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Green Functions for a Continuously Non-homogeneous Saturated Media

Sarang Seyrafian1, Behrouz Gatmiri2 and Asadollah Noorzad3

Abstract: An analytical solution is presented for the
response of a non-homogeneous saturated poroelastic
half-space under the action of a time-harmonic verti-
cal point load on its surface. The shear modulus is as-
sumed to increase continuously with depth and also the
media is considered to obey Biot’s poroelastic theory.
The system of governing partial differential equations,
based on the mentioned assumptions, is converted to or-
dinary differential equations’ system by means of Han-
kel integral transforms. Then the system of equations
is solved by use of generalized power series(Frobenius
method) and the expressions for displacements in the
interior of the media or in the other words, the Green
functions for the media are derived by avoiding to intro-
duction of any potential functions. Selected numerical
results are presented to demonstrate the effect of depth
non-homogeneity on dynamic response of the media.

keyword: Boundary element method, Green function,
Depth non-homogeneity , Saturated media, Soil-structure
interaction.

1 Introduction

Considering a constant depth profile for the shear modu-
lus of soil in different soil-structure interaction problems
is a rather poor approximation to the real sub-soil con-
ditions since soil stiffness usually varies with depth in
different layers of the soil.

In this paper, as shown in Fig. 1, an unbounded saturated
media subjected to normal point load at the surface is
considered. The mass density, porosity and permeability
of the media are constant but the shear modulus varies
solely with depth.
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The variation of shear modulus is described by an expo-
nential function as follows [Selvadurai (1986)].

G(z) = G∞ − (G∞ −G0)e−αz (1)

Where G0 and G∞ are the shear modulus at the sur-
face and infinite depth respectively and α is a constant
with the dimension of inverse length, called coefficient
of depth non-homogeneity or non-homogeneity param-
eter. By varying the parameters α, G0 and G∞, a wide
range of real soil strata can be approximately described
by Eq.1.
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Figure 1 : Non-homogeneous saturated half space sub-
jected to periodic normal point load at the surface

Firstly the system of governing differential equations, for
the above media, obeying Biot’s poro-elastic theory is de-
rived. The system of equations, formed by four coupled
partial differential equations, is converted to ordinary dif-
ferential equations’ system by means of Hankel integral
transforms. Then the system of equations is solved by
use of generalized power series (Frobenius method) and
the expressions for displacements in the interior of the
media or in the other words, the Green functions for the
media are derived by avoiding to introduction of any po-
tential functions. The results of the research can be ap-
proximately used to analyze the dynamic response of a
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multi-layer media and B.E.M. formulation for soil- struc-
ture interaction problems if the variation of shear modu-
lus in different layers is estimated by an appropriate con-
tinuous function in the whole media.

2 Governing Differential Equations

Let (r,θ,z) be a cylindrical coordinate system, owing to
the axisymmetric nature of the problem, the motions gen-
erated by the load configuration are independent of the
angular coordinate θ and only displacements u and w in
the r− and z−directions, for the solid and fluid phases
respectively, occur. So the equations of motion are:

∂σrr

∂r
+

∂σzr

∂z
+

σrr −σθθ

r
= ρür +ρ f ẅr (2)

∂σrr

∂r
+

∂σzz

∂z
+

σrz

r
= ρüz +ρ f ẅz (3)

Where σi j (i,j=r,θ,z) are the components of the total
stress-tensor, ρ denotes mass density of saturated media,
ρ f denotes mass density of the fluid phase and over dotes
indicates derivatives respect to time. Also ρ, the mass
density of the saturated media, is related to ρs, mass den-
sity of the solid phase and n, porosity, by the following
formula:

ρ = (1−n)ρs +nρ f (4)

Since the media obeys Biot’s dynamic poroelastic theory,
the following equations which are the mean of effective
stress, dynamic equilibrium for the fluid phase (general-
ized Darcy law) and the mass conservation law respec-
tively, could be written as[Biot (1956)].

σ′
i j = σi j +δi j p (5)

−∇p = ρ f ü +
α′ρ f

n
ẅ +bẇ (6)

ės + ėw +
ṗ

Q f
= 0 (7)

where σ′
i j represents the components of effective stress

tensor, P denotes the pore water pressure, δij is the Kro-
ncker delta, α′ denotes the additive mass coefficient, n
denotes the porosity of saturated media, b denotes diffu-
sive coefficient, Q f denotes compressibility modulus of
saturated media.

In the classic mechanics of porous media, the parameters
α′, b, and Q f are defined as:

α′ =
1
2
(1+

1
n
) (8)

b =
gρ f n

k′
(9)

1
Q f

=
n
Q

+
1−n

ks
(10)

Where g is the acceleration of gravity, k′ is the perme-
ability of the media, Q is the compressibility modulus of
the fluid phase and ks is the bulk module of solid grains.
Using the mean of effective stress, Eq.5, the equations
of motion, Eq.2 and Eq.3 are described by the effective
stress as follows:

∂σ′
rr

∂r
+

∂σ′
zr

∂z
+

σ′
rr −σ′

θθ
r

− ∂p
∂r

= ρür +ρ f ẅr (11)

∂σ′
rz

∂r
+

∂σ′
zz

∂z
+

σ′
rz

r
− ∂p

∂z
= ρüz +ρ f ẅz (12)

According to the linear elastic constitutive law, the stress-
displacement relations can be written as:

σ′
rr = λ∗(

∂ur

∂r
+

ur

r
+

∂uz

∂z
)+2G∗ ∂ur

∂r

σ′
zz = λ∗(

∂ur

∂r
+

ur

r
+

∂uz

∂z
)+2G∗ ∂uz

∂z

σ′
θθ = λ∗(

∂ur

∂r
+

ur

r
+

∂uz

∂z
)+2G∗ur

r

σ′
rz = G∗(

∂ur

∂r
+

∂uz

∂r
) (13)

where λ∗ and G∗ are complex Lame coefficients, for
simplicity, the hysteretic type dissipation (frequency-
independent) in the skeletal frame is assumed. It is fur-
ther assumed that this dissipation is the same in bulk (vol-
umetric) and shear straining. So λ∗ and G∗ are defined as:

λ∗ = λ(1+2δi) (14)

G∗ = G(1+2δi)

Where δ is the hysteretic damping coefficient. The fore-
going assumptions of course do not imply any restriction
in the solution presented in this paper. In fact our so-
lution is formulated in frequency-wave number domain
thus any type of frequency dependent damping which
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may be different in bulk and shear straining is equally
handled by the model.

Because the motion is time harmonic i.e.:

ur(r, z, t)= ur(r, z)eiωt

uz(r, z, t) = uz(r, z)eiωt

wr(r, z, t)= wr(r, z)eiωt

wz(r, z, t)= wz(r, z)eiωt (15)

The mass conservation law, Eq.7, using the definition of
volumetric strain, can be written as:

p = −Q f (
∂ur

∂r
+

ur

r
+

∂uz

∂z
)−Q f (

∂wr

∂r
+

wr

r
+

∂wz

∂z
) (16)

Using the above equation and the stress-displacement
Eq.13, the equations of motions, Eq.11 and Eq.12, after
some mathematical operation are converted to:

(vG∗ +Q f )(
∂2ur

∂r2 +
1
r

∂ur

∂r
− 1

r2 ur)+ρω2ur

+G∗ ∂2ur

∂z2 +
∂G∗

∂z
∂ur

∂z
+(

G∗

1−2v
+Q f )

∂2uz

∂r∂z

+
∂G∗

∂z
∂uz

∂r
+Q f (

∂2wr

∂r2 +
1
r

∂wr

∂r
− 1

r2 wr

+
∂2wz

∂r∂z
)+ρ f ω2wr = 0 (17)

(
G∗

1−2v
+Q f )(

∂2ur

∂r∂z
+

1
r

∂ur

∂z
)

+
2v

1−2v
∂G∗

∂z
(

∂ur

∂r
+

ur

r
)+(vG∗ +Q f )

∂2uz

∂z2

+G∗(
∂2uz

∂r2 +
1
r

∂uz

∂r
)+v

∂G∗

∂z
∂uz

∂z
+ρω2uz

+Q f (
∂2wr

∂z∂r
+

1
r

∂wr

∂z
+

∂2wz

∂z2 )+ρ f ω2wz = 0 (18)

where

ν =
2(1−v)
1−2v

=
λ∗+2G∗

G∗ (19)

on the other hand, using Eq.16, the dynamic equilibrium
for the fluid phase (generalized Darcy law), Eq.6, is con-
verted to the following equations after some mathemati-

cal operations:

Q f (
∂2ur

∂r2 − ur

r2 +
1
r

∂ur

∂r
+

∂2uz

∂r∂z
)+Q f (

∂2wr

∂r2 − wr

r2

+
1
r

∂wr

∂r
+

∂2wz

∂r∂z
)+ρ f ω2ur +

αρ f

n
ω2wr − ibωwr = 0

(20)

Q f (
∂2ur

∂r2 +
∂ur

r∂z
+

∂2uz

∂z2 )+Q f (
∂2wr

∂r2 +
∂wr

r∂z
+

∂2wz

∂z2 )

+ρ f ω2uz +
α′ρ f

n
ω2wr − ibωwz = 0 (21)

The boundary conditions of problem are:

@z = 0 σ′
zz(r, z) = λ∗(

∂ur

∂r
+

ur

r
+

∂uz

∂z
)

+2G∗ ∂uz

∂z
= Qδ(r) (22)

@z = 0 σ′
rz(r, z) = G∗(

∂ur

∂z
+

∂uz

∂r
) = 0 (23)

@z = 0 p = −Q f ((
∂ur

∂r
+

ur

r
+

∂uz

∂z
)

+(
∂wr

∂r
+

wr

r
+

∂wz

∂z
)) = 0 (24)

Where δ is the Dirac delta function.

In addition, the solution must be such that the stresses
and displacements are bounded at a remote distance and
only outward waves propagating from the source appear
(radiation condition).

The four coupled second-order partial differential equa-
tions i.e. Eqs. (17),(18),(20) and (21) subjected to above
boundary conditions defines the boundary value problem
for the response of a saturated non-homogeneous half-
space to the vertical surface load.

As it is mentioned before, the derive of above equations,
is based on axisymmetric nature of the problem, which
is due to the action of normal point load at the surface.
So the model’s implementation is limited to vertical point
load, not for the other loading systems such as horizontal
loading.
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3 General Solution

The general solution of the system of governing differ-
ential equations can be obtained by employing a Hankel
transforms for the radial coordinate r. So we have:

H1(ur(r, z)) = ur(k, z) =
Z +∞

◦
rur(r, z)J1(kr)dr

H◦(uz(r, z)) = uz(k, z) =
Z +∞

◦
ruz(r, z)J◦(kr)dr

H1(wr(r, z)) = wr(k, z) =
Z +∞

◦
rwr(r, z)J1(kr)dr

H◦(wz(r, z)) = wz(k, z) =
Z +∞

◦
rwz(r, z)J◦(kr)dr (25)

Where k is the Hankel transforms parameter and Jn is the
Bessel function of the first kind of order n. Substituting
of above equations in Eqs. (17),(18),(20) and (21) and
making use of the expressions for Hankel transform of
the derivatives of a function yields:

G∗∂2ur

∂z2 +
∂G∗

∂z
∂ur

∂z
+(ρω2 −k2(vG∗ +Q f ))ur

−k(G∗(v−1)+Q f )
∂uz

∂z
−k

∂G∗

∂z
uz

+(ρ f ω2 −k2Q f )wr −Q f k
∂wz

∂z
= 0 (26)

((v−1)G∗ +Q f )k
∂ur

∂z
+(v−2)

∂G∗

∂z
kur +(vG∗

+Q f )
∂2uz

∂z2 +v
∂G∗

∂z
∂uz

∂z
+(ρω2 −k2G∗)uz

+kQ f
∂wr

∂z
+Q f

∂2wz

∂z2 +ρ f ω2wz = 0 (27)

(ρ f ω2 −k2Q f )ur −kQ f
∂uz

∂z
+(

αρ f

n
ω2 −k2Q f − ibω)wr

−kQ f
∂wz

∂z
= 0 (28)

kQ f
∂ur

∂z
+Q f

∂2uz

∂z2 +ρ f ω2uz +kQ f
∂wr

∂z
+

Q f
∂2wz

∂z2 +(
αρ f

n
ω2 − ibω)wz = 0 (29)

if a subsidiary depth variable is introduced as follows:

ξ = E0e−αz (30)

Where

E0 = 1− G∗
0

G∗
∞

(31)

Which transforms the interval 0≤ z ≤ H onto E ≥ ξ ≥ 0,
then shear modulus variation, Eq.1, reduces to:

G∗ = G∗
∞(1−ξ) (32)

E0 can be regarded as a measure of the non-homogeneity
of the half space medium. E0 →0 corresponds to the ho-
mogeneous half space (G0 → G∞).

Inserting the above transformations into the differential
equations i.e. Eqs. (26)-(29) results in:

α2ξ3u′′r −α2ξ2u′′r +2α2ξ2u′r −α2ξu′r −k2vξur

− (
ρω2

G∗
∞
−k2v− k2Q f

G∗
∞

)ur +kα(v−1)ξ2u′z

− (kα(v−1)+
kαQ f

G∗
∞

)ξu′z +kαξuz

− (
ρ f ω2

G∗
∞

− k2Q f

G∗
∞

)wr − αkQ f

G∗
∞

ξw′
z = 0 (33)

−αk(v−1)ξ2u′r +(kα(v−1)+
kαQ f

G∗
∞

)ξu′r −αk(v−2)ξur

+vα2ξ3u′′z +(α2v+
α2Q f

G∗
∞

)ξ2u′′z +2v(α2ξ2)u′z

− (α2v +
α2Q f

G∗
∞

)ξu′z −k2ξuz − (
ρω2

G∗
∞
−k2)uz +

kQ f α
G∗

∞
ξw′

r

− Q f α2

G∗
∞

ξ2w′′
z − Q f α2

G∗
∞

ξw′
z − ρ f ω2

G∗
∞

wz = 0 (34)

(ρ f ω2 −k2Q f )ur +αkQ f ξu′z +αkQ f ξw′
z

+(
α′ρ f

n
ω2 −k2Q f − ibω)w′

r = 0 (35)

−αkQ f ξu′r +Q f α2ξ2u′′z +α2Q f ξu′
z +ρ f ω2uz

−αkQ f ξw′
r +Q f α2ξ2w′′

z +Q f α2ξw′
z

+(
α′ρ f

n
ω2 − ibω)wz = 0 (36)

It is necessary to rewrite the boundary conditions by us-
ing subsidiary depth variable and Hankel Integral vari-
ables. So the boundary conditions, Eqs.(22)-(24) are con-
verted to:

@ξ = E◦ (v−2)kur +v(−αξ)
duz

dξ
=

Q
2πG∗

0
(37)
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@ξ = E◦ (−αξ)
dur

dξ
−kuz = 0 (38)

@ξ = E◦ kur +(−αξ)
duz

dξ
+kwr +(−αξ)

dwz

dξ
= 0 (39)

Analytical solutions for the system of differential equa-
tions (33)-(36) can be found by using the Frobenius
method (extended power series method). According to
the method, the general solution are given by a lin-
ear combination of power series as follows[Boyce and
Diprima (1992)].

ur =
6

∑
i=1

Ai(k)
∞

∑
n=0

anξn+mi (40)

uz =
6

∑
i=1

Ai(k)
∞

∑
n=0

bnξn+mi (41)

wr =
6

∑
i=1

Ai(k)
∞

∑
n=0

cnξn+mi (42)

wz =
6

∑
i=1

Ai(k)
∞

∑
n=0

dnξn+mi (43)

where mi (i=1 to 6) are complex roots of the following
equations:

Det

⎡
⎢⎣

−(α2m2 +( ρω2

G∗∞ − k2v− k2Q f
G∗∞ )) −(kα(v− 1)+ kQ f α

G∗∞ )m

(kα(v− 1)+ kαQ f
G∗∞ )m (−(vα2 + αQ f

G∗∞ )m2 +( ρ f ω2

G∗∞ − k2))
ρ f ω2 − k2Q f kαQ f m
−αkQ f m Q f α2m2 + ρ f ω2

−( ρ f ω2

G∗∞ − k2Q f
G∗∞ ) − kαQ f

G∗∞ m
kQ f α
G∗∞ m −( Q f α

G∗∞ m2 + ρ f ω2

G∗∞ )
αρ f

n ω2 − k2Q f − ibω αkQ f m
−αkQ f m Q f α2m2 +( αρ f

n − ibω)

⎤
⎥⎦ = 0 (44)

and can be described as:

m1 = +R+ Ii

m4 = −R− Ii

m2 = R′+ I′i
m5 = −R′ − I′i
m3 = R′′+ I′′i
m6 = −R′′ − I′′ i
I, I′, I′′ > 0 (45)

And Ai(k) are arbitrary functions to be determined from
appropriate boundary conditions. The coefficients of
power series are determined by considering:

ai
0 = 1 (i = 1to6) (46)

and solving simultaneously the following system of
equations for b0,c0 and d0:

− (α2m2 +(
ρω2

G∗
∞
−k2v− k2Q f

G∗
∞

))a◦− (kα(v−1)

+
kαQ f

G∗
∞

)mb◦− (
ρ f ω2

G∗
∞

− k2Q f

G∗
∞

)c◦− (
kαQ f

G∗
∞

m)d◦ = 0

(47)

(kα(v−1)+
kαQ f

G∗
∞

)ma◦

− ((vα2 +
α2Q f

G∗
∞

)m2 +(
ρ f ω2

G∗
∞

−k2))b◦

+
kQ f α

G∗
∞

c◦m− (
Q f α2

G∗
∞

m2 +
ρ f ω2

G∗
∞

)d◦ = 0 (48)

(ρ f ω2 −k2Q f )a◦ +kαQ f b◦m+(
α′ρ f

n
ω2

−k2Q f − ibω)c◦ +αkQ f md◦ = 0 (49)

4 Solution of Boundary Value Problem

Attention to definition of subsidiary depth variable, Eq.
30, it could be seen that the first three terms of equations
(40)-(43) in conjunction with time behavior, exp(iωt)
gives outward–propagating waves. Consequently, these
terms should be retained and the other terms should be
omitted to satisfy the radiation condition. So their arbi-
trary coefficients set equal to zero:

A4 = A5 = A6 = 0 (50)

The remaining three arbitrary functions A1(k),A2(k) and
A3(k) are determined by three boundary conditions at the
surface, equations (37),(38) and (39). Substituting the
available general solution, Eqs. (40) to (43) into men-
tioned boundary conditions, we have:

(v−2)k
3

∑
i=1

Ai

∞

∑
n=0

ai
nEn+mi◦ +v(−α)

3

∑
i=1

Ai

∞

∑
n=0

(n+mi)bi
nEn+mi◦ =

Q
2πG∗

0
(51)
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Table 1 : Selected models’ properties

No. Models' Parameter Value Unit 

1 Shear modulus at surface (G0) 54 MPa 

2 Compressibility modulus of fluid (Q) 2068 MPa 

3 Bulk modulus of fluid (ks) 35000 Mpa 

4 Mass density of grains ( s) 2650 Kg/m
3

5 Mass density of fluid ( f) 1000 Kg/m
3

6 Permeability(k') 3*10
-7

 m/s 

7 Porosity(n) 0.3 --- 

8 Poisson's ratio(v) 0.3 --- 

9 Hysteretic damping( ) 0.05 --- 

(−α)
3

∑
i=1

Ai

∞

∑
n=0

(n+mi)ai
nEn+mi◦ −k

3

∑
i=1

Ai

∞

∑
n=0

bi
nEn+mi◦ = 0

(52)

k
3

∑
i=1

Ai

∞

∑
n=0

ai
nEn+mi◦ +(−α)

3

∑
i=1

Ai

∞

∑
n=0

(n+mi)bi
nEn+mi◦

+k
3

∑
i=1

Ai

∞

∑
n=0

ci
nEn+mi◦

+(−α)
3

∑
i=1

Ai

∞

∑
n=0

(n+mi)di
nEn+mi◦ = 0 (53)

Solving the above system of simultaneous equations,
leads to determination of A1(k),A2(k) and A3(k) and us-
ing them into Eqs.(40) to (43) results explicit solution
for displacement function at any point within the media
in the ω−k domain.

5 Results

The presented analytical solution in the previous sec-
tions has been applied to investigate the depth non-
homogeneity effect on dynamic response of the media
and Green functions utilizing the dimensionless variables
as follows:

Re(uz) = Re(uz).k (54)

Re(ur) = Re(ur).k (55)

ω = c/
Vs

(56)

α = α/k (57)

Where ω is dimensionless frequency, α is dimensionales
non-homogeneity parameter Re(uz) and Re(ur) are di-
mensionless real parts of vertical and radial surface dis-
placements respectively. Vs and c are defined as follows:

Vs =

√
G0

ρ
(58)

c =
ω
k

(59)

In order to study the effect of depth non-homogeneity on
the response of the media, the variation of dimensionless
real parts of vertical and radial displacements versus di-
mensionless frequency are illustrated in figures 2 and 3
for different values of G0/G∞ ratio and different values
of depth non-homogeneity parameter in each figure. The
model’s properties are given in Tab.1.

Also in Fig.4 and Fig.5, Three dimensional diagrams of
Real part of vertical displacement are drawn to show
clearly how the displacement field is dependent to non-
homogeneity parameters i.e. G0

G∞
and α.

To validate the formula derived above, the presented so-
lution is computed for the surface displacement of the
half space when G0/G∞ → 1 and then compared with the
solution which is available in the literature for the homo-
geneous poroelastic state. The comparison is shown in
Fig. 6. The agreement of the results is found to be ex-
cellent [Philippacopoulos (1988)]. It is necessary to note
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Figure 2 : Variation of vertical and radial displacements versus frequency for different depth non-homogeneity
parameters ( G0

G∞
= 0.5)

that when G0/G∞ → 1, the non-homogeneity parameter,
α has no longer effect.

6 Conclusion

The solution of the response of a non-homogeneous sat-
urated elastic half space media to a periodic vertical sur-
face point load has been presented. By avoiding the in-
troduction of potential and choosing exponential func-
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Figure 3 : Variation of vertical and radial displacements versus Frequency for diffrend depth non-homogeneity
parameters ( G0

G∞
= 0.25)

tion for the shear modulus depth–variation, the boundary
value problem can be solved by use of Hankel integral
transform and applying extended power series method.

Selected numerical results including the variation of sur-
face displacements versus frequency for different values
of depth non-homogeneity parameter show the dynamic
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Figure 4 : Variation of dimensionless real part of vertical displacement versus frequency and non-homogeneity
parameter ( G0

G∞
= 0.25&0.5)

response of the media and Green functions are strongly
dependant to shear modulus distribution and depth non-
homogeneity.
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