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Efficient Shooting Methods for the Second-Order Ordinary Differential Equations

Chein-Shan Liu1

Abstract: In this paper we will study the numerical in-
tegrations of second order boundary value problems un-
der the imposed conditions at t = 0 and t = T in a gen-
eral setting. We can construct a compact space shoot-
ing method for finding the unknown initial conditions.
The key point is based on the construction of a one-step
Lie group element G(u0,uT ) and the establishment of
a mid-point Lie group element G(r). Then, by impos-
ing G(u0,uT ) = G(r) we can search the missing initial
conditions through an iterative solution of the weighting
factor r ∈ (0,1). Numerical examples were examined to
convince that the new approach has high efficiency and
accuracy with a fast convergence speed by solving r with
a half-interval method. Even under a large span of the
boundary coordinate, the new method is also applicable
by requiring only a few iterations. The method is also
extended to the BVP with general boundary conditions.

keyword: One-step group preserving scheme, Bound-
ary value problem, Shooting method, Estimation of miss-
ing initial condition.

1 Introduction

A lot of engineering problems can be described by the
nonlinear ordinary differential equations (ODEs). When
boundary conditions are imposed, the resulting prob-
lems are referred to as the boundary value problems
(BVPs). Naturally, the solutions of BVPs have to sat-
isfy the boundary conditions, but in many cases this can
be a difficult task when one is concerned with the numer-
ical integrations of BVPs. There are many computational
methods that have been developed for solving BVPs (Ku-
bicek and Hlavacek, 1983; Cash, 1986, 1988; Cash and
Wright, 1998; Keller, 1992; Ascher, Mattheij and Rus-
sell, 1995).

In this paper we propose new methods for the integra-
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tions of the following second order BVP:

ẍ = f (t,x, ẋ), 0 < t < T, (1)

a0x(0)+b0ẋ(0) = c0, (2)

aT x(T )+bT ẋ(T ) = cT , (3)

where a0,b0,c0 and aT ,bT ,cT are given constants, and
[0,T ] is a time interval of our problem. However, in
many applications t may represent a spatial coordinate.
Since the boundary conditions are specified at two dis-
tinct points, this problem is also called the two-point
boundary value problem.

If f (t,x, ẋ) is a linear function of (x, ẋ), e.g., f (t,x, ẋ) =
p(t)ẋ+ q(t)x + r(t), we can find the solution of a linear
BVP with the assistance of a linear structure of the gov-
erned equation and the use of the solutions of two special
initial value problems (IVPs). Suppose that u(t) is the
unique solution of the following IVP:

ü = p(t)u̇+q(t)u+ r(t), (4)

u(0) = 1, u̇(0) = 0, (5)

and that v(t) is the unique solution of the following IVP:

v̈ = p(t)v̇+q(t)v+ r(t), (6)

v(0) = 0, v̇(0) = 1. (7)

Then, a linear combination of u(t) and v(t) is a solution
of Eqs. (1)-(3) with f replaced by the above f (t,x, ẋ) =
p(t)ẋ+q(t)x+ r(t):

x(t) = α1u(t)+α2v(t), (8)

α1 =
c0[aT v(T )+bT v̇(T )]−b0cT

a0[aT v(T )+bT v̇(T)]−b0[aT u(T )+bT u̇(T )]
, (9)
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α2 =
a0cT −c0[aT u(T)+bT u̇(T )]

a0[aT v(T )+bT v̇(T )]−b0[aT u(T )+bT u̇(T)]
. (10)

The above technique for the linear BVP is known as a
linear shooting method (LSM). Unfortunately, the LSM
technique cannot be applied to the nonlinear BVP.

From Eqs. (8), (5) and (7) we can get the initial condition
ẋ(0) = α2. However, we will point out that the initial
condition ẋ(0) = α2 may deviate from the exact one to
a great extent, which will be demonstrated through an
example with exact solution given in Section 5.4, where
one can see that the LSM is not so good even for the
linear BVP. To remedy, there had some improvements
reported in the literature (Garg, 1980; Randez, 1993).

The time-stepping techniques developed for the IVPs re-
quire the initial conditions of both x and y = ẋ for the
second order ODEs, such that we can numerically inte-
grate the following IVP step-by-step in a forward direc-
tion from t = 0 to t = T :

ẋ = y, (11)

ẏ = f (t,x,y), (12)

x(0) = α, y(0) = A. (13)

The shooting method involves a choice of the missing
initial conditions in Eq. (13), which must satisfy the con-
straint a0α + b0A = c0 in Eq. (2), and the numerical so-
lution at the terminal point must satisfy the constraint
aT x(T )+bT y(T) = cT in Eq. (3).

Basically, the shooting method is to assume some un-
known initial conditions and to convert the BVP to the
IVP. Solve the IVP and compare the solution at the
boundary to the known boundary conditions. In gen-
eral, the solution will not immediately satisfy the bound-
ary conditions, and it requires many iterations to adjust
the initial guess through some techniques. This iterative
approach is called a shooting method. How to choose
a suitable initial condition may be difficult when the
guesses are carried out in an indefinite range. The shoot-
ing method is a trial-and-error method and is often very
sensitive to the initial guess. All that makes the compu-
tation expensive.

Our approach of the above second order BVP is based
on the group preserving scheme (GPS) developed by Liu

(2001). The GPS method is very effective to deal with
ODEs with special structures as shown by Liu (2005)
for stiff equations and by Liu (2006a) for ODEs with
constraints. Then, Liu (2006b) has developed a one-
step GPS method, which is named the Lie-group shoot-
ing method, to calculate the multiple solutions of sec-
ond order ODEs. About the partial differential equations
(PDEs), Liu (2006c) has developed the numerical line
method together with the GPS to calculate the solutions
of Burgers equation. The same strategy is also used by
Liu and Ku (2005) to solve the Landau-Lifshitz equation,
where an effective combination of GPS and Runge-Kutta
method is employed to enhance the stability and accu-
racy of numerical solutions. On the other hand, in or-
der to effectively solve the backward in time problems
of parabolic PDEs, a past cone structure and a backward
group preserving scheme have been successfully devel-
oped by the author, such that the new numerical meth-
ods can be used to solve the backward in time Burgers
equation by Liu (2006d), and the backward in time heat
conduction equation by Liu, Chang and Chang (2006).
Recently, the so-called one-step estimation method based
on the Lie-group is developed by Liu (2006e) for the nu-
merical estimation of temperature-dependent heat con-
ductivity, and then Liu (2006f) extends it to a simultane-
ous estimation of temperature-dependent heat conductiv-
ity and heat capacity for the one-dimensional heat con-
duction problem.

The idea based on the one-step Lie-group transformation
is rather promising to provide efficient numerical meth-
ods in many issues including the inverse problems and
boundary value problems. The one-step GPS has been
applied to the solutions of BVPs by Liu (2006b), but re-
stricted to the simpler boundary conditions. The present
approach can be applied to the second order BVPs in a
rather general setting, of which we can search the miss-
ing initial condition through an iterative solution of r in
a compact space of r ∈ (0,1).

This paper is arranged as follows. In the next section
we give a brief sketch of the group preserving scheme
for ODEs. In Section 3 we explain the construction
of a one-step GPS by using the closure property of
the Lie group, and combine it with the mid-point rule
to construct a single-parameter Lie group in terms of
the weighting factor r. In Section 4 we derive a new
shooting method to solve BVPs. In Section 5 we use
numerical examples to demonstrate the efficiency of the
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new method. It is known that the solutions of BVPs
may be non-unique. In order to treat this sort BVPs we
are derived another method in Section 6 and use two
numerical examples to test our method. In Section 7 we
extend our estimation method of initial conditions to the
general boundary conditions. Numerical examples of
mixed type boundary conditions are also investigated.
Finally, we draw some conclusions in Section 8.

2 Preliminaries

Although we do not know previously the symmetry
group of nonlinear differential equations system, Liu
(2001) has embedded it into an augmented system and
found an internal symmetry of the new system. That is,
for an ODEs system with dimensions n:

u̇ = f(u, t), u ∈ R
n, t ∈ R, (14)

we can deal with the following n + 1-dimensional aug-
mented system:

d
dt

X :=
d
dt

[
u

‖u‖
]

=

⎡
⎣ 0n×n

f(u,t)
‖u‖

fT(u,t)
‖u‖ 0

⎤
⎦[ u

‖u‖
]
. (15)

It is obvious that the first row in Eq. (15) is the same as
the original equation (14), but the inclusion of the second
row in Eq. (15) gives us a Minkowskian structure of the
augmented system for X satisfying the cone condition:

XTgX = u ·u−‖u‖2 = 0, (16)

where

g =
[

In 0n×1

01×n −1

]
(17)

is a Minkowski metric. In is the identity matrix of order
n, and the superscript T stands for the transpose. The
cone condition is a natural constraint of the system (15).

Therefore we have an n+1-dimensional augmented sys-
tem:

Ẋ = AX (18)

with a constraint (16), where

A :=

⎡
⎣ 0n×n

f(u,t)
‖u‖

fT(u,t)
‖u‖ 0

⎤
⎦ (19)

is an element of the Lie algebra so(n,1) satisfying

ATg+gA = 0. (20)

Accordingly, Liu (2001) has developed a group-
preserving numerical scheme:

X�+1 = G(�)X�, (21)

where X� denotes the numerical value of X at the discrete
time t�, and G(�) ∈ SOo(n,1) satisfies

GTgG = g, (22)

det G = 1, (23)

G0
0 > 0, (24)

where G0
0 is the 00th component of G.

The Lie group generated from A ∈ so(n,1) is known as
a proper orthochronous Lorentz group. An exponential
mapping of A(�) is given by

exp[ΔtA(�)]=

⎡
⎢⎣ In + (a�−1)

‖f�‖2 f�fT
�

b�f�
‖f�‖

b�fT�
‖f�‖ a�

⎤
⎥⎦ , (25)

where

a� := cosh

(
Δt‖f�‖
‖u�‖

)
, (26)

b� := sinh

(
Δt‖f�‖
‖u�‖

)
. (27)

For saving notation we let f� = f(u�, t�). Substituting the
above exp[ΔtA(�)] for G(�) into Eq. (21) and taking its
first row, we obtain

u�+1 = u� +η�f� = u� +
(a�−1)f� ·u� +b�‖u�‖‖f�‖

‖f�‖2 f�.

(28)

From f� ·u� ≥ −‖f�‖‖u�‖ we can prove that

η� ≥ ‖u�‖
‖f�‖

[
1−exp

(
−Δt‖f�‖

‖u�‖
)]

> 0, ∀Δt > 0, (29)

and that Eq. (28) is a group properties preserving scheme
for all Δt > 0.
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3 Two Lie-group elements

Applying the scheme (28) to the ODEs in Eq. (14) with a
specified initial condition u(0) = u0 we can compute the
solution u(t) by the GPS. Assuming that the total time T
is divided by K steps, that is, the time stepsize used in
the GPS is Δt = T/K. Starting from an initial augmented
condition X0 = X(0) = (uT

0 ,‖u0‖)T we want to calculate
the value X(T) = (uT(T ),‖u(T)‖)T at a desired time t =
T .

By applying Eq. (21) step-by-step we can obtain

XT = GK(Δt) · · ·G1(Δt)X0, (30)

where XT approximates the exact X(T ).

Let us recall that each Gi, i = 1, . . . ,K, is an element of
the Lie group SOo(n,1), and by the closure property of
the Lie group, GK(Δt) · · ·G1(Δt) is also a Lie group. To
prove this closure property let us consider two elements
G1,G2 ∈ SOo(n,1), that is,

GT
1 gG1 = g, GT

2 gG2 = g. (31)

Then, by using the above two equations we have

(G2G1)T gG2G1 = GT
1 GT

2 gG2G1 = GT
1 gG1 = g. (32)

It means that G2G1 ∈ SOo(n,1) if G1,G2 ∈ SOo(n,1).

According to this argument we can prove that
GK · · ·G1 ∈ SOo(n,1), because of GK , · · ·, G1 ∈
SOo(n,1). Therefore in SOo(n,1), there exists an el-
ement denoted by G which is identical to GK · · ·G1.
Hence, from Eq. (30) we have

XT = GX0. (33)

This is a one-step Lie-group transformation from X0 to
XT . However, it is worthwhile to point out that the other
numerical methods cannot share this property, since they
are not of the Lie group schemes.

The exact G is hardly to find. However, we can approx-
imate the exact G by a numerical one through some
numerical methods developed below.

3.1 The Lie group element G(r)

In above we have explored the concept of the one-step G.
In order to increase the accuracy of our shooting method

to search some unknown initial conditions of the BVPs,
we can calculate G by a mid-point rule:

G =

⎡
⎢⎣ In + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎥⎦ , (34)

where

û = ru0 +(1− r)uT , (35)

f̂ = f(û), (36)

a = cosh

(
T‖f̂‖
‖û‖

)
, (37)

b = sinh

(
T‖f̂‖
‖û‖

)
. (38)

That is, we use the initial u0 and the final uT through
a suitable weighting factor r to calculate G, where
0 < r < 1 is a parameter. The above method results in a
Lie group element G(r) if T is a fixed value.

3.2 The Lie group element G(u0,uT )

Let us define a new vector

F :=
f̂

‖û‖ , (39)

and then Eqs. (34), (37) and (38) can also be expressed
as

G =

⎡
⎣ In + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (40)

a = cosh(T‖F‖), (41)

b = sinh(T‖F‖). (42)

From Eqs. (33) and (40) it follows that

uT = u0 +ηF, (43)
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‖uT‖ = a‖u0‖+b
F ·u0

‖F‖ , (44)

where

η :=
(a−1)F ·u0 +b‖u0‖‖F‖

‖F‖2 . (45)

Eqs. (43) and (44) constitute n + 1 equations, which are
both required in the following calculations of BVPs.

From Eq. (43) we have

F =
1
η

(uT −u0). (46)

Substituting it for F into Eq. (44) we obtain

‖uT‖
‖u0‖ = a+b

(uT −u0) ·u0

‖uT −u0‖‖u0‖ , (47)

where

a = cosh

(
T‖uT −u0‖

η

)
, (48)

b = sinh

(
T‖uT −u0‖

η

)
(49)

are obtained by inserting Eq. (46) for F into Eqs. (41) and
(42).

Let

cosθ :=
[uT −u0] ·u0

‖uT −u0‖‖u0‖ , (50)

S := T‖uT −u0‖, (51)

and from Eqs. (47)-(49) it follows that

‖uT‖
‖u0‖ = cosh

(
S
η

)
+cosθ sinh

(
S
η

)
. (52)

By defining

Z := exp

(
S
η

)
, (53)

from Eq. (52) we obtain a quadratic equation for Z:

(1+cosθ)Z2 − 2‖uT‖
‖u0‖ Z +1−cos θ = 0. (54)

The solution is found to be

Z =

‖uT ‖
‖u0‖ +

√(‖uT ‖
‖u0‖

)2 − (1−cos2 θ)

1+cosθ
, (55)

and then from Eq. (53) we obtain

η =
T‖uT −u0‖

lnZ
. (56)

Through the above discussions we can arrive at an
important result.

Theorem 1: Between any two points (u0,‖u0‖) and
(uT ,‖uT‖) on the cone, there exists a Lie group ele-
ment G ∈ SOo(n,1) mapping (u0,‖u0‖) onto (uT ,‖uT‖),
which is given by[

uT

‖uT‖
]

= G(u0,uT )
[

u0

‖u0‖
]
, (57)

where

G(u0,uT ) =

⎡
⎢⎣ In + a−1

‖F‖2 FF
T bF

‖F‖

bFT

‖F‖ a

⎤
⎥⎦ , (58)

a = cosh(‖F‖), (59)

b = sinh(‖F‖), (60)

F = lnZ
uT −u0

‖uT −u0‖ . (61)

Because Z is uniquely determined by u0 and uT as can
be seen from Eqs. (55) and (50), the above G is a Lie
group in terms of u0 and uT and is independent on T ,
which is denoted by G(u0,uT ). In the below we will use
G(u0,uT ) = G(r) to derive the governing equations for
solving the BVPs.

4 Boundary value problems

Up to this point we have only considered the solutions
of differential equations for which the initial conditions
are known. However, in many engineering applications
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the differential equations do not specify the initial condi-
tions, but rather some given boundary conditions.

Let us consider the following second order boundary
value problems:

ẍ = f (t,x, ẋ), 0 < t < T, (62)

x(0) = α, x(T ) = β. (63)

The conditions that a solution to Eqs. (62) and (63)
exists should be checked before any numerical scheme
is applied; otherwise, a list of meaningless output may
be generated. The general conditions are stated in the
following theorem (Burden, 1993).

Theorem 2: Suppose the function f in Eq. (62) is con-
tinuous and that ∂ f/∂x and ∂ f/∂ẋ are continuous in a do-
main D = {(t,x, ẋ)|0≤ t ≤ T,−∞ < x < ∞,−∞ < ẋ < ∞}.
If ∂ f/∂x > 0 and |∂ f/∂ẋ| ≤ M in D, where M is a con-
stant, then the boundary value problem has a unique so-
lution in D.

The BVPs constructed here require information at the ini-
tial time t = 0 and at a final time t = T . However, the
time-stepping scheme developed in Section 2 only re-
quires the information at the starting time t = 0. Some
effort is then required to reconcile the time-stepping
scheme with the BVPs presented here.

Let y = dx/dt. We obtain

ẋ = y, (64)

ẏ = f (t,x,y), (65)

x(0) = α, x(T ) = β, (66)

y(0) = A, y(T ) = B, (67)

where A and B are two unknown constants, while α and
β are two given constants.

Let

u :=
[

x
y

]
. (68)

From Eqs. (43), (66) and (67) it follows that

F :=
[

F1

F2

]
=

1
η

[
β−α
B−A

]
. (69)

Starting from an initial guess of (A,B) we use the follow-
ing equation to calculate η:

η =
T
√

(α−β)2 +(A−B)2

lnZ
, (70)

in which Z is calculated by

Z =

√
β2+B2

√
α2+A2 +

√
β2+B2

α2+A2 − (1−cos2 θ)

1+cosθ
, (71)

where

cosθ =
α(β−α)+A(B−A)√

(α−β)2 +(A−B)2
√

α2 +A2
. (72)

The above three equations are obtained from Eqs. (56),
(55) and (50) by inserting Eq. (68) for u.

When comparing Eq. (69) with Eq. (39), and with the aid
of Eqs. (35), (36) and (64)-(67) we obtain

A =
1

ηρ
[ρ2(β−α)− (1− r)η2 f̂ ], (73)

B =
1

ηρ
[ρ2(β−α)+ rη2 f̂ ], (74)

where

f̂ := f (rT, rα+(1− r)β, rA+(1− r)B), (75)

ρ :=
√

[rα+(1− r)β]2 +[rA+(1− r)B]2. (76)

The above derivation of the governing equations (70)-
(76) is stemed from by letting the two F in Eqs. (39) and
(46) be equal, which is essentially identical to the spec-
ification of G(u0,uT ) = G(r) in terms of the Lie group
elements G(u0,uT ) and G(r).

For a specified r and a given vector field f , Eqs. (73)
and (74) can be used to generate a new (A,B). We repeat
the above process in Eqs. (70)-(76) until (A,B) converges
according to a given stopping criterion:√

(Ai+1 −Ai)2 +(Bi+1 −Bi)2 ≤ ε1. (77)

If A is available, we can return to Eqs. (64)-(66) but with
merely integrating the following equations by a forward
integration scheme as that given in Section 2:

ẋ = y, (78)
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ẏ = f (t,x,y), (79)

x(0) = α, (80)

y(0) = A. (81)

A suitable r can be determined as follows. Let xr(T )
denote the above solution of x at T . We start from
r = 1/2 to determine A by Eqs. (70)-(77) and then
numerically integrate Eqs. (78)-(81) from t = 0 to t = T ,
and compare the end value of x(T ) with the exact β.
If |x1/2(T)− β| is smaller than a given tolerance error
ε2, then the process of finding solution is finished. If
the result cannot be accepted, we need to calculate the
values of x(T ) corresponding to two different r1 < 0.5
and r2 > 0.5, which are denoted by x1(T ) and x2(T),
respectively. If [x1(T )−β][x1/2(T )−β] < 0, then there
exists one root of r between r1 and 0.5, which renders
xr(T )− β = 0; otherwise, this root is located between
(0.5, r2). Then, we apply the half-interval method to find
a suitable r, which requires us to calculate Eqs. (78)-(81)
at each of the calculation of xr(T )−β, until |xr(T )−β| is
small enough to satisfy the criterion of |xr(T)−β| ≤ ε2,
where ε2 is a given error tolerance.

5 Numerical examples

In order to assess the performance of the newly devel-
oped method let us investigate the following examples.

5.1 Example 1

For the following BVP:

ẍ = −2.25x− (x−1.5sin t)3 +2sin t,

x(0) = 0, x(1) = 1.59941sin1−0.00004sin3, (82)

the exact solutions are

x(t) = 1.59941sint −0.00004sin3t, (83)

y(t) = 1.59941cost −0.00012cos3t. (84)

We attempt to search a missing initial condition y(0) = A,
such that in the numerical solutions of

ẋ = y, x(0) = 0, (85)
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Figure 1 : By using only r = 0.5 we compare the numer-
ical solutions and exact solutions for Example 1 in (a),
and (b) the numerical errors.

ẏ = −2.25x− (x−1.5sint)3 +2sint, y(0) = A, (86)

x(1) can match the exact value x(1) = 1.59941sin1 −
0.00004sin3.

We first temporarily take r = 0.5 as a trial value in the
estimation of A, where under the criterion in Eq. (77)
with ε1 = 10−15 it requires 13 iterations leading to a
A = 1.583997 with an absolute error 1.5293×10−2 with
the exact A = 1.59929. In Fig. 1 we compare the numer-
ical results with the exact solutions. It can be seen that
y is slightly different from the exact one. However, the
numerical errors of x and y are in the order of 10−2.

In order to increase the accuracy of the numerical solu-
tion, we may need to search another r such that the new A
can supply a more accurate initial condition of y. We try
another r = 0.3 and find that for r = 0.3 the numerically
integrating result of x(1) is larger than the exact terminal
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Figure 2 : By iteratively solving r we compare the nu-
merical solutions and exact solutions for Example 1 in
(a), and (b) the numerical errors.

condition given in Eq. (82), while for r = 0.5 the numer-
ically integrating result of x(1) is smaller than the exact
terminal condition; hence, the accurate solution of r is
between 0.3 and 0.5.

Therefore, we take [0.3,0.5] as the range of r, where the
root of r is located, and apply a half-interval method to
search an accurate r with an initial (A,B) = (1,2), which
is converged through 48 iterations under a tolerance error
of ε2 = 10−15.

The final value of x matches very well with the exact
value with an error 4.441× 10−16. It is indeed a very
good shooting technique rendering a fulfillment of the
final condition of x. At the same time, the estimated
A = 1.5984 is rather accurate when compared with the
exact y(0) = 1.5993, and the error of the end value of y is
9.1954×10−5. In Fig. 2 we compare the exact solutions
with the numerical results calculated by GPS using a
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Figure 3 : Comparing the numerical solutions and ex-
act solutions for Example 2 in (a), and (b) the numerical
errors.

time stepsize Δt = 0.001 sec. It can be seen that the
numerical errors of x and y are both in the order of 10−4.
Unless otherwise specified, the Δt = 0.001 sec will be
used in all the calculations below, and the numerical
scheme used for the integrations of ODEs is the GPS in
Section 2.

5.2 Example 2

Let us consider the following BVP (Ha, 2001):

ẍ = 2x3 −6x−2t3, x(1) = 2, x(2) = 2.5. (87)

The exact solutions are

x(t) = t +
1
t
, (88)

y(t) = 1− 1
t2 . (89)
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We are going to search a missing initial condition y(1) =
A, such that in the numerical solutions of

ẋ = y, x(1) = 2, (90)

ẏ = 2x3 −6x−2t3, y(1) = A, (91)

x(2) can match the exact value x(2) = 2.5.

We take [0.5,0.56] to be the range of r. In the estimation
of A, the criterion in Eq. (77) with ε1 = 10−15 was used.
The initial (A,B) is taken to be (A,B) = (5,2). Then
we use a half-interval method to search an accurate
r, which is converged through 26 iterations under an
error tolerance of ε2 = 10−15. The final value of x
matches very well with the exact value with an error
5.9286× 10−9. In Fig. 3 we compare the numerical
results with the exact solutions. It can be seen that the
numerical error of x is in the order of 10−5 and y is in the
order of 10−4.

5.3 Example 3

Let us consider the following BVP (Ha and Lee, 2002):

ẍ = x2 −2x+1+2π2 cos(2πt)− (sinπt)4,

x(0) = 1, x(1) = 1. (92)

The exact solutions are

x(t) = 1+(sinπt)2, (93)

y(t) = πsin(2πt). (94)

For this example, we let [0.24,0.25] be the range of r.
In the estimation of A, the criterion in Eq. (77) with
ε1 = 10−12 was used. The initial (A,B) is taken to be
(A,B) = (1,2). Then we use a half-interval method to
search an accurate r, which is converged through 24
iterations under an error tolerance of ε2 = 10−15. The
final value of x matches very well with the exact value
with an error 5.615× 10−8. In Fig. 4 we compare the
numerical results with the exact solutions. It can be seen
that the numerical error of x is in the order of 10−3 and y
is in the order of 10−2.
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Figure 4 : Comparing the numerical solutions and ex-
act solutions for Example 3 in (a), and (b) the numerical
errors.

5.4 Example 4

Let us consider the following linear BVP:

ẍ =
√

t cos t +
(

1
4t2 −1

)
x− 1

t
ẋ, x(1) = 1, x(6) =−0.5.

(95)

The exact solution is

x(t) =
[

0.0588713√
t

+
√

t
4

]
cos t +

[
0.740071√

t
+

t3/2

4

]
sint.

(96)

As mentioned in Section 1, we can find the solution of
linear BVP by

x(t) = u(t)− 0.5+u(6)
v(6)

v(t), (97)
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Figure 5 : Comparing the numerical solutions by GPS
and LSM with the exact solutions for Example 4 in (a),
and (b) the numerical errors of x.

where u(t) and v(t) both satisfy the differential equa-
tion but subjecting to the initial conditions with u(1) =
1, u̇(1) = 0 and v(1) = 0, v̇(1) = 1. From Eq. (97) it can
be seen that x(t) can match not only the differential equa-
tion but also the two boundary conditions x(1) = 1 and
x(6) = −0.5 in Eq. (95). This method is called a linear
shooting method (LSM).

In contrast, we are going to find a missing initial condi-
tion y(0) = A, such that in the numerical solutions of

ẋ = y, x(1) = 1, (98)

ẏ =
√

t cost +
(

1
4t2 −1

)
x− 1

t
y, y(1) = A, (99)

x(6) can match the exact value of x(6) = −0.5.

In our estimation we let [0.75,0.78] as the range of r, and
ε1 = 10−10 was used. The initial (A,B) is taken to be
(A,B) = (−1,0). Then, we use a half-interval method to
search an accurate r, which is converged through 23 iter-
ations under an error tolerance of ε2 = 10−15. The final
value of x matches very well with the exact value with

an error 1.3191× 10−8. In Fig. 5 we compare the nu-
merical results with the exact solution. It can be seen
that the numerical error of x is in the order of 10−3.
At the same figure we also plotted the result computed
by the LSM, where we use GPS to integrate the solu-
tions of u and v. Even the LSM solution can match the
boundary conditions very well; however, its solution is
not good when compared with the exact solution given
in Eq. (97). The main reason is that the LSM method
gives no correction of the initial slope of x, which makes
that ẋ(1) =−[0.5+u(6)]/v(6)= 0.18574 is not accurate
when compared with the exact ẋ(1)= 0.33084. The error
1.451×10−1 is much larger than our 6.37×10−3.

This example shows that our estimation method of initial
condition is effective even for a large time span.

5.5 Example 5

In this example we consider

ü = −δeu, u(0) = 0, u(1) = 0, (100)

which is referred as the Bratu problem (Aris, 1975). It
was noted by Ascher, Mattheij and Russel (1995) that
the function

u(t) = −2ln

[
cosh

(
0.5(t−0.5)φ
0.25coshφ

)]
(101)

is a solution of Eq. (100), if φ is the solution of φ =√
2δcosh(φ/4).

From the boundary conditions we have α = β = 0, which
make cosθ in Eq. (72) to be -1, and thus Z in Eq. (71)
cannot be defined. When apply the method in Section 4
to this problem we consider a translation x(t) = u(t)+1,
such that we have

ẍ = −δex−1, x(0) = 1, x(1) = 1. (102)

We only consider δ = 1. In the estimation of the initial
condition y(0) = A, we let [0.45,0.48] as the range for
an iterative solution of r, ε1 = 10−10 was used, and the
initial (A,B) is taken to be (A,B) = (3,−3). Then, we
use a half-interval method to search an accurate r, which
is converged through 19 iterations under an error toler-
ance of ε2 = 10−15. The final value of x matches very
well with the exact value with an error 2.6731×10−10.
In Table 1 we compare the numerical solutions with
the exact solutions at some points, where Error 1 is the
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Table 1 : The comparison of numerical solutions with the exact solutions for Example 5.
t Exact solution Numerical solution Error 1 Error 2
0.1 0.04985 0.04984 0.00001 0.00269
0.2 0.08919 0.08918 0.00001 0.00202
0.3 0.11761 0.11760 0.00001 0.00015
0.4 0.13479 0.13479 0 0.00220
0.5 0.14054 0.14054 0 0.00301
0.6 0.13479 0.13479 0 0.00220
0.7 0.11761 0.11762 0.00001 0.00015
0.8 0.08919 0.08920 0.00001 0.00202
0.9 0.04985 0.04985 0 0.00269

error obtained by taking the absolute of the difference
between our numerical solution with exact solution,
while the Error 2 is obtained by Deeba, Khuri and
Xie (2000) using the Adomian decomposition method
(Adomian, 1994). It can be seen that the accuracy is
largely improved from the third order to the fifth order
when apply our method to this problem.

6 Non-unique solutions

The numerical method in Section 4 is obtained by equat-
ing the two F in Eqs. (39) and (46), which results in

uT = u0 +η
f̂

‖û‖ , (103)

where η is fully determined by u0 and uT through
Eq. (56). In this section we derive the governing equa-
tions for BVPs by another method, and give numerical
examples to test the new method.

6.1 An alternative way to derive the algebraic equa-
tions

Inserting Eq. (34) into Eq. (33) and taking the first row
we obtain

uT = u0 + η̂f̂, (104)

η̂ =
(a−1)f̂ ·u0 +b‖u0‖‖f̂‖

‖f̂‖2
, (105)

where a and b were defined by Eqs. (37) and
Eqs. (38). When comparing the above two equations with

Eqs. (103) and (56), it can be seen that they have differ-
ent representations on η and η̂. η depends only on u0 and
uT as just mentioned; however, η̂ is slightly complex de-
pending on u0, uT , f̂ as well as the parameter r. Eq. (103)
is linear on f̂, but Eq. (104) is nonlinear on f̂.

From Eqs. (64)-(68), (35), (36) and (104) it follows that

β = α+ η̂[rA+(1− r)B], (106)

B = A+ η̂ f̂ , (107)

where f̂ is defined by Eq. (75). Solving the above equa-
tions we obtain

A =
β−α

η̂
− η̂(1− r) f̂ , (108)

B =
β−α

η̂
+ rη̂ f̂ . (109)

For a specified r and a given vector field f , Eqs. (108)
and (109) can be used to obtain (A,B) iteratively with

f̂ = f (rT, rα+(1− r)β, rA+(1− r)B), (110)

‖u0‖ =
√

α2 +A2, (111)

‖û‖ =
√

[rα+(1− r)β]2 +[rA+(1− r)B]2, (112)

‖f̂‖ =
√

[rA+(1− r)B]2 + f̂ 2, (113)
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f̂ ·u0 = α[rA+(1− r)B]+A f̂ , (114)

a = cosh

(
T‖f̂‖
‖û‖

)
, (115)

b = sinh

(
T‖f̂‖
‖û‖

)
, (116)

η̂ =
(a−1)f̂ ·u0 +b‖u0‖‖f̂‖

‖f̂‖2
. (117)

The other procedures to obtain the solution of (A,B) are
similar to that in Section 4.

6.2 Example 6

Let us consider the following BVP (Ha, 2001):

ẍ =
3
2

x2, x(0) = 4, x(1) = 1. (118)

The exact solutions are

x(t) =
4

(1+ t)2 , (119)

y(t) =
−8

(1+ t)3 . (120)

It needs to stress that the solution of Eq. (118) is not
unique. In addition the one in Eq. (119), there exists an-
other solution:

x(t) = c2
1

(
1−cn(c1t −c2,k2)
1+cn(c1t −c2,k2)

− 1√
3

)
, (121)

where cn(ξ,k) is the modulus k Jacobi elliptic func-
tion. In the above case we have c1 = 4.30310990, c1 =
2.3346196, and k =

√
2+

√
3/2.

In this problem the vector field f = 3x2/2 cannot satisfy
the unique conditions in Theorem 2, since ∂ f/∂x = 3x
may be negative, for example the solution in Eq. (121).
On the other hand, since f may be zero when x passes
the zero axis, we consider a translation of x in Eq. (118)
by z = x+10, such that one has

z̈ =
3
2
[z2−20z+100], z(0) = 14, z(1) = 11. (122)
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Figure 6 : Comparing the numerical solutions and ex-
act solutions for Example 6 in (a), and (b) the numerical
errors.

Then we apply the method in Section 6.1 on the above
equation, and then obtain x and y by x = z−10 and y = ż.

In the estimation of A, we take [0.57,0.585] as the range
for an iterative solution of r, and ε1 = 10−10 was used
in the criterion (77). The initial (A,B) is taken to be
(A,B) = (−10,−4). Then we use a half-interval method
to search an accurate r, which is converged through 21
iterations under an error tolerance of ε2 = 10−15. The
final value of x matches very well with the exact value
with an error 5.9227× 10−8. In Fig. 6 we compare the
numerical results with the exact solutions. It can be seen
that the numerical errors of x and y are both in the order
of 10−3.

6.3 Example 7

For the following BVP (Ha, 2001):

ẍ =
1
8
(32+2t3 −xẋ), x(1) = 17, x(3) =

43
3

, (123)
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Figure 7 : Comparing the numerical solutions and ex-
act solutions for Example 7 in (a), and (b) the numerical
errors.

the exact solutions are

x(t) = t2 +
16
t

, (124)

y(t) = 2t − 16
t2 . (125)

In this problem the vector field f = (32 + 2t3 − xẋ)/8
cannot satisfy the unique conditions in Theorem 2,
since ∂ f/∂x = −ẋ/8 = −y/8 may be negative when y is
positive. We take two r = 0.25 and r = 0.3 as a range
of r, where the root is located. In the estimation of A,
the criterion in Eq. (77) with ε1 = 10−10 was used. The
initial (A,B) is taken to be (A,B) = (−10,10). Then
we use a half-interval method to search an accurate
r, which is converged through 22 iterations under an
error tolerance of ε2 = 10−15. The final value of x can

match the exact value with an error 7.4188× 10−4. In
Fig. 7 we compare the numerical results with the exact
solutions. It can be seen that the numerical error of x
is in the order of 10−4 and that of y is in the order of 10−3.

7 General boundary conditions

At this moment we have only considered the solution of a
specific two-point boundary values problem in Eqs. (78)-
(81). However, in a practical application we may en-
counter two-point boundary values problem with the fol-
lowing more general boundary conditions:

a0x(0)+b0y(0) = c0, (126)

aT x(T )+bT y(T ) = cT . (127)

Because they are two-point boundary values, (a0,b0)
cannot both be zero, and this is also true for (aT ,bT ).

There are nine cases should be considered, which are ob-
tained by considering the following permutations:⎡
⎣ (a0 	= 0,b0 = 0)

(a0 = 0,b0 	= 0)
(a0 	= 0,b0 	= 0)

⎤
⎦×

⎡
⎣ (aT 	= 0,bT = 0)

(aT = 0,bT 	= 0)
(aT 	= 0,bT 	= 0)

⎤
⎦ . (128)

In the below we study them seperately.

7.1 Initial conditions estimation technique

For case (i) with [a0 	= 0,b0 = 0,aT 	= 0,bT = 0], x(0)= α
and x(T ) = β are two known parameters, and the other
two unknown parameters y(0) = A and y(T) = B can be
estimated by the method in Section 4.

For case (ii) with [a0 	= 0,b0 = 0,aT = 0,bT 	= 0], x(0) =
α and y(T ) = B are two known parameters, and the other
two unknown parameters y(0) = A and x(T ) = β can
be estimated by the following method. We rearrange
Eq. (109) to

β = α+ η̂B− rη̂2 f̂ . (129)

Starting from an initial guess of (A,β) we use Eqs. (108)-
(117), where Eq. (109) is replaced by Eq. (129), to gen-
erate the new (A,β) until they converge according to the
following criterion:√

(Ai+1 −Ai)2 +(βi+1 −βi)2 ≤ ε1. (130)
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Then we use the same method in Section 4 to calcu-
late (x,y) until they match the target equation: y(T )−
cT /bT = 0.

For case (iii) with [a0 	= 0,b0 = 0,aT 	= 0,bT 	= 0], x(0) =
α is a known parameter, and the other three unknown pa-
rameters y(0) = A, y(T ) = B and x(T ) = β can be esti-
mated by the following method. Substituting

β =
cT −bT B

aT
(131)

into Eqs. (108)-(117), and starting from an initial guess
of (A,B) we can use these equations to generate the new
(A,B) until they converge according to the stopping cri-
terion (77). If B is available, we can return to Eq. (131)
to calculate β. Then we use the same method in Section
4 to calculate (x,y) until they match the target equation:
aT x(T )+bT y(T)−cT = 0.

For case (iv) with [a0 = 0,b0 	= 0,aT 	= 0,bT = 0], y(0) =
A and x(T ) = β are two known parameters, and the other
two unknown parameters x(0) = α and y(T ) = B can
be estimated by the following method. We rearrange
Eq. (108) to

α = β− η̂A− (1− r)η̂2 f̂ . (132)

Starting from an initial guess of (α,B) we use Eqs. (108)-
(117), where Eq. (108) is replaced by Eq. (132), to gen-
erate the new (α,B) until they converge according to the
following criterion:√

(αi+1 −αi)2 +(Bi+1 −Bi)2 ≤ ε1. (133)

Then we use the same method in Section 4 to calcu-
late (x,y) until they match the target equation: x(T )−
cT /aT = 0.

For case (v) with [a0 = 0,b0 	= 0,aT = 0,bT 	= 0], y(0) =
A and y(T ) = B are two known parameters, and the other
two unknown parameters x(0) = α and x(T ) = β can
be estimated by the following method. We rearrange
Eqs. (108) and (109) to

α = α+A−B+ η̂ f̂ , (134)

β = α+ η̂[rA+(1− r)B]. (135)

Starting from an initial guess of (α,β) we use Eqs. (108)-
(117), where Eqs. (108) and (109) are replaced by

Eqs. (134) and (135), to generate the new (α,β) until they
converge according to the following criterion:√

(αi+1 −αi)2 +(βi+1 −βi)2 ≤ ε1. (136)

Then we use the same method in Section 4 to calcu-
late (x,y) until they match the target equation: y(T )−
cT /bT = 0.

For case (vi) with [a0 = 0,b0 	= 0,aT 	= 0,bT 	= 0], y(0) =
A is a known parameter, and the other three parameters
x(0) = α, x(T ) = β and y(T ) = B are unknown, which
can be estimated by the following method. Substituting
Eq. (131) for β into Eqs. (108)-(117), where Eq. (109) is
replaced by Eq. (132), and starting from an initial guess
of (α,B) we can use these equations to generate the new
(α,B) until they converge according to the stopping cri-
terion (133). If B is available, we can return to Eq. (131)
to calculate β. Then we use the same method in Section
4 to calculate (x,y) until they match the target equation:
aT x(T )+bT y(T )−cT = 0.

For case (vii) with [a0 	= 0,b0 	= 0,aT 	= 0,bT = 0],
x(T ) = β is a known parameter, and the other three un-
known parameters x(0) = α, y(0) = A and y(T) = B can
be estimated by the following method. Substituting

α =
c0 −b0A

a0
(137)

into Eqs. (108)-(117), and starting from an initial guess
of (A,B) we can use these equations to generate the new
(A,B) until they converge according to the stopping cri-
terion (77). If A is available, we can return to Eq. (137)
to calculate α. Then we use the same method in Section
4 to calculate (x,y) until they match the target equation:
x(T )−cT /aT = 0.

For case (viii) with [a0 	= 0,b0 	= 0,aT = 0,bT 	= 0],
y(T ) = B is a known parameter, and the other three un-
known parameters x(0) = α, x(T ) = β and y(0) = A
can be estimated by the following method. Substituting
Eq. (137) for α into Eqs. (108)-(117), where Eq. (109) is
replaced by Eq. (129), and starting from an initial guess
of (A,β) we can use these equations to generate the new
(A,β) until they converge according to the stopping cri-
terion (130). If A is available, we can return to Eq. (137)
to calculate α. Then we use the same method in Section
4 to calculate (x,y) until they match the target equation:
y(T )−cT /bT = 0.

For case (ix) with [a0 	= 0,b0 	= 0,aT 	= 0,bT 	= 0], there
are four unknown parameters x(0) = α, x(T ) = β, y(0) =
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A and y(T ) = B, which can be estimated by the following
method. Substituting Eq. (137) for α and Eq. (131) for β
into Eqs. (108)-(117), and starting from an initial guess
of (A,B) we can use these equations to generate the new
(A,B) until they converge according to the stopping cri-
terion (77). If A and B are available, we can return to
Eqs. (137) and (131) to calculate α and β. Then we use
the same method in Section 4 to calculate (x,y) until they
match the target equation: aT x(T )+bT y(T )−cT = 0.

In summary, the nine cases can be grouped into four
types according to the unknown variables. While the
cases (i), (iii), (vii) and (ix) are with (A,B) as unknowns,
the case (v) is with (α,β) as unknowns. While the cases
(ii) and (viii) are with (A,β) as unknowns, the cases (iv)
and (vi) are with (α,B) as unknowns. On the other hand,
the nine cases can be grouped into three types according
to the target equations. The cases (i), (iv) and (vii) are
with x(T )− cT/aT = 0 as a target, the cases (ii), (v) and
(viii) are with y(T )−cT /bT = 0 as a target, and the cases
(iii), (vi) and (ix) are with aT x(T )+ bT y(T )− cT = 0 as
a target.

7.2 Example 8

Let us consider the following BVP (Chen and Liu, 1998):

ẍ−ε(x4 −1)+1 = 0, x(0) = 1, ẋ(1) = 0. (138)

We attempt to search a missing initial condition y(0) = A,
such that in the numerical solutions of

ẋ = y, x(0) = 1, (139)

ẏ = ε(x4 −1)−1, y(0) = A, (140)

y(1) can match the exact value of y(1) = 0.

This problem is of case (ii) in Section 7.1, and we ap-
ply the estimation technique specified there to search A.
We first consider ε = 0.1, and take two r = 0.82 and
r = 0.83 as a range of r, where the root is located. In
the estimation of (A,β), the criterion in Eq. (130) with
ε1 = 10−10 was used. The initial (A,β) is taken to be
(A,β) = (−3,1). Then we use a half-interval method
to search an accurate r, which is converged through 18
iterations under an error tolerance of ε2 = 10−15. The
final value of y can match the exact value with an error

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

x

-0.2

0.0

0.2

0.4

0.6

0.8

y

0.0 0.2 0.4 0.6 0.8 1.0

(a) =0.1

1.00

1.04

1.08

1.12

1.16

x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

y

(b) =1

Time (s)

GPS

Chen and Liu

Figure 8 : Comparing the numerical solutions of GPS
and that obtained by Chen and Liu (1998) for Example 8
in (a) with ε = 0.1, and (b) with ε = 1.

5.627×10−9. In Fig. 8 we compare the numerical results
with the following solutions (Chen and Liu, 1998):

x(t) = 1.0+0.8267t−0.5t2 +0.0551t3 +0.0175t4,(141)

y(t) = 0.8267− t +0.1653t2−0.07t3−0.062t4. (142)

It can be seen that the numerical result of y(1) = −0.14
obtained from Eq. (142) cannot match the condition
y(1) = 0 and the numerical error is in the first order.

Next we consider ε = 1, and take [0.6,0.65] as the range
for an iterative solution of r, where the root is located.
By our estimation the final value B can match the exact
value y(1) = 0 with an error 4.5912×10−8. In Fig. 8 we
compare the numerical results with the following solu-
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tions (Chen and Liu, 1998):

x(t) = 1+0.4469t−0.5t2 +0.2979t3−0.0668t4

−0.0566t5 +0.05579t6−0.0118t7−0.0178t8

+0.0186t9−0.0058t10−0.0041t11 +0.0058t12

−0.0026t13−0.0006t14 +0.0016t15, (143)

y(t) = 0.4469− t +0.8937t2−0.267t3−0.2832t4

+0.3344t5−0.0827t6−0.1427t7 +0.1676t8

−0.0584t9−0.0451t10 +0.0696t11−0.0335t12

−0.0086t13 +0.0237t14−0.0142t15. (144)

It can be seen that the numerical result of y(1) = 0.0005
obtained from Eq. (144) cannot match the condition
y(1) = 0 very well, even Chen and Liu (1998) used a
rather complex polynominal expansion method to obtain
the solutions up to fifteen degree of t as given above.

7.3 Example 9

Let us consider the following BVP (Kubicek and
Hlavacek, 1983):

ẍ +
1
t

ẋ = −δex, ẋ(0) = 0, x(1) = 0. (145)

This problem is of case (iv) in Section 7.1 and is sin-
gular at the zero point t = 0. We apply the estimation
technique in Section 4 to this problem for searching the
missing initial condition x(0) = α. For this case (α,B)
are unknowns and when applied Eqs. (70)-(76) on the
solution of (α,B), Eq. (73) is replaced by

α = β− ρA
η

− (1− r) f̂ . (146)

The closed form solution of Eq. (145) is

x(t) = ln
8b

δ(1+bt2)2 , (147)

where the integration constant b is determined by

8b
δ(1+b)2 = 1. (148)

It can be seen that for a given δ in the range of 0 < δ < 2,
two distinct real roots of b in Eq. (148) exist and cor-
respondingly, there are two solutions in Eq. (147). For
δ = 2, there is only one solution corresponding to b = 1.
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Figure 9 : Comparing the numerical solutions and exact
solutions for Example 9 with δ = 2 in (a), and (b) the
numerical errors.

In Fig. 9 we compare our solutions with the exact so-
lutions by taking δ = 2 and b = 1. In our calculation we
have fixed r = 0.6013, which leads to an error of the final
value of x in the order of 3.314×10−4 when compared
with the exact x = 0. It can be seen that the numerical
errors of x and y are both in the order of 10−3. Next, in
Fig. 10 we compare our solution with the exact solution
by taking δ = 1.5 and b being calculated by Eq. (148):

b1 =
1
2

⎡
⎣8

δ
−2+

√(
8
δ
−2

)2

−4

⎤
⎦ ,

b2 =
1
2

⎡
⎣8

δ
−2−

√(
8
δ
−2

)2

−4

⎤
⎦ .

Corresponding to b1 and b2 there are two exact solutions.
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Figure 10 : Comparing the numerical solution and exact
solution for Example 9 with δ = 1.5 in (a), and (b) the
numerical error of x.

The solution corresponding to b2 is compared with our
calculation, where we were fixed r = 0.535822, which
leads to an error of the final value of x in the order of
3.306× 10−7 when compared with the exact x = 0. It
can be seen that the numerical error of x is in the order
of 10−4.

8 Conclusions

In this paper there were two important points deserved
a further notify. The first was the construction of a one-
step group G(u0,uT ) and the full use of Eqs. (43) and
(44), which are the Lie group transformation between
initial conditions and final conditions in the augmented
Minkowski space. Then, another one was the use of a
mid-point rule to construct another Lie group element
G(r). In order to estimate the missing initial conditions
for the boundary value problems, we have employed the
equation G(u0,uT ) = G(r) to derive algebraic equations.
Therefore, we can solve them iteratively in a compact
space of r ∈ (0,1). Numerical examples were examined
to ensure that the new approach has a fast convergence
speed on the solution of r in a preselected range smaller
than (0,1) by using the half-interval method, which
usually required only a small number of iterations. The
numerical solution could match the specified terminal
boundary conditions with a high accuracy. Some other
numerical examples for the general boundary conditions

of BVPs were also worked out, which show that the
new methods are applicable even under a large span of
the boundary coordinate. Through this study, it can be
concluded that the new shooting method is accurate,
effective and stable. Its numerical implementation is
very simple and the computation speed is very fast.
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