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The Detection of Super-elliptical Inclusions in Infrared Computerised Axial
Tomography

N.S.Mera1 L. Elliott2 and D.B.Ingham2

Abstract: The purpose of this study is to investi-
gate the efficiency, accuracy and rate of convergence
of an evolutionary algorithm for detecting inclusions
parametrised by superellipses in non-destructive evalu-
ation and testing. The inverse problem investigated con-
sists of identifying the geometry of discontinuities in
a conductive material from Cauchy data measurements
taken on the boundary. Temperature and heat flux are
measured on the outside boundary of the domain and the
position and the size of a super-elliptical inclusion are
determined by minimising an objective functional using
an evolution strategy. The super-elliptical form allows
the parametric model to characterise a variety of shapes
whilst at the same time regularizing the problem by the
function specification method. The boundary element
method is employed in order to solve the direct prob-
lem, i.e. to calculate the boundary data for a given ge-
ometric configuration. Numerical results are presented
for several test examples for both exact and noisy bound-
ary data. The algorithm developed by combining evolu-
tion strategies, the boundary element method and super-
elliptical parametrisation is found to be a robust, fast and
efficient method for detecting the size and location of
subsurface inclusions.

keyword: inclusion detection, superellipses, evolution
strategy

1 Introduction

We consider the inverse conductivity problem which re-
quires the determination of an isotropic object D, inclu-
sion or cavity, contained in a domain Ω from measured

temperature, φ, and heat flux, ∂φ
∂n , on the boundary ∂Ω.

To find defects in materials by a nondestructive testing is
very important in various areas of engineering. There are
many practical methods for such testing, for instance ul-
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trasound scattering, X-ray computerised axial tomogra-
phy (X-ray CAT), infrared computerised axial tomogra-
phy (IR-CAT), electrical impedance tomography (EIT),
etc. In this paper we consider the problem of detecting
inclusions in a material by infrared computerised axial
tomography.

In the classic problem of heat conduction, the system
configuration has to be specified and the governing equa-
tion can be formulated based on the physics of the prob-
lem. Then, if the boundary conditions are given, the
problem can be solved to determine the temperature dis-
tribution at each point interior to the system. A differ-
ent type of problems, termed inverse geometric problems
is obtained if part of the geometry of the system is un-
known and has to be determined using additional bound-
ary measurements. In inverse geometric problems, one
wants to obtain information on defects, for example po-
sition and shape, from measurements of the temperature
and heat flux on the material surface. This type of prob-
lem has numerous practical applications in nondestruc-
tive testing using infrared scanning, when one can scan
the surface temperature of a body that dissipates heat to
the surroundings. The inner boundary is subjected to var-
ious boundary conditions, and the purpose of performing
infra-red scanning is to determine the inclusion, if one
exists, at the inner boundary using the additional heat flux
or temperature measurements available. This geometric
inverse problem forms the theoretical basis for develop-
ing IR-CAT in competition with X-ray CAT that is now
prevalent in medical technology.

It is worth noting that, although the problem of cavities
detection, as stated, appears to be well-known in the field
of nondestructive testing, an exact solution of the prob-
lem has not been found in the literature and numerical
methods appear to be more promising. Many papers have
discussed this problem from a mathematical or practical
point of view and various numerical methods have been
proposed, see for example Hsieh and Su (1981), Lesnic
(2001), Ikehata and Ohe (2002) and Rus and Gallego



108 Copyright c© 2006 Tech Science Press CMES, vol.15, no.2, pp.107-114, 2006

(2002).

We note that, once the problem has been formulated as an
optimisation problem, various optimisation algorithms
may be used in order to locate the optimum of the ob-
ject function. The efficiency of a particular optimisa-
tion method clearly depends on the form of the object
function. In the problem considered in this paper the ob-
ject function has a complex nonlinear and nonmonotonic
structure. Moreover an analytical expression for the ob-
ject function cannot be computed and numerical methods
are employed in order to evaluate the object function for
every possible solution of the problem. Therefore evo-
lutionary algorithms appear to be suitable tools for op-
timising the object function of the problem considered
since they do not require knowledge of the gradient of
the object functions optimised.

Evolutionary algorithms have been used before by Mera,
Elliott, and Ingham (2003) for the problem of inclusions
detections but only circular inclusions have been consid-
ered. It is the purpose of this paper to consider a more
general parameterisation, namely super-elliptical shapes.
The real coded genetic algorithms used in Mera, Elliott,
and Ingham (2003) is also replaced by a Covariance Ma-
trix Adaptation Evolution Strategy (CMAES) since this
evolution strategy is known to have a high rate of conver-
gence for numerical optimization problems.

2 Mathematical formulation

We consider Ω to be a bounded domain of R
2, with Lips-

chitz boundary and D a subdomain compactly contained
in Ω. The constant conductivity tensor K of the domain
D is non-dimensionalised with respect to the conductiv-
ity tensor of the domain Ω−D. Thus we assume that the
conductivity tensor K is symmetric and positive definite,
whilst the medium Ω−D is isotropic with conductivity
I. We note that if K = kI then the medium D is isotropic.
Further, if k = 0 the problem considered reduces to the
detection of a cavity.

The refraction (transmission, conjugate) problem for the
temperature φ is given by

∇ · ((I +(K − I)χD)∇φ) = 0, in Ω (1)

φ = f , on ∂Ω (2)

subject to refraction conditions related to the continuity
of the temperature φ and its heat flux densities (∂φ/∂nnn−)
and (K∇φ) ·nnn+ across the interface ∂D, where nnn, nnn− and

nnn+ are the outward unit normals to the boundaries ∂Ω,
∂(Ω−D)−∂Ω and ∂D, respectively and χD is the char-
acteristic constant of the domain D.

Assuming that K is known, the inverse conductivity prob-
lem requires the determination of D from the knowledge
of the Dirichlet-to-Neumann map. In the following sec-
tion we estimate the size and position of the unknown
inclusion D from one boundary measurement i.e. we as-
sume that the domain D is unknown and has to be deter-
mined if the following additional boundary condition is
specified

∂φ
∂nnn

= h on ∂Ω (3)

The inclusion detection problem can be reformulated as
an optimisation problem if for a given possible solution D
for the cavity the direct problem (1)-(2) is solved to eval-

uate the heat flux on the outer boundary φ′
calc = ∂φ

∂nnn

∣∣∣∣
Γ
.

Then the solution to the problem may be found by min-
imising the functional

J(D) = ‖φ′
calc−q‖L2(Γ) (4)

where q is the measured heat flux on the outer boundary.
The domain D can be parameterised in different forms,
and the parameters characterising the shape, location and
size of the cavity are determined by minimising the func-
tional (4). In this paper we only investigate the cases of
superelliptical inclusions, but similar solution methods
may be developed for any shape for which the unique-
ness of the solution is guaranteed.

3 The super-elliptical parameterization

Previous studies investigating the use of evolutionary al-
gorithms for inclusions detection have only considered
circular inclusions, see Mera, Elliott, and Ingham (2003).
Elliptical parametrizations have also been considered for
the case of cavities detection in Mera, Elliott, and In-
gham (2002). It is the purpose of this study to con-
sider more a general parametrisation, namely the super-
elliptical parametrisation given by∣∣∣∣x−x0

a

∣∣∣∣p +
∣∣∣∣y−y0

b

∣∣∣∣q = 1 (5)

or parametrically by

x = x0 +acos2/p(t)
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y = y0 +bcos2/q(t) (6)

in the first quadrant and by symmetry in the other quad-
rants. Thus, the problem of identifying the inclusion D is
reduced to identifying the parameters x0,y0,a,b, p and q.
It should be noted that if p = q = 2 we obtain an ellipse
while if p = q = 2 and a = b we obtain the circular case.
When p and q are increased the superellipse is approach-
ing a rectangular shape.

Figure 1 presents several shapes that can be represented
using the formula (5) for various values of the parame-
ters. Thus, using super-elliptical representations we are
able to characterise a large variety of shapes using a small
number of parameters. In order to increase the flexibil-
ity of the parametrisation we also allow the inclusion to
be rotated at an angle θ0 which becomes the 7th parame-
ter to be identified by the optimisation algorithm. Gielis
(2003) has considered a further generalization of the su-
perellipse that gives rise to curves with m-fold rotational
symmetry which can be used for identifying for example
triangular, pentagonal or starlike shapes. However, this is
not considered in this study which is restricted to objects
with two-fold rotational symmetry.
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Figure 1 : Superellipses obtained for various values of
the parameters p and q, namely p = q = 10 (· · · · ·), p =
q = 3 (−·−·−), p = q = 2 (−···−), p = q = 1 (−··· ·−),
p = q = 0.5 (−−−) and p = 2.0,q = 0.5 ( )

4 The Covariance Matrix Adaptation Evolution
Strategy (CMAES)

Once the problem has been reformulated as an optimisa-
tion problem, various optimisation algorithms can be em-
ployed in order to minimise the objective functional (4).

The Evolution Strategy with Covariance Matrix Adap-
tation (CMAES), see Hansen and Ostermeier (2001) is
efficient for problems for which derivative based meth-
ods may fail due to a rugged search landscape presenting
multiple discontinuities, sharp bends, noise and local op-
tima. Similar to quasi-Newton methods the CMAES esti-
mates the inverse Hessian matrix in the form of a covari-
ance matrix within an iterative procedure. In contrast to
quasi-Newton methods the CMAES does neither approx-
imate nor use gradients which makes the method feasi-
ble on multimodal and/or noisy problems. The CMAES
achieve higher rates of convergence than other evolution
strategies by employing evolution paths rather that single
mutation steps in the adaptation process.

A detailed analysis of the advantages and limitations of
the CMAES can be found in Hansen and Ostermeier
(2001) and therefore we only present here an outline of
the algorithm. In a (µ,λ) CMAES, during every gener-
ation g a set of λ solutions xxxg+1

1 ,xxxg+1
2 , ...,xxxg+1

λ is con-
structed by sampling from an adapted random distribu-
tion and the best µ individuals survive to the next gener-
ation g+1. The λ solutions are constructed as

xxx(g+1)
k ∼ N

(
〈xxx〉(g)

W ,
(

σ(g)
)2

CCC(g)
)

(7)

where

xxxg+1
k ∈ R

n is the object parameter vector of the kth

individual in generation g+1.

〈xxx〉(g)
W := 1

∑µ
i=1 wi

∑µ
i=1 wixxx

(g)
i:λ is a weighted mean of the

the µ best individuals of generation g. The index i : λ
denotes the ith best individual out of λ individuals.

σ(g) > 0 is the global step size in the generation g.

N (xxx,CCC) is the multivariate normal distribution with
mean xxx and covariance matrix CCC

CCC(g) is a symmetrical positive definite n×n matrix
that acts as covariance matrix for the multivariate
normal distribution. CCC is initialized to CCC(0) = III and
is adapted every generation using the evolution path.

The evolution path ppp(g)
c and the covariance matrix are

adapted every generation as follows:

ppp(g+1)
c = (1−cc)ppp(g)

c +cu
c

cW

σ(g)

(
〈xxx〉(g+1)

W −〈xxx〉(g)
W

)
(8)
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CCC(g+1) = (1−ccov)CCC(g) +ccovppp(g+1)
c

(
ppp(g+1)

c

)T
(9)

where

ppp(g+1)
c ∈ R

n is the sum of weighted differences of
points 〈xxx〉(g)

W i.e. the evolution path of the evolution

strategy and is initialised to ppp(0)
c = 0.

cc ∈]0,1] determines the cumulation step for the
evolution path pppc, cu

c :=
√

cc(2−cc) which normal-

izes the variance of pppc and cW = ∑µ
i=1 wi√
∑µ

i=1 w2
i

ccov ∈ [0,1[ is the rate of change of the covariance
matrix C.

The step size σ(g) is also adapted using a conjugate evo-
lution path as follows

ppp(g+1)
σ = (1−cσ)ppp(g)

σ +cu
σBBB(g)

(
DDD(g)

)−1(
BBB(g)

)−1 ·

· cW

σ(g)

(
〈xxx〉(g+1)

W −〈xxx〉(g)
W

)
(10)

σ(g+1) = σ(g) exp

(
1
dσ

‖ppp(g+1)
σ ‖− χ̂n

χ̂n

)
(11)

where

ppp
(g+1)
σ ∈ R

n denotes the conjugate evolution path
and is initialised to ppp(g+1)

σ = 0

cσ ∈]0,1[ determines the cumulation time for pppσ and
cu

σ =
√

cσ(2−cσ)

dsigma is a damping parameter for the step size which
determines the possible change rate for σ.

χ̂n = E[‖N (000,III)‖] =
√

(2)Γ( n+1
2 )/Γ( n

2) is the ex-
pectation of a (000,III) normally distributed random
vector

CCC(g) = BBB(g) (DDD(g))2 (
BBB(g))T

is a singular values de-
composition of CCC(g).

DDD(g) is a n×n diagonal matrix with di j = 0 for i 
= j
and the diagonal elements dg

ii of DDD(g) are the square
roots of the eigenvalues of the covariance matrix
CCC(g).

BBB(g) is an orthogonal n× n matrix whose columns
are the normalized eigenvectors of CCC(g). CCC(g) deter-
mines BBB(g) and DDD(g) apart from signs of the columns
in BBB(g) and permutations of columns in both matri-
ces.

Simulations on various test functions have revealed that
the CMAES has local and global properties that out-
perform other search algorithms in particular for badly
scaled non-separable functions where speed up factors of
several orders of magnitude can be observed, see Hansen
and Ostermeier (2001). Therefore this algorithm is tested
next for the problem of inclusion detection in IRCAT.

5 Numerical results

In order to test the efficiency of the algorithm proposed,
we consider the domain Ω = {(x,y) | (x2 +y2 < R2}, with
R = 2, k = 1 with an isotropic inclusion D parametrised
given by a superellipse given by equation (5). The inclu-
sions are also allowed to be rotated at an angle θ0 with
respect to the axes of coordinates and therefore there are
seven parameters to be identified, namely x0,y0,a,b, p,q
and θ0. The conductivity k is assumed to be known and
for the purpose of this investigation it is fixed at k = 10
but similar conclusions can be drawn using other values
of k.

In order to calculate the value of the objective function
(4) for a given possible solution for the inclusion D, an
intermediate direct problem of the form (1)−(2) has to
be solved. These intermediate direct problems are solved
using a Boundary Element Method (BEM). For the prob-
lem of inclusion detection, the BEM is particularly suit-
able since the geometry of the system changes for ev-
ery possible solution tested during the optimisation pro-
cess. This reduces the computational effort and elimi-
nates the important perturbations due to changes in the
mesh. BEM also reduces the dimensionality of the prob-
lem by one by reducing the partial differential equation
that governs the process to a boundary integral equa-
tion which involves only boundary data. Thus BEM
provides clear advantages in comparison with other nu-
merical methods to tackle this kind of inverse geomet-
ric problem. It should be noted that the boundary ele-
ments method is widely used for solving fault detection
problems, see for example Aoki, Amaya, Urago, and
Nakayama (2005) or Forth and Staroselsky (2005). A
BEM method with N0 = 160 boundary elements on the
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Figure 2 : The percentage errors obtained for predicting
the parameters of a super-elliptical inclusion for the case
of a circle given by x0 = 1.0, y0 = 1.0 and r0 = 0.5.

outer boundary and N1 = 80 boundary elements on the
inner boundary was used in order to ensure the accuracy
of the numerical solution for the direct problem. Details
about the numerical implementation of the BEM to solv-
ing direct problems of the form (4) can be found in Mera,
Elliott, and Ingham (2003).

The (5,10)-CMAES algorithm presented in section 4 has
been tested on several test examples. The results pre-
sented are averages obtained by running the CMAES 10
times for various sequences of random numbers in order
to eliminate the variability generated by the stochastic
nature of the algorithm. The control parameters of the
evolutionary algorithms were set to default values.

First we consider the case of a circular inclusion given by
x0 = 1.0, y0 = 1.0 and r0 = 0.5 and using the evolution
strategy described in section 4 we search for a superel-
lipse. The circle is accurately represented by a superel-
lipse with a = b = r0 and p = q = 2 and any rotation angle
θ0. Thus we expect the CMAES to retrieve these values.
Figure 2 shows the percentage errors in evaluating the
super-elliptical parameters as functions of the number of
objective function evaluations for a typical CMAES run.
It can be seen that all the parameters are accurately pre-
dicted. It can also be seen that x0 and y0 are identified to
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Figure 3 : The evolution of the objective function of best
solution found by the CMAES as a function of the num-
ber of objective function evaluation for the test example
given by a circle with x0 = 1.0, y0 = 1.0 and r0 = 0.5 for
various levels of noise, namely s = 0% ( ), s = 1% (- -
-), s = 3% (−·−·−) and s = 5% (· · · · ·).

a greater accuracy than a and b and all these four param-
eters x0,y0,a and b are identified to a greater accuracy
than p and q. Since x0 and y0 give the position of the
inclusion, a and b indicate its size while p and q charac-
terize the shape, it can be concluded that the position of
the inclusion is easier to identify than the size of the in-
clusion and both the position and the size of the inclusion
are easier to identify than its shape.

The evolution of the objective function obtained by
the CMAES for the circular test example and various
amounts of noise added into the input data in order to
simulate the inherent measurement errors is presented in
Figure 3 and the numerical solution obtained for the cir-
cular inclusion is presented in Figure 4 It can be seen
that accurate results are obtained for various amounts of
noise and that the algorithm proposed is convergent and
stable with respect to increasing the amount of noise in-
cluded in the input data. Figure 5 presents the CMAES
generated solution in comparison with the exact solution
for five different circular inclusions of various sizes and
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Figure 4 : The numerical solution found by the CMAES
for a circular inclusion for various levels of noise, namely
s = 0% (•), s = 1% (◦), s = 3% (+) and s = 5% (×) in
comparison with the exact solution given by x0 = 1.0,
y0 = 1.0 and r0 = 0.5.

locations. It should be noted that Figure 5 shows the re-
sults of five different problems, each consisting of the
detection of a single circular inclusion, rather than the
detection of five circles simultaneously. The results are
presented on the same figure in order to limit the number
of figures included in this paper. The numerical results
have been obtained using 300 objective function evalua-
tions and s = 5% noise added into the input data. It can be
seen that the circular inclusions are retrieved very accu-
rately even if only a small number of objective function
evaluations are used.

Figure 6 presents the CMAES generated solution in com-
parison with the exact solution for five different ellipses
of different sizes, locations and orientations. Again, the
five inclusions presented represent five single inclusion
problems rather than one multi-inclusion problem. It can
be seen that the elliptical inclusions are also retrieved
very accurately.

Similar results are obtained for rectangular cavities see
Figure 7 which presents the results for detecting a rect-
angular inclusion. The inclusion was again taken in five
different positions and the results are presented on the
same figure. Rectangular cavities are accurately identi-

-2 -1 0 1 2

 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

x

y

Figure 5 : The numerical solution obtained by the
CMAES (•) for five test examples given by circular in-
clusions of various sizes and locations in comparison
with the exact solution ( ). The five inclusions pre-
sented represent five single inclusion problems rather
than one multi-inclusion problem.

fied, even if the super-elliptical representations only al-
lows an approximate representation of rectangular cavi-
ties since an exact rectangle cannot be obtained for any
values of p and q. From the results presented we may
conclude that it is possible to accurately identify the po-
sition, the size, the shape and the orientation of inclusions
of various shapes by using the super-elliptical parametri-
sation and the CMAES proposed in this paper.

6 Conclusions

In this paper an inverse geometric problem which re-
quires the determination of the location and size of a
super-elliptical inclusion D contained in a domain Ω
from temperature and heat flux measurements on the
boundary ∂Ω has been investigated numerically using
super-elliptical parametrisation and a CMAES algorithm.
Several test examples have been considered and it was
found that the algorithm proposed is very efficient in
locating an unknown inclusion even if no information
about the shape of the inclusion is available. Overall,
it may be concluded that the algorithm proposed is a ro-
bust, efficient and fast method for detecting the size and
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Figure 6 : The numerical solution obtained by the
CMAES (•) for five test examples given by elliptical
inclusions of various sizes and locations in comparison
with the exact solution ( ). The five inclusions pre-
sented represent five single inclusion problems rather
than one multi-inclusion problem.

location of subsurface inclusions.
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