10). The total displacement and stress fields
are obtained by the principle of superposition in the lin-
ear case. One may check Mura (1982) for detail. To eval-
uate these fields, the GF and its line and surface integrals
are required. An efficient scheme for evaluation of the
GF is available (Yang and Pan, 2002b). In the next sec-
tion, a scheme is presented for efficient evaluation of its
line and surface integrals by taking effect certain features
of the GF.
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Before closing this section, it may be worthwhile noting
that the above continuum model of defects starts with the
force, taken to be the Kanzaki force, instead of eigen-
strain and/or eigen-stress (Mura, 1982; Nemat-Nasser
and Hori, 1999). It is thus closely linked to the lattice
theory of defects (Maradudin et al., 1971; Tewary, 1973).
A linkage like this through forces invariant on both the
continuum and lattice scales would readily lay down a
foundation for multiscale modeling of defects (Tewary,
2004; Tewary and Read, 2004; Yang and Tewary, 2005).

3 Evaluation of Green’s Function Integrals

The point-source GF G(X, x) gives the (extended) dis-
placement u at field point x due to a unit point (extended)
force f applied at source point X in a matrix. The dis-
placement u(x) satisfies equilibrium Eq. (11). Let us
apply the following 2D Fourier transform to the first two
variables of a field quantity, for instance, u, as

ũI(y1, y2, x3) =
Z Z

uI(x1, x2, x3)eiyαxαdx1dx2, (21)

where e stands for the exponential function, i denotes the
unit of imaginary number,

√−1, and a Greek subscript
(α) ranges from 1 to 2. The integral limits are (−∞, ∞)
along both coordinatesx1 and x2. Applying the Fourier
transform to the governing Eq. (11) yields

C3IK3ũK,33 − i (CαIK3 +C3IKα)yαũK,3 −CαIKβyαyβũK

= − fIe
iXαyαδ(x3 −X3), (22)

where δ(x3 −X3) is the 1D Dirac delta function.

Solving the above ordinary differential equation yields a
general solution of the displacement in the transformed
domain, (Ting, 1996)

ũ(y1, y2, x3) = ae−ipηx3 , (23)

where η is the norm of (y1,y2), and p and a are the eigen-
value and eigenvector of the Stroh’s eigen-equation. Tak-
ing the derivative of Eq. (23) and applying the constitu-
tive law, Eq. (10), result in the solution of the extended
stress in the transformed domain,

t̃ = − iηbe−ipηx3, s̃ = − iηce−ipηx3 , (24)

where t ≡ (σ13,σ23,σ33,D3)T and s ≡
(σ11,σ12,σ22,D1,D2)T consist of the out-of-plane

and in-plane stress and electric displacement compo-
nents, and b and c are the eigenvectors corresponding to
the vectors t and s, and are related to a and p.

There exist eight sets of eigenvalue pI and associated
eigenvectors aI , bI and cI . They are arranged in the
following way:

Im pI > 0, pI+4 = pI , aI+4 = aI , bI+4 = bI ,

cI+4 = cI (I = 1, 2, 3,4),
A = [a1, a2, a3, a4], B = [b1, b2, b3, b4],
C = [c1, c2, c3, c4], (25)

where Im stands for the imaginary part, and the over-bar
denotes the complex conjugate. Assuming that pI (I = 1,
2, 3, 4) are distinct, the general solutions are obtained by
superposing the eight solutions of Eqs. (23) and (24), as

ũ = iη−1A
〈
e−ipηx3

〉
v+ iη−1A

〈
e−ipηx3

〉
w, (26)

t̃ = B
〈
e−ipηx3

〉
v + B

〈
e−ipηx3

〉
w,

s̃ = C
〈
e−ipηx3

〉
v + C

〈
e−ipηx3

〉
w, (27)

where v(y1, y2) and w(y1, y2) are unknown complex vec-
tors and

〈
e−ipηx3

〉
= diag[e−ip1ηx3, e−ip2ηx3, e−ip3ηx3, e−ip4ηx3 ].

(28)

Note that the above matrix C with 5x4 elements is differ-
ent from the elastic stiffness matrix Ci jkl or the extended
stiffness matrixCiJKl .

The displacement and stress fields in each layer, for in-
stance, the mth layer, are given by

ũm(y1, y2, x3)e−iyαXα = ũ(s)
m (y1, y2, x3)

+ iη−1Am

〈
e−ipmη(x3−hm−1)

〉
vm

+ iη−1Am

〈
e−ipmη(x3−hm)

〉
wm, (29)

t̃m(y1, y2, x3)e−iyαXα = t̃(s)m (y1, y2, x3)

+Bm

〈
e−ipmη(x3−hm−1)

〉
vm

+Bm

〈
e−ipmη(x3−hm)

〉
wm, (30)
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s̃m(y1, y2, x3)e−iyαXα = s̃(s)
m (y1, y2, x3)

+Cm

〈
e−ipmη(x3−hm−1)

〉
vm

+Cm

〈
e−ipmη(x3−hm)

〉
wm, (31)

where vm and wm are unknown vectors to be determined
from prescribed interfacial and boundary conditions, and

ũ(s)
m , t̃(s)

m and s̃(s)
m are special solutions. The special solu-

tions are chosen according to the location of f such that
the general-part solutions, i.e., unknown vectors vm and
wm, are nonsingular in the physical space and can be eval-
uated efficiently. One may check our previous publica-
tions for tactics to improve the computational efficiency
in evaluation of the GF (Yang and Pan, 2002b; Pan and
Yang, 2003; Yang et al., 2004).

By imposing the interfacial continuity and surface
boundary conditions, a system of algebraic equations can
be derived to solve for unknown vectors vm and wm. Once
the transform-domain solution is derived, the physical
responses are obtained by applying the Fourier inverse
transform, for instance, the displacement uI, as

uI(x1, x2, x3) =
1

(2π)2

Z Z
ũI(y1, y2, x3)e−iyαxαdy1dy2,

(32)

where the integral limits in both coordinates are from –∞
to ∞.

In the earlier modeling of defects in Sec. 2, the integrals
of GF along a line and a surface in the physical domain
are required, leading to a 3D and even a 4D integral to
be evaluated. If it were carried out entirely numerically,
the task would be prohibitively large. In the following,
a scheme is presented to lighten the computational bur-
den by integrating the GF first over the physical domain
analytically and then over the transform domain numer-
ically. This can be done because in the transform do-
main, the above GFs of displacement and stress as well
as their derivatives with respect to X and/or x (not given
for brevity) can all be expressed as a sum of terms in the
following form, factored by a coefficient independent of
x,Z Z

ekixidy1dy2, (33)

where k is a function of y1 and y2. Analytical integrals
of the transform-domain GF over a straight line and a flat
surface are derived, and presented below.

x1

x2

x3

x
(1)

x
(2)

(a)

x
(1)

x
(2)

x
(3)

(b)

Figure 2 : (a) A straight line element; (b) a flat triangular
surface element.

Along a straight line l(x) between x(1) and x(2), as shown
in Fig. 2(a), the line integral of a term of the GF given in
expression (33) can be derived as

Z Z Z
ekixidy1dy2dl(x) = L

Z Z
ekix

(2)
i −ekix

(1)
i

ki(x(2)
i −x(1)

i )
dy1dy2,

(34)

where L is the length of l(x). Since k is distinct for dif-
ferent layers, the line l(x) should reside within a single
layer in order for the above expression to be valid.

Over a flat, triangular surface element S(x) with corners
x(1), x(2) and x(3), as shown in Fig. 2(b), the surface
integral of a term of the GF given in expression (33) can
be derived as
Z Z Z

ekixidy1dy2dS(x)

= 2A
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dy1dy2, (35)

where A is the area of the triangular element. For the
same reason as in the case of the line element, surface
element S(x) should be contained within a single layer.

In solving the general part of GF above, a special solution
is required. It may be taken as the infinite-space GF, the
bimaterial GF, or a few leading terms of the trimaterial
GF. The infinite-space GF may be obtained analytically.
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The bimaterial GF and individual terms of the trimate-
rial GF are given in a 1D integral over the angular axis
in the transform domain. Their integration over line and
surface elements in the physical space can still be labo-
rious with currently available computer power. Here it
is proposed to carry out the physical-domain integration
analytically, leaving a 1D integral over the transform-
domain angular axis for numerical treatment. This would
include the infinite-space GF as a special case of the bi-
materials, although it can be evaluated analytically. The
present scheme, applied to the infinite-space GF, would
result in much higher efficiency in the case of a surface
integral and comparable efficiency in the case of a line
integral. The 1D integrals of the bimaterial and trimate-
rial GFs over the transform-domain angular axis θ may
be expressed as a sum of terms characterized in the fol-
lowing form, factored by a coefficient independent of x,

Z
1

(kixi +c)n dθ, (36)

with n = 1 for displacement, n = 2 for displacement gradi-
ent (equivalently, strain) and stress, and n = 3 for deriva-
tives of stress. Both k and c are independent of x.

The line integrals of expression (36) over a straight line
between x(1) and x(2), as shown in Fig. 2(a), can be de-
rived as

Z Z
1
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dθdl(x)

= L
Z
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The surface integrals of expression (36) over a flat, trian-
gular surface element with corners x(1), x(2) and x(3), as

shown in Fig. 2(b), can be derived as
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Note again that the line and surface elements should be
contained in a single layer. All these integrals (34), (35)
and (37)-(42) are taken in the sense of principal values in
case of singularity.

It should be noted that the above expressions of physical-
domain line and surface integrals of GF in multilayered
solids are inapplicable in a couple of special cases. First,
if the entire (field) line or surface element resides in an
interface and if the source point X resides in the same
interface, the transform-domain GFs are singular in var-
ious orders and a finite term must be added to the above
expressions; see Pan and Yang (2003) for detail in the
case of the so-called interfacial GF. However, the analyt-
ical form of this finite term in the transform domain after
integration over the physical domain is unclear to us. It
is instead evaluated by carrying out the integration first
over the transform domain and then over the physical do-
main. By realizing that the interfacial GF is proportional
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Table 1 : Materials properties of AlN, InN and GaN in the reduced notation (elastic constant Ci j in GPa, piezoelec-
tric constants ei j in C/m2, and dielectric constants εi j equal to εi jr x 8.854 x 10−12 C/(V·m)). The other nonzero
components include C22 (= C11),C23 (= C13),C55 (= C44), C66 (= (C11 – C12)/2), e32 (= e31), e24 (= e15), and ε22 (=
ε11).

Material C11 C12 C13 C33 C44 e31 e33 e15 11r 33r

AlN 410 149 99 389 125 –0.58 1.55 –0.48 8.5 8.5 

InN 190 104 121 182 10 –0.57 0.97 –0.22 15.3 15.3

GaN 390 145 106 398 105 –0.33 0.65 –0.30 8.9 8.9 

to r−n (where n is a known integer, and r is the distance
between field and source points) and is thus virtually a
1D function in terms of η (where η is the angle between
the position vector from the source point to the field point
and a reference line within the interface), its physical-
domain integrals can be obtained semi-analytically and
efficiently. The other case, which is similar to the first
one, is a (triangular) surface element with (only) one
edge residing in an interface and the source point X resid-
ing in the same interface. It is however much more trou-
blesome than the first case. It is as yet unclear to us how
the corresponding finite term could be added efficiently.
This problem may be solved by lifting the edge touching
an interface a little away from the interface so that the
finite term can be attained numerically. The tradeoff is
that the resulting integral is near-singular.

4 Numerical Examples

Dislocations

x1

x2

x3

x1

x2

x3

InN 

GaN
AlN 

Al2O3

(a) (b)

b

Figure 3 : (a) A closed-loop dislocation and (b) a
half-loop dislocation in a multilayered heterostructure of
InN/GaN/AlN on a semi-infinite Al2O3 substrate.

In this section, we apply the previous formulation to
calculate the elastic and electric fields produced by a
dislocation in multilayered InN/GaN/AlN over a semi-
infinite Al2O3 substrate, as schematically shown in Fig.
3. The material system was experimentally studied by

Lu et al. (2003). In our simulation, the finite layers
are taken to have thickness of 760 nm for InN, 245 nm
for GaN, and 14 nm for AlN. All these materials except
Al2O3 are assumed to exhibit the piezoelectric coupling
effect. The InN, GaN and AlN materials are taken to have
the wurtzite structure and thus are transversely isotropic,
while the Al2O3 material is assumed to be isotropic. The
isotropy axis of InN, GaN and InN, which is also the pol-
ing axis, is taken to be normal to the top surface and inter-
faces. Their elastic, electrical and piezoelectric constants
are given in Table 1 (Levinshtein et al., 2001). In addi-
tion, Young’s modulus = 300 GPa, Poisson’s ratio = 0.22,
and dielectric constant ε = 9 x 8.854 x 10−12 C/(V.m) for
Al2O3.

A detailed discussion of the possible dislocation systems
in wurtzite crystals can be found in the text by Hirth and
Lothe (1991). In our simulation, a (1120) dislocation is
considered. Its slip plane is vertical, taken to be normal
to the x2 axis. The Burgers vector b is along the x1 axis.
Two cases of a dislocation are analyzed. First, a (rect-
angular) closed-loop dislocation is considered, as shown
in Fig. 3(a). It vertically spans the GaN layer. Thus, it
consists of two interfacial line dislocation segments (of
screw type) and two vertical threading dislocation seg-
ments (of edge type), in the conventional terminology of
line dislocations (Hirth and Lothe, 1991). The second
case is a half-loop dislocation, located in the top two lay-
ers, and extending to the top surface, as shown in Fig.
3(b). This defect system consists of an interfacial line
dislocation segment (of screw type) at the interface be-
tween GaN and AlN layers, and two threading disloca-
tion segments (of edge type) extending from the interface
between GaN and AlN layers to the top surface. In addi-
tion, it consists of an interfacial step at the InN and GaN
interface, and a surface step on the top surface. Results
of the two cases are presented below. In the results, the
thickness of the GaN layer, l0 = 245 nm, is used to nor-
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x2/l0

x2/l0

x2/l0

Figure 4 : Contour plots of normalized hydrostatic strain
field γkkl0/b on the top surface due to a closed dislocation
loop (Fig. 3(a)) at various lateral span widths (a) 1 l0; (b)
2 l0 and (c) 5 l0.

malize all quantities of the dimension of length. E0 = 1
GV/m is used to normalize all quantities of the dimen-
sion of electrical field. Since the problem is linear, the
induced fields are all scaled by the normalized Burgers
vector, b/l0.

In the first case of a closed-loop dislocation, the induced
fields of hydrostatic strain γkk (=γ11+γ22+γ33) and electric

(a)

(b)

(c)

x1/l0

x2/l0

x2/l0

x2/l0

Figure 5 : Contour plots of normalized electrical poten-
tial field θ/(E0b) on the top surface due to a closed-loop
dislocation (Fig. 3(a)) at various lateral span widths (a) 1
l0; (b) 2 l0 and (c) 5 l0.

potential φ on the top surface are examined. The results
are plotted in contour for three values of dislocation lat-
eral span width, equal to 1 l0, 2 l0, and 5 l0, in Figs. 4(a-c)
and 5(a-c). These figures show that when the disloca-
tion lateral span increases, i.e., when the two opposite
threading dislocations move away from each other, each
field is split into two disassociated, localized spots. This
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(a)

x1/l0

x2/l0

(b)

x1/l0

x2/l0

Figure 6 : Contour plots of (a) normalized hydro-
static strain field γkkl0/b and (b) electrical potential field
θ/(E0b) on the top surface due to a half-loop dislocation
(Fig. 3(b)) with lateral width equal to 0.5 l0.

means that the two interfacial screw dislocations do not
induce any field on the top surface–only the two thread-
ing edge dislocations do. Both γkk and φ on the top sur-
face are anti-symmetric. This explains why the total field
decreases when the two threading dislocations approach
each other. It was also checked that the induced stress
field satisfies the traction-free boundary condition on the
top surface. The normal component of induced electri-
cal displacement is equal to zero as well, which is a part
of the boundary condition as enforced in the GF used to
compute the fields due to a dislocation.

In the second case of a half-loop dislocation, the induced
fields of hydrostatic strain γkk and electric potential φ
on the top surface are calculated with dislocation lateral
span width equal to 0.5 l0. The surface and interfacial
steps are not accounted for. The nature of the surface step
is unclear to us. The interfacial step is modeled as a line-
force defect, with force density estimated as described
before. However, although the lattice-constant mismatch
is 10 %, it turns out that the effect of the interfacial step is
insignificant compared to that of the dislocation when the
observation point is on the top surface. The fields due to
the dislocation alone are plotted in contour in Figs. 6(a)

-1

-0.5

0

0 0.1 0.2

elastic model

piezoelectric model

x2/l0

kk
l 0

/b

Figure 7 : Variation of normalized hydrostatic strain
γkkl0/b along a straight line (x1=0.25 l0, x2, x3=0) on the
top surface due to a half-loop dislocation (Fig. 3(b)) with
lateral span width equal to 0.5 l0.

and (b). Since the threading dislocations terminate at the
top surface, the induced fields around them are singular.
For comparison, the material system is modeled as com-
pletely elastic in order to show how significant the piezo-
electric coupling effect is on the induced strain field. The
field is evaluated along a line (x1=0.25 l0, x2, x3=0) on
the top surface, which originates at one threading dislo-
cation tip, and extends along the x2 axis. The fields of γkk

due to the elastic and piezoelectric models are plotted for
comparison in Fig. 7. A slight contribution of the piezo-
electric coupling effect to the induced strain field can be
seen. The variation was also plotted on a logarithmic
scale. This shows that the order of singularity is r−1 in
the strain field in the vicinity of the threading dislocation
tip on the top surface, predicted by both the elastic and
piezoelectric models, consistent with the previous under-
standing about a line dislocation (Mura, 1982). How-
ever, this variation by r−1 holds only for a finite distance,
showing the effect of the other threading dislocation as
well as that of the interfaces.

5 Conclusions

An efficient scheme has been developed for evaluation
of the physical-domain line and surface integrals of a GF
in multilayered generally anisotropic and linearly piezo-
electric (including elastic as a special case) materials.
The line and surface integrals of a GF are required in
the modeling of line and surface defects such as steps
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and dislocations. The high efficiency in evaluation of the
integrals is achieved by analytically carrying out the inte-
gration over the physical domain. This enabels us to ef-
ficiently simulate a relatively large system of various de-
fects, including line and surface defects as well as point
defects in a complex heterogeneous material system. The
highly efficient evaluation of surface integral of the GF is
particularly valuable to the moldeing of dislocations due
to the lack of a line-defect treatment of this group of de-
fects, which are originally modeled as a uniform planar
distribution of force dipoles, in a multilayered heteroge-
neous matrix. Numerical simulations of dislocations in a
realistic nanostructure of multilayered InN/GaN/AlN on
a semi-infinite Al2O3 substrate are presented to demon-
strate the efficiency and accuracy of the present scheme.
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