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Application of Boundary Element Method to Modelling of Added Mass and Its
Effect on Hydrodynamic Forces

Paola Gardano1 and Peter Dabnichki1,2

Abstract: The work presents a numerical simulation of
hydrodynamic forces generated in front crawl swimming.
The three dimensional Laplace’s equation is used for the
analysis of the flow around a moving body in an infi-
nite domain and considers the effect of the added mass
and the acceleration on the hydrodynamic forces (Drag
and Lift) generated by the interaction between the flow
and the body at different geometric configurations of the
arm – variable elbow angle. Boundary Element Method
(BEM) was used to obtain the solution of the three di-
mensional equation numerically. The aim of the work
was two-fold:
1) to investigate the effect of the added mass on the scale
and trend of the forces and
2) to assess the suitability of BEM for obtaining reliable
and accurate solution by validating the results with exist-
ing experimental data.
BEM showed robust performance as evident from the
produced comparison with the experimental data and has
clear advantage for this type of problem over compu-
tationally expensive computational fluid dynamics ap-
proaches.
Comparison between directly measured data from ex-
periments on a computer controlled mechanical arm
and from numerical simulation using experimentally ob-
tained drag coefficients with the added mass correction
showed clearly the significant effect of the added mass
and acceleration on the magnitude and profile of hydro-
dynamic forces. Furthermore the result showed that the
added mass effect is the main factor in propulsive force
generation that explains some unexpected experimental
results by Lauder and Dabnichki (2005) on the profile of
the propulsive force throughout the simulated front crawl
arm stroke.
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1 Introduction

The dynamic of structures surrounded by water requires
special consideration in terms of induced acceleration in
water and production of extra force on the structure in
addition to the fluid-dynamic drag force. This extra force
can be modelled as the product of a hypothetical mass of
water and the acceleration of the structure known as the
added mass (Zhou Z.X., 2005). Theoretically the sim-
plest approach for considering flow around a structure is
the potential flow idealization. The surrounding water
is assumed to be incompressible and non-viscous that is
very close to the real behaviour of the fluid, and the re-
sulting flow is assumed to be irrotational. The resulting
governing equation under the above assumptions is the
Laplace equation. However, it is evident that the imposed
flow assumptions are not always correct and solutions for
real-life problems need to be rigorously validated.

There have been a number of numerical studies utilis-
ing the above approach. Han and Xu (1996) presented a
theoretical model of the added mass for a flexible cylin-
der vibrating in an irrotational and incompressible fluid
medium governed by Laplace’s equation. The cylinder
considered slender and linearly elastic was modelled as
one-dimensional beam. The added mass model was used
to derive the natural frequencies of the vibrating cylin-
der. Carstens and Sayer (1996) developed a linear poten-
tial theory to investigate the hydrodynamic interactions
between two vertical cylinders in harmonic flow. They
studied the added mass effect and dampening character-
istics for various cylinder diameters, length and inter-
spacing. They adopted the linear diffraction theory and
solved the so formulated diffraction problem by apply-
ing an integral formulation of the motion equation based
on Green’s theorem. Again the fluid was assumed in-
compressible and the flow irrotational, hence satisfying
Laplace’s equation. The velocity potential was split into
three contributing parts, incident potential, diffracted po-
tential and radiated potential. The diffracted one was de-
scribed by a distribution of point wave sources over the
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surface of the structures. The resulting integral equations
were solved by a direct numerical method. They found
that the number of panels is dependent on frequency,
proximity to a free-surface or other boundary, and spac-
ing between bodies. The approach adopted in the present
study was similarly based on the use of Laplace’s equa-
tion to model the added mass and its effect on immersed
body as the human arm represents a pseudo-cylinder.

The evaluation of the added mass effect became impor-
tant in Ocean Engineering applications like the dynamic
simulation of underwater vehicles (AUV), and remotely
operated vehicles (ROV). Mc Millan et al. (1995) de-
veloped a dynamic simulation algorithm for an underwa-
ter vehicle (URV) with a manipulator. They modelled
added mass, viscous drag, fluid acceleration and buoy-
ancy forces. The added mass was represented by a 6×6
symmetric and positive definite matrix the derivative of
the total momentum of the fluid produced a set of equa-
tions for the added mass force. This is defined as the
force exerted on a rigid body accelerating trough an un-
bounded, inviscid fluid as the fluid is not accelerating.
Sahin (1995) applied the panel method (low-order sin-
gularly panel method based on Green’s formulation) to
hydrodynamics of underwater vehicles. The low-order
modelling employs constant strength sources and dou-
blets and the body surface is modelled by quadrilaterals.
Hydrodynamic coefficients, added mass and added mo-
ment of inertia are calculated for different body shapes.

The effect of the added mass on the hydrodynamic forces
during front crawl in swimming is studied in this work.
Front crawl is the fastest and most effective swimming
style as the arm stroke is by far the major contributor
to the forward movement of the swimmer and the most
important part of swimmer’s propulsion. The particular
problem analysed is the relative Drag and Lift forces’
contribution to the propulsion and more importantly the
effect of the of the unsteady flow condition modelled as
added mass on the propulsion.

Swimming research had been until recently confined to
steady analysis. Unsteady effects were introduced and
analyzed in terms of kinematic data from underwater
video analysis of the hand’s trajectory during the swim-
ming stroke (Lauder and Dabnichki, 2001). The ap-
plicability of the quasi-static forces values obtained by
Schleihauf (1979) and Berger et al. (1995) to the un-
steady conditions had already been questioned (Lauder
and Dabnichki, 1996). This is in agreement with t Chil-

dress (1981) where the hydrodynamic forces in swim-
ming were described as dependent on significant un-
steady effects that include vortex shedding and added
mass effects. Recent experimental and theoretical studies
(Lauder and Dabnichki, 2005; Gardano and Dabnichki
(in press) have produced clear evidence that such effects
play significant role in propulsion generation. However,
due to the limitations in the experimental methods it is
very difficult if not impossible to attribute the contribu-
tion of different factors to the propulsive force. Analyt-
ical approach is impossible due to the complex nature
of the equations. Hence a numerical approach becomes
an invaluable tool in such simulations. The most promi-
nent such approach is the Computational Fluid Dynamics
(CFD) with a variety of techniques such as Large Eddy
Simulation (LES), Direct Numerical Simulation (DNS)
and a variety of other less prominent methods. Although
these methods are a very powerful tool in studying flow
properties and type they are very intensive computation-
ally and sometimes cumbersome for application to prac-
tical problems. Boundary Element Method (BEM) and
the related Panel Method have been successfully applied
to complex problems in both solid and fluid mechanics
problems (Aliabadi, 2002; Qian et al. 2004, Nicolas
and Bermudez, 2004; Mai-Duy and Tran-Gong, 2004,
Callsen et al. 2004) and showed both computational
speed and reliability.

The aim of this paper is the real estimation of the grand
added mass matrix in order to show the importance of the
added mass effect and the acceleration on the propulsion
during the stroke. The Boundary Element Method has
been adopted to find the solution of the Laplace’s equa-
tion that described our potential flow problem and to cal-
culate the added mass matrix for a model of human arm
simulating front crawl-stroke in quasi-static conditions.

2 Method

The method we used to determine the added mass was
a Boundary Element Method by applying the solution of
the Laplace’s equation that described the considered po-
tential flow problem and through the calculation of nec-
essary work done to change the kinetic energy associated
with the motion of a fluid. We considered that a cer-
tain positive, non-zero amount of kinetic energy occurred
when a body moves through a fluid.

We began our consideration by introducing an incident
irrotational flow past a three-dimensional rigid body im-
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mersed into a volume with surface S∞ and that translates
with velocity U . The harmonic potential was decom-
posed into the incident flow that prevails in absence of the
body φ∞, and the disturbance potential due to the body
φD, as follows

φ = φ∞ +φD (1)

The boundary integral representation for the disturbance
component φD at a point x0was

φD (x0) = −
Z

B

G(x0,x)
[
U −∇φ∞ (x)

] ·n(x)dS(x)

+
Z

B

∇G(x0,x) ·n(x)φD (x)dS(x) (2)

where Bdenotes the body surface. The integrals over the
infinite boundary surface S∞were infinitesimal and were
not shown in the equation. Rearranging the equation (2)
eliminating the single-layer potential we obtained

φ (x0) = φ∞ (x0)−
Z

B

∇G(x0,x) ·n(x)
[
U · x−φ (x)

]
dS(x)

(3)

The above equation was a simplified representation for
the disturbance potential in terms of a double layer po-
tential alone.

Assuming that the point x0 was located sufficiently away
from the body and by selecting a point xc in the interior
or vicinity of the body we could expand the Green’s func-
tion and its gradient in a Taylor series with respect to x
about the point xc.

φ (x0) = −G(x0,xc)
Z

B

∇φ (x) ·n(x)dS(x)

−∇cG(x0,xc) ·Z

B

[−φ (x)n(x)+(x−xc)∇φ (x) ·n(x)]dS(x)+ ... (4)

The term on the right-hand side represented the flow due
to a point source and its volume rate was equal to the flow
rate across B. The second integral was the coefficient of
the point-source dipole

d =
Z

B

[−φ (x)n(x)dS(x)+(x−xc)∇φ (x) ·n(x)]dS(x)

(5)

Let us consider the case of a flow due to a rigid body that
translating with velocity Uand rotating with angular ve-
locity Ω about the pointxc. The no-penetration condition
on the surface of the body required that

∇φ (x) ·n(x) =
[
U +Ω× (x−xc)

] ·n(x) (6)

After a substitution of the above relation in (5), the coef-
ficient of the dipole was expressed as

d = −
Z

B

−φ (x)n(x)+VBU

+
Z

B

{
Ω · [(x−xc)×n (x)]

}
(x−xc)dS(x) (7)

As clear from above the location of xc could be anywhere
in the body and hence could be specifically chosen to co-
incide with the volume centre of the body. This simpli-
fied (7) considerably as the second integral term on the
right hand side disappeared.

Due to the linearity of the flow governing equations and
the no-penetration boundary condition, the velocity po-
tential could be expressed as a linear combination of the
translation and angular velocity about a point xc, situated
in the interior of the body, as

φ (x) =Ui (t)Φi [x,xc (t) ,e(t)]+Ωi (t)Φi+3 [x,xc (t) ,e(t)]
(8)

Φi, i = 1, ...,6 were six harmonic potentials corre-
sponding to three fundamental modes of translation and
three of rotation. The vector e described body’s instan-
taneous orientation. The no-penetration boundary condi-
tion required that

∇Φi (x) ·n(x)=
{

ni (x) i = 1,2,3
[(x−xc)×n (x)]i−3 i = 4,5,6

(9)

And the coefficient of the dipole in a compact form be-
came

d j = VB (Uj +Uiαi j +Ωiβi j +Ωiγi j) (10)

where:

αi j = − 1
VB

Z

B

Φin jdS (11)
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βi j = − 1
VB

Z

B

Φi+3n jdS (12)

γi j =
1

VB
εilk

Z

B

x̂l x̂ jnkdS = − 1
VB

εi jl

Z

B

x̂ldV (13)

i, j = 1,2,3, x̂ = x−xc and when xc coincided with the
centre of volume of the body the coefficients γi j vanished.

The kinetic energy for a flow generated by the motion of
a rigid body was expressed as

K = −1
2

ρ ·
Z

B

φ (x)n(x)dS(x)

= −1
2

ρU ·
Z

B

φ (x)n(x)dS(x)

− 1
2

ρΩ ·
Z

B

φ (x) (x−xc)×n(x)dS(x) (14)

The above expressed the instantaneous kinetic energy of
a potential flow in terms of a boundary integral that was
a function of the distribution of φ over the boundary and
the normal component of the velocity.

Introducing the six-dimensional vector

W = (Ux,Uy,Uz,Ωx,Ωy,Ωz) (15)

we defined the compact quadratic form for the kinetic
energy as

K =
1
2

ρVBAi jWiWj (16)

where A was the six-by-six grand added matrix defined
as

Ai j = − 1
VB

Z

B

ΦiNjdS (17)

with N a six-dimensional vector whose first and second
three-entry blocks contained the components of the vec-
tors nand (x−xc)×n respectively. The matrices

αi j = − 1
VB

Z

B

Φin jdS (18)

βi j = − 1
VB

Z

B

Φi+3n jdS (19)

comprised respectively the top-diagonal and bottom-left-
corner three-by-three blocks of A as shown in (20) and
(21)

Ai j =

⎡
⎢⎢⎢⎢⎢⎢⎣

α11 α12 α13 γ11 γ12 γ13

α21 α22 α23 γ21 γ22 γ23

α31 α32 α33 γ31 γ32 γ33

γ11 γ12 γ13 β11 β12 β13

γ21 γ22 γ23 β21 β22 β23

γ31 γ32 γ33 β31 β32 β33

⎤
⎥⎥⎥⎥⎥⎥⎦

(20)

or in a more concise form

Ai j =
[

αi j γi j

γi j βi j

]
(21)

From the equation of the added mass matrix was evident
that the value of Adepends exclusively upon the instanta-
neous body shape and orientation, but was independent
of the body’s linear or angular velocity or acceleration.
Physically, Aexpressed the sensitivity of the kinetic en-
ergy of the fluid to the translational and rotational (an-
gular) velocity of the moving body and may thus be re-
garded as an influence matrix for the kinetic energy. The
matrix A was symmetric, i.e. the kinetic energy of the
fluid when the body undergoes a translation along axis i
and rotation about j was identical to the one generated
by the body translation along jand rotation about j, with
the same magnitude of the linear and angular velocities.
The matrix was also positive definite, a crucial property
for numerical manipulations.

Once the Added Mass matrix was obtained then the
global hydrodynamic forces acting on the body directly
derived. In particular the drag force (along the horizon-
tal direction) and the lift force acting along the vertical
y-axis. A combination of both forces was the propulsive
force.

The computational simulation was conducted on a three
dimensional model of human arm performing front crawl
stroke. The arm surface mesh contained 1024 six-nodded
triangular rigid spherical shell elements. To evaluate the
integral at a node of a curved triangle we replaced the
curved triangle with four flat triangles and perform the
integration over the individual sub-elements. In this way
the integral was computed accurately using a Gauss in-
tegration quadrature that is specifically designed for in-
tegration over the surface of a triangle and gives base
points and weights for this geometric shape. In our spe-
cific case the number of quadrature base points was 13.
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A single degree of freedom motion– rotation about the
shoulder with variable speed was analysed simulating the
experiment presented by Lauder and Dabnichki (2005).
The kinematic variable was the angle of attack - the an-
gle between plane of the arm (defined as the plane con-
taining the shoulder, elbow and wrist) and the flow di-
rection. The range of motion analysed was 0o - 130o

(slightly outside the normal stroke range) in increments
of 10o. The computer simulation was conducted for dif-
ferent arm configurations in terms of elbow flexion. The
analysed configurations were for elbow angle of 180o,
160o and 135o.

The so obtained computational results were compared
to the experimental ones reported by Lauder and Dab-
nichki (2005) obtained on a full-scale mechanical arm.
The mechanical arm in their experiment was covered
with a prosthetic shell and was driven about the shoul-
der to simulate a representative the underwater phase of
a stroke similar to the front crawl stroke. A strain gauge
system was used to directly measure the generated arm
torque. From these data the estimated shoulder torque
was calculated and compared to the direct measurement
of shoulder torque from the mechanical arm. In effect the
study is a computational simulation of the above study
which used a direct measurement of forces generated by
a robotic arm rotated in the water. This approach allows
to simultaneously assess the effect of the added mass and
the suitability of the BEM for use in such problems.

For the particular application the BEM showed vast supe-
riority in both efficiency and accuracy compared to alter-
native numerical techniques. Alternative CFD methods
require discretizing the whole of the solution domain, re-
gridding the entire volume for any angle of attack, ini-
tial conditions and this considerably raises the cost of the
computation. Furthermore simulation of body motion is
very cumbersome as it requires constant grid modifica-
tion.

3 Results

Although the potential flow at first glance seems an un-
realistic approximation for the front crawl arm stroke as
the arm accelerates continuously during the stroke and
reaches high Reynolds numbers, the computational re-
sults were very close to the experimental ones. This sug-
gests that the added mass effect is the dominant factor
while the turbulence effect that is accounted for in the
added mass as it is in the vicinity of the boundary. The

proposed numerical approach takes into account the ef-
fect of the acceleration without introducing time deriva-
tives into the governing equation and without solving the
complicated Navier-Stokes equations.

The results on Drag and Lift Forces with and without
the added mass effect as obtained with the Boundary
Element Method are shown below. The added mass
coefficients have been multiplied by the experimentally
measured acceleration as used in Lauder and Dabnichki
(2005) for dynamic analysis on a mechanical arm. The
graphs below (Figure 1 – 6) show the effect of the accel-
eration on the Drag and Lift during the front crawl stroke
in swimming. As it can be seen the effect of the acceler-
ation and the added mass is most evident in the first part
of the stroke and nearly absent in the last part where the
two profiles are attached with same profile.

A marked effect is more visible on the Lift profile in the
first part of the stoke phase. During this initial phase the
dominant force is the one perpendicular to the arm and
for small angle of attack this force is equal to the Lift.

As discussed above the added mass effect has been ap-
plied to Ocean Engineering problems such as underwater
vehicles, bridge pears etc. Reliable experimental results
are not available and this made quite hard to demonstrate
the reliability and consistency of our results. In this work
used the added mass terms with given by Fossen (1995)
for a prolate spheroid as this is similar shape used to ap-
proximate our model of human arm. Fossen gives these
values

k1 =
α0

2−α0
(22a)

k2 =
β0

2−β0
(22b)

k3 =
e4 (α0 −βo)

(2−e2) (2e2 − (2−e2) (α0−βo))
(22c)

where

α0 =
2
(
1−e2

)
e3

1
2

ln

(
1+e
1−e

)
−e (23a)

β0 =
1
e2 −

1−e2

2e3 ln

(
1+e
1−e

)
(23b)

and where e is the eccentricity

e =

(
1−
(

Db

lb

)2
)1/2

(24)
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Figure 1 : Drag Force comparison to show the effect of the added mass. Elbow configuration 1800.
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Figure 2 : Lift Force comparison to show the effect of the added mass. Elbow configuration 1800.

The spheroid has a minor axis of length Dband a major
axis of lengthlb. Although not a prolate spheroid, the
arm model can be reasonably approximated as one. In
this way the Mass matrix in term of translational modes
is given

M =

⎡
⎣ m(1+k1) 0 0

0 m(1+k2) 0
0 0 m(1+k3)

⎤
⎦ (25)

where m is the mass of the body that in our case has been
considered equal to 2.5Kg.

The values we obtained with this method are comparable
with those obtained with the Boundary Element Method.

The second set of results have been obtained from a cal-
culation of the Drag and Lift as obtained from wind tun-
nel experiments and plus the added mass effect and com-
pared them with the data obtained by Lauder and Dab-
nichki (2005) on a robotic arm simulating a front crawl
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Figure 3 : Drag Force comparison to show the effect of the added mass. Elbow configuration 1600.
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Figure 4 : Lift Force comparison to show the effect of the added mass. Elbow configuration 1600.

stroke. As can be seen from the graphs (Figure 7-9) is
that the big contribution to the Torque is given by the ac-
celeration that it’s very significant in the first phase of
the stroke, smaller during the central phase and nearly
absent at the end of the stroke. There is a very good
correspondence between the profiles in the configuration
Elbow angle 1800, 1600 and 1350 (Figure 7, 8 and 9).

The Drag profile as obtained from the Torque divided
the radius vector in case of Direct Torque and as ob-

tained from the wind tunnel experiments on the pros-
thetic model of human arm are presented in Figs 10, 11
and 12. Both comparisons between numerical and exper-
imental Drag and Torque show the reliability of the se-
lected computational approach. Furthermore one could
argue that BEM has been underused in studies where the
actual magnitude and profile of the hydrodynamic forces
is of prime importance
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Figure 5 : Drag Force comparison to show the effect of the added mass. Elbow configuration 1350.
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Figure 6 : Lift Force comparison to show the effect of the added mass. Elbow configuration 1350.

4 Conclusion

A numerical hydrodynamic model for the accelerating
human arm in water at different elbow configurations was
developed and tested. Three different arm configurations
were analysed - elbow angle of 1350, 1600 and straight
arm with elbow angle 1800. The added mass coefficients
have been calculated using Boundary Element Method to
the Laplace’s equation for the considered potential flow.
In order to test the reliability of the selected numerical

implementation the obtained results were compared with
those obtained with a mathematical formulation.

The presented study assessed the suitability and reliabil-
ity of the Boundary Element Method to analyse the prob-
lem of the added mass. In the specific case the highly
complex case of accelerating human arm was analysed
and the obtained results were highly accurate as com-
pared to the actual ones. The proposed approach could
be used for numerous engineering applications related to
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Figure 7 : Torque comparison shows the effect of the added mass. Elbow configuration 1800.
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Figure 8 : Torque comparison shows the effect of the added mass. Elbow configuration 1600

hydrodynamic forces due to body acceleration. What
that makes this technique preferable to any CFD soft-
ware is its simplicity, numerical stability and computa-
tional speed and accuracy. Using the Boundary Element
we analyzed a potential flow and the time necessary to
run the program and obtain the added mass matrix was
nearly 15 sec as opposed to about 3 hours for different
CFD codes. The proposed approach showed clearly that
Navier-Stokes equations could be replaced with the sim-

pler as Laplace equation one, and thus avoiding the in-
troduction the time dependency that tends to bring step
depending error. Further more the lack of grid allows to
fast and reliably model the body motion without the need
for updating it. The approach is currently being applied
to modelling of morphing structures where these superior
features are becoming even more important.
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Figure 9 : Torque comparison shows the effect of the added mass. Elbow configuration 1350
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Figure 10 : Drag Force comparison to show the effect of the added mass. Elbow configuration 1800.
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