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Wavelet Based 2-D Spectral Finite Element Formulation for Wave Propagation
Analysis in Isotropic Plates

Mira Mitra and S. Gopalakrishnan1

Abstract: In this paper, a 2-D Wavelet based Spec-
tral Finite Element (WSFE) is developed and is used to
study wave propagation in an isotropic plate. Here, first,
wavelet approximation is done in both temporal and one
spatial (lateral) dimension to reduce the governing partial
differential wave equations to a set of Ordinary Differen-
tial Equations (ODEs). Daubechies compactly supported
orthogonal scaling functions are used as basis which al-
lows finite domain analysis and easy imposition of ini-
tial/boundary conditions. However, the assignment of
initial and boundary conditions in time and space respec-
tively, are done following two different methods. Next,
the reduced ODEs are solved exactly to derive the shape
functions which are used to form the elemental dynamic
stiffness matrix. Similar to the conventional Fast Fourier
Transform (FFT) based Spectral Finite Element (FSFE)
method which has problems in handling finite bound-
aries, the present method also reduces the computational
cost substantially compared to conventional Finite Ele-
ment (FE) method. The proposed method can also be
used directly for both time and frequency domain analy-
sis like FSFE. However, importantly, the use of localized
basis functions in 2-D WSFE method circumvents sev-
eral serious limitations of the corresponding 2-D FSFE
technique. The formulated 2-D WSFE is used to study
axial and transverse wave propagations in isotropic plates
of different configurations. The simulated responses are
also validated with 2-D FE results.

keyword: Wave propagation; Wavelets; Spectral finite
element; Isotropic plates

1 Introduction

Study of elastic wave propagation is important to under-
stand the behavior of the structure under high frequency
impact loadings such as gust, tool drop, bird hit, etc. In
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addition, it is becoming more relevant recently for appli-
cations like structural health monitoring using diagnostic
waves, control of noise and vibration, etc.

Numerical solution of wave equations requires high ac-
curacy in numerical differentiation and at the same time
has larger spatial grids and time steps to make it com-
putationally efficient. FE modeling is not suited for
this purpose primarily because wave propagation prob-
lems deal with excitations of high frequency content.
In FE modeling, the element size should be compara-
ble to wavelength which is very small at high frequen-
cies. This results in large system size and enormous com-
putational cost. Thus, in general, alternative numerical
techniques [Andreaus, Batra, and Porfiri (2005), Han,
Ding, and Liu (2005), Qian, Han, Ufimtsev, and Atluri
(2004)] are adopted for such analysis. Spectral Finite El-
ement Method (SFEM) popularized by Doyle (1999) is
one such numerical method, especially tailored for wave
propagation analysis. In short, SFEM follows FE model-
ing procedure in the transformed frequency domain.

2-D FSFE for isotropic materials was formulated [Rizzi
(1989), Rizzi and Doyle (1989), Rizzi and Doyle
(1991)] following the same procedures as in 1-D case.
Here, nodal displacements are related to nodal tractions
through frequency-wavenumber dependent stiffness ma-
trix. Similar to 1-D case, mass distribution is captured
exactly and the accurate elemental dynamic stiffness ma-
trix is derived. Consequently, in absence of any discon-
tinuities, one element is sufficient to model a plate struc-
ture of any length, but unbounded along the other lateral
direction. Later recently, 2-D FSFE was formulated for
anisotropic [Chakraborty and Gopalakrishnan (2004b)]
and inhomogeneous [Chakraborty and Gopalakrishnan
(2004c)] materials, for in-plane motions. Here, instead of
a-priori Helmhöltz decomposition of displacement fields,
the partial wave technique [Solie and Auld (1973)] was
adopted. The method was further extended to model
anisotropic plates under both in-plane and out-of-plane
loadings [Chakraborty and Gopalakrishnan (2005)].
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The main drawback of FSFE is that it cannot handle
waveguides of short lengths. This is because, the re-
quired assumption of periodicity in time approximation
results in “wrap around” problem for smaller time win-
dow, which totally distorts the response. However, the
1-D WSFE [Mitra and Gopalakrishnan (2005)] devel-
oped using Daubechies compactly supported wavelets
[Daubechis (1992)] with localized basis removes the
“wrap around” problem and can efficiently model un-
damped finite length waveguides. In addition, for 2-
D problems, FSFE [Doyle (1999)] are essentially semi-
infinite i.e they are bounded only in one direction. Thus,
the effect of one lateral boundary cannot be captured and
this can be attributed to the global basis functions of the
Fourier series approximation of the spatial dimension.
The 2-D WSFE presented here, also overcomes the above
problem and can accurately model 2-D plate structures of
finite dimensions. This is again due to the use of local-
ized Daubechies scaling functions as basis for approxi-
mation of the spatial dimension.

The steps followed in 2-D WSFE formulation are quite
similar to those for 2-D FSFE. Here, first Daubechies
scaling functions are used for approximation in time and
this reduces the governing Partial Differential Equation
(PDE) into a set of coupled PDEs in spatial dimen-
sions. Wavelet extrapolation technique [Williams and
Amaratunga (1997)] is used for adapting wavelet in finite
domain and imposition of initial conditions. The coupled
transformed PDEs are decoupled through eigen analysis.
Though the eigen analysis involved is time consuming,
this can be computed and stored as it is not dependent
on the particular problem. Next, each of these decou-
pled PDEs are further reduced to a set of coupled ODEs
by using the same Daubechies scaling functions for ap-
proximation of the spatial dimension. Unlike the tempo-
ral approximation, here, the scaling function coefficients
lying outside the finite domain are not extrapolated but
obtained through periodic extension for unrestrained i.e
free lateral edges. However, other boundary conditions,
e.g fixed-fixed, free-fixed etc, are imposed through a re-
straint matrix [Patton and Marks (1996), Chen, Hwang,
and Shih (1996)]. Each set of ODEs are also coupled,
but here, decoupling can only be done for unrestrained
boundary conditions i.e free-free. These are explained in
detail in the later part of the paper.

It should be mentioned here that similar to 2-D FSFE, the
frequency dependent wave characteristics corresponding

to each lateral (Y) wavenumber, can be extracted directly
from the present 2-D WSFE formulation. However, un-
like FSFE, the wavenumbers will be accurate only up
to a certain fraction of Nyquist frequency [Mitra and
Gopalakrishnan (2006)].

The paper is organized as follows. In Section 2, a brief
overview of the orthogonal bases of Daubechies com-
pactly supported wavelets are presented. In Section 3,
the governing differential equations are derived. In the
following two sections, the details of 2-D WSFE formu-
lation is given for isotropic plates. In Section 6, vari-
ous numerical results are presented for both in-plane and
out-of-plane wave propagation in plates of different con-
figurations. The responses simulated with 2-D WSFE
are validated with 2-D FE results. Here, the advantages
of using 2-D WSFE over 2-D FSFE are also explained
through numerical examples. The paper end with some
important conclusions.

2 Daubechies Compactly Supported Wavelets

In this section, a concise review of orthogonal basis
of Daubechies wavelets [Daubechis (1992)] is provided.
Wavelets, ψ j,k(t) forms compactly supported orthonor-
mal basis for L2(R). The wavelets and associated scaling
functions ϕ j,k(t) are obtained by translation and dilation
of single functions ψ(t) and ϕ(t) respectively.

ψ j,k(t) = 2 j/2ψ(2 jt −k), j,k ∈ Z (1)

ϕ j,k(t) = 2 j/2ϕ(2 jt −k), j,k ∈ Z (2)

The scaling functions ϕ(t) are derived from the dilation
or scaling equation,

ϕ(t) = ∑
k

akϕ(2t −k) (3)

and the wavelet function ψ(t) is obtained as

ψ(t) = ∑
k

(−1)ka1−kϕ(2t −k) (4)

ak are the filter coefficients and they are fixed for specific
wavelet or scaling function basis. For compactly sup-
ported wavelets only a finite number of ak are nonzero.

The filter coefficients ak are derived by imposing certain
constraints on the scaling functions which are as follows.
(1) The area under scaling function is normalized to one.
Z ∞

−∞
ϕ(t)dt = 1 (5)



Wavelet based 2-D Spectral Finite Element 51

(2) The scaling function ϕ(t) and its translates are or-
thonormal
Z ∞

−∞
ϕ(t)ϕ(t +k)dt = δ0,k k ∈ Z (6)

and (3) wavelet function ψ(t) has M vanishing moments

Z ∞

−∞
ψ(t)tmdt = 0 m = 0, . . .,M (7)

The number of vanishing moments M denotes the order
N of the Daubechies wavelet, where N = 2M.

Let Pj( f )(t) be the approximation of a function f (t) in
L2(R) using ϕ j,k(t) as basis, at a certain level (resolution)
j, then

Pj( f )(t) = ∑
k

c j,kϕ j,k(t), k ∈ Z (8)

where, c j,k are the approximation coefficients. Let
Q j( f )(t) be the approximation of the function using
ψ j,k(t) as basis, at the same level j.

Q j( f )(t) = ∑
k

d j,kψ j,k(t), k ∈ Z (9)

where, d j,k are the detail coefficients. The approximation
Pj+1( f )(t) to the next finer level of resolution j + 1 is
given by

Pj+1( f )(t) = Pj( f )(t)+Q j( f )(t) (10)

This forms the basis of multi resolution analysis associ-
ated with wavelet approximation.

3 Governing Differential Equations

The displacement fields, according to Classical Plate
Theory (CPT) [Nayfeh and Pai (2004)] are

u(x,y, z, t)= u0(x,y, t)− z∂w/∂x (11)

v(x,y, z, t)= v0(x,y, t)− z∂w/∂y (12)

w(x,y, z, t)= w(x,y, t) (13)

where, u0(x,y, t), v0(x,y, t) and w(x,y, t) are the axial
and transverse displacements respectively along the mid-
plane (see Fig. 1(a)). The mid-plane of the plate is at
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Figure 1 : (a) Plate element and (b) nodal forces and
displacements.

z = 0. The associated non-zero strains are obtained as

⎧⎨
⎩

εxx

εyy

εxy

⎫⎬
⎭ =

⎧⎨
⎩

∂u0/∂x
∂v0/∂y

∂u0/∂y+∂v0/∂x

⎫⎬
⎭

+

⎧⎨
⎩

−∂2w/∂x2

−∂2w/∂y2

−2∂2w/∂x∂y

⎫⎬
⎭ = {ε0}+{ε1} (14)

Here, εxx and εyy are the normal strains in x and y direc-
tion respectively, while, εxy is the in-plane shear strain.
The constitutive relation for isotropic materials are given
as

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭ =

⎡
⎣ Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤
⎦

⎧⎨
⎩

εxx

εyy

εxy

⎫⎬
⎭ (15)

where, σxx and σyy are the normal stresses in x and y di-
rections respectively and σxy is the in-plane shear stress.
The expressions for Qi j in terms of Young’s modulus E
and Poisson’s ratio ν are given in reference Nayfeh and
Pai (2004). The force resultants are defined in terms of
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these stresses as⎧⎨
⎩

Nxx

Nyy

Nxy

⎫⎬
⎭ =

Z
A

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭dA,

⎧⎨
⎩

Mxx

Myy

Mxy

⎫⎬
⎭ =

Z
A

z

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭dA, (16)

where, the integration is performed over the cross-
sectional area A. Substituting Eqns. 15 and 14 in Eqn. 16,
and considering symmetric cross-section, the relation be-
tween the force resultants and displacement fields are ob-
tained as⎧⎨

⎩
Nxx

Nyy

Nxy

⎫⎬
⎭ =

⎡
⎣ A11 A12 0

A12 A22 0
0 0 A66

⎤
⎦{ε0} ,

⎧⎨
⎩

Mxx

Myy

Mxy

⎫⎬
⎭ =

⎡
⎣ D11 D12 0

D12 D22 0
0 0 D66

⎤
⎦{ε1} (17)

The stiffness coefficients Ai j and Di j are defined as

[Ai j, Di j] =
Z

A
Qi j[1, z2]dA

Similarly, the inertial coefficients used in later part of the
section are defined as

[I0, I2] =
Z

A
ρ[1, z2]dA

where, ρ is the mass density. Total strain Π and kinetic
energies T are calculated as

Π =
1
2

Z L

0

Z
A
(σxxεxx +σyyεyy +σxyεxy)dxdA (18)

T =
1
2

Z L

0

Z
A

ρ(u̇2 + v̇2 + ẇ2)dxdA (19)

Using Hamilton’s principle, the minimization of the
above energies with respect to the three degrees of free-
dom (u0, v0, w) will give three differential equations
which can be written in terms of the resultant forces and
moments as

∂Nxx/∂x+∂Nxy/∂y = I0ü0 (20)

∂Nxy/∂x+∂Nyy/∂y = I0v̈0 (21)

∂2Mxx/∂x2 +2∂2Mxy/∂x∂y+∂2Myy/∂y2

= I0ẅ− I2(∂2ẅ/∂x2 +∂2ẅ/∂y2) (22)

The governing differential equations can be written in
terms of displacements by substituting Eqns. 14 and 17
in Eqns. 20 to 22 as

A11∂2u0/∂x2 +(A12 +A66)∂2v0/∂x∂y

+A66∂2v0/∂y2 = I0ü0 (23)

A66∂2v0/∂x2 +(A12 +A66)∂2u0/∂x∂y

+A22∂2v0/∂y2 = I0v̈0 (24)

D11∂4w/∂x4 +2(D12 +2D66)∂4w/∂x2∂y2

+D22∂4w/∂y4 = −I0ẅ

+ I2(∂2ẅ/∂x2 +∂2ẅ/∂y2) (25)

The associated boundary conditions are

Nx = Nxxnx +Nxyny, Ny = Nxynx +Nyyny (26)

Mx = −Mxxnx −Mxyny,

My = −Mxynx −Myyny (27)

Q = (∂Mxx/∂x+∂Mxy/∂y+ I2∂ẅ/∂x)nx

+(∂Mxy/∂x+∂Myy/∂y+ I2∂ẅ/∂y)ny (28)

where, Nx and Ny are the normal forces in x and y di-
rection respectively. My and Mx are the moments about
x and y axis and Q is the transverse shear force in z di-
rection. For edges parallel to the y axis, nx = ±1 and
ny = 0, thus for modeling a rectangular plate, the bound-
ary conditions given by Eqns. 26 to 28 will contain only
the terms associated with nx. In addition, the shear resul-
tant or the Kirchoff shear [Doyle (1999)], V is obtained
as

V = Q−∂Mxy/∂y (29)

This modification is done by considering Mxy as a couple
caused by vertical forces at a small distance apart. This
helps to reduce the number of boundary forces to four
namely Nx, Ny, V and My as required by CPT. Using the
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Eqn. 29, the boundary forces for edges parallel to y axis
written in terms of displacements are of the form

Nx = A11∂u0/∂x+A12∂v0/∂y,

Ny = A66(∂u0/∂y+∂v0/∂x) (30)

My = D11∂2w/∂x2 +D12∂2w/∂y2 (31)

V = −D11∂3w/∂x3 −D12∂3w/∂x∂y2 + I2∂ẅ/∂x (32)

In the following section, governing PDEs and the asso-
ciated boundary conditions derived here are reduced to a
set of ODEs using Daubechies scaling function approxi-
mation in time and one spatial (Y ) dimension.

4 Reduction of Wave Equations to ODEs

4.1 Temporal Approximation

The first step of formulation of 2-D WSFE is the reduc-
tion of each of the three governing differential equations
given by Eqns. 23 to 25 to a set of PDEs by Daubechies
scaling function based transformation in time. The pro-
cedure is very similar to that done for formulating 1-D
WSFE, where, the governing PDEs are reduced to sets of
ODEs [Mitra and Gopalakrishnan (2005)]. However, it is
described here in brief, for completeness. Let u0(x,y, t)
be discretized at n points in the time window [0 t f ]. Let
τ = 0, 1, . . ., n−1 be the sampling points, then

t = �tτ (33)

where, �t is the time interval between two sampling
points. The function u0(x,y, t) can be approximated by
scaling function ϕ(τ) at an arbitrary scale as

u0(x,y, t) = u0(x,y,τ) = ∑
k

u0k(x,y)ϕ(τ−k), k ∈ Z

(34)

where, u0k(x,y) (referred as u0k hereafter) are the approx-
imation coefficient at a certain spatial dimension x and y.
The other displacements v0(x,y, t), w(x,y, t) can be trans-
formed similarly and Eqn. 23 can be written as

∑
k

(
A11

∂2u0k

∂x2 +(A12 +A66)
∂2v0k

∂x∂y
+A66

∂2u0k

∂y2

)
ϕ(τ−k)

=
I0

�t2 ∑
k

ukϕ′′(τ−k) (35)

Taking inner product on both sides of Eqns. 35 with
the translates of scaling functions ϕ(τ − j), where j =
0, 1, . . . ,n−1 and using their orthogonal properties, we
get n simultaneous PDEs as,

A11
∂2u0 j

∂x2 +(A12 +A66)
∂2v0 j

∂x∂y
+A66

∂2u0 j

∂y2

=
1

�t2

j+N−2

∑
k= j−N+2

Ω2
j−kI0u0k j = 0, 1, . . . ,n−1 (36)

where, N is the order of the Daubechies wavelet and Ω2
j−k

are the connection coefficients defined as

Ω2
j−k =

Z
ϕ′′(τ−k)ϕ(τ− j)dτ (37)

Similarly, for first order derivative Ω1
j−k are defined as

Ω1
j−k =

Z
ϕ′(τ−k)ϕ(τ− j)dτ (38)

For compactly supported wavelets, Ω1
j−k, Ω2

j−k are
nonzero only in the interval k = j−N +2 to k = j +N −
2. The details for evaluation of connection coefficients
for different orders of derivative is given by Beylkin
(1992). It can be observed from the PDEs given by
Eqn. 36 that certain coefficients u0 j near the vicinity of
the boundaries ( j = 0 and j = n−1) lie outside the time
window [0 t f ] defined by j = 0, 1, . . .,n−1. These coeffi-
cients must be treated properly for finite domain analysis.
Here, a wavelet based extrapolation scheme [Williams
and Amaratunga (1997)] is implemented for solution of
boundary value problems. This approach allows treat-
ment of finite length data and uses polynomial to extrapo-
late the coefficients lying outside the finite domain either
from interior coefficients or initial/boundary values. The
method is particularly suitable for approximation in time
for the ease to impose initial values. The above method
converts the PDEs given by Eqns 36 to a set of coupled
PDEs given as

A11

{
∂2u0 j

∂x2

}
+(A12 +A66)

{
∂2v0 j

∂x∂y

}
+A66

{
∂2u0 j

∂y2

}
= [Γ1]2I0{u0 j} (39)

where Γ1 is the first order connection coefficient ma-
trix obtained after using the wavelet extrapolation tech-
nique. It should be mentioned here that though the con-
nection coefficients matrix, Γ2, for second order deriva-
tive can be obtained independently, here it is written as
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[Γ1]2 as it helps to impose the initial conditions [Mitra
and Gopalakrishnan (2005)]. These coupled PDEs are
decoupled using eigenvalue analysis

Γ1 = ΦΠΦ−1 (40)

where, Π is the diagonal eigenvalue matrix and Φ is the
eigenvectors matrix of Γ1. Let the eigenvalues be ıγ j,
ı =

√−1, then the decoupled ODEs corresponding to
Eqns. 39 are

A11
∂2û0 j

∂x2 +(A12 +A66)
∂2v̂0 j

∂x∂y
+A66

∂2û0 j

∂y2 = −I0γ2
j û0 j

j = 0, 1, . . . ,n−1 (41)

where, û0 j and similarly other transformed displacements
are

û0 j = Φ−1u0 j (42)

Following exactly the similar steps, the final transformed
form of the Eqns. 24 and 25 are

A66
∂2v̂0 j

∂x2 +(A12 +A66)
∂2û0 j

∂x∂y
+A22

∂2 v̂0 j

∂y2 = −I0γ2
j v̂0 j (43)

D11
∂4ŵ j

∂x4 +2(D12 +2D66)
∂4ŵ j

∂x2∂y2 +D22
∂4ŵ j

∂y4

= I0γ2
j ŵ j − I2γ2

j

(
∂2ŵ j

∂x2 +
∂2ŵ j

∂y2

)
(44)

Similarly, the transformed form of the force boundary
conditions given by Eqns. 30 to 32 are

A11
∂û0 j

∂x
+A12

∂v̂0 j

∂y
= N̂x j

A66

(
∂û0 j

∂y
+

∂v̂0 j

∂x

)
= N̂y j (45)

D11
∂2ŵ j

∂x2 +D12
∂2ŵ j

∂y2 = M̂y j (46)

−D11
∂3ŵ j

∂x3 −D12
∂3ŵ j

∂x∂y2 − I2γ2
j
∂ŵ j

∂x
= V̂j

j = 0, 1, . . . ,n−1 (47)

where, N̂x j and similarly N̂y j, M̂y j, V̂j are the trans-
formed Nx(x,y, t) and Ny(x,y, t), My(x,y, t), V(x,y, t) re-
spectively.

4.2 Spatial (Y) Approximation

As said earlier in Section 1, the next step involved is
to further reduce each of the transformed and decoupled
PDEs given by Eqns. 41, 43 and 44 for j = 0, 1, . . .,n−1
to a set of coupled ODEs using Daubechies scaling func-
tion approximation in one of the spatial (Y ) direction.
Similar to time approximation, the transformed vari-
able û0 j be discretized at m points in the spatial win-
dow [0, LY ], where LY is the length in Y direction. Let
ζ = 0, 1, . . . , m−1 be the sampling points, then

y = �Y ζ (48)

where, �Y is the spatial interval between two sampling
points. The function û0 j(x,y) can be approximated by
scaling function ϕ(ζ) at an arbitrary scale as

û0 j(x,y) = û0 j(x,ζ) =∑
k

û0l j(x)ϕ(ζ−l), l ∈ Z (49)

where, û0l j(x,y) (referred as û0l j hereafter) are the ap-
proximation coefficient at a certain spatial dimension x.
The other displacements v̂0 j(x,y), ŵ(x,y) can be trans-
formed similarly and Eqn. 41 can be written as

A11 ∑
l

d2û0l j

dx2 ϕ(ζ− l)

+(A12 +A66)
1

�Y ∑
l

dv̂0l j

dx
ϕ′(ζ− l)

+A66
1

�Y 2 ∑
l

û0l jϕ′′(ζ− l)

= −I0γ2
j ∑

l

û0l jϕ(ζ− l) (50)

Taking inner product on both sides of Eqn. 50 with
the translates of scaling functions ϕ(ζ − i), where i =
0, 1, . . .,m−1 and using their orthogonal properties, we
get m simultaneous ODEs as,

A11
d2û0i j

dx2 +(A12 +A66)
1

�Y

i+N−2

∑
l=i−N+2

dv̂0l j

dx
Ω1

i−l

+A66
1

�Y 2

i+N−2

∑
l=i−N+2

û0l jΩ2
i−l = −I0γ2

j û0i j

i = 0, 1, . . .,m−1 (51)

where, N is the order of Daubechies wavelet, Ω1
i−l and

Ω2
i−l are the connection coefficients for first and second

order derivative defined in Eqns. 38 and 37 respectively.
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It can be seen from the ODEs given by Eqn. 51, that,
similar to time approximation, here also certain coef-
ficients û0i j near the vicinity of the boundaries (i = 0
and i = m−1) lie outside the spatial window [0 LY ] de-
fined by i = 0, 1, . . . ,m− 1. These coefficients must
be treated properly for finite domain analysis. However
here, unlike time approximation, these coefficients are
obtained through periodic extension, but only for free
lateral edges, while other boundary conditions are im-
posed quite differently using a restraint matrix [Patton
and Marks (1996); Chen, Hwang, and Shih (1996)] and
is discussed in detail in the later part of the section. The
unrestrained i.e free-free boundary conditions may also
be imposed in a similar way using restraint matrix but it
has been seen from the numerical experiments that the
use of periodic extension gives accurate results. In addi-
tion, it allows decoupling of the ODEs using eigenvalue
analysis and thus reduces the computational cost. Here,
after expressing the unknown coefficients lying outside
the finite domain in terms of the inner coefficients con-
sidering periodic extension, the ODEs given by Eqn. 51
can be written as a matrix equation of the form

A11

{
d2û0i j

dx2

}
+(A12 +A66)[Λ1]

{
dv̂0i j

dx

}
+A66[Λ1]2

{
û0l j

}
= −I0γ2

j

{
û0i j

}
(52)

where, [Λ1] is the first order connection coefficient matrix
obtained after periodic extension and it is of the form

[Λ1]

=
1

�Y

⎡
⎢⎣

Ω1
0 Ω1

−1 . . . Ω1
−N+2 . . . Ω1

N−2 . . . Ω1
1

Ω1
1 Ω1

0 . . . Ω1
−N+3 . . . 0 . . . Ω1

2
...

... . . .
... . . .

... . . .
...

Ω1
−1 Ω1

−2 . . . 0 . . . Ω1
N−3 . . . Ω1

0

⎤
⎥⎦

(53)

The coupled ODEs given by Eqn. 52 are decoupled using
eigenvalue analysis similar to that done in time approxi-
mation as

Λ1 = ΨϒΨ−1 (54)

where, ϒ is the diagonal eigenvalue matrix and Ψ is the
eigenvectors matrix of Λ1. It should be mentioned here
that matrix Λ1 has a circulant form and its eigen parame-
ters are known analytically Davis (1963). Let the eigen-
values be ıβi, then the decoupled ODEs corresponding to

Eqns. 52 are

A11
d2ũ0i j

dx2 − ıβi(A12 +A66)
dṽ0i j

dx
−β2

i A66ũ0l j

= −I0γ2
j ũ0i j i = 0, 1, . . .,m−1 (55)

where, ũ0 j and similarly other transformed displacements
are

ũ0 j = Ψ−1û0 j (56)

Following exactly the similar steps, the final transformed
and decoupled form of the Eqns. 43 and 44 are

A66
d2ṽ0i j

dx2 − ıβi(A12 +A66)
dũ0i j

dx
−β2

i A22ṽ0i j

= −I0γ2
j ṽ0i j (57)

D11
d4w̃i j

dx4 −2β2
i (D12 +2D66)

d2w̃i j

dx2 +β4
i D22w̃i j

= I0γ2
j w̃i j − I2γ2

j

(
d2w̃i j

dx2 −β2
i w̃i j

)
(58)

Similarly, the transformed form of the force boundary
conditions given by Eqns. 45 to 47 are

A11
dũ0i j

dx
− ıβiA12ṽ0i j = Ñxi j

A66

(
−ıβiũ0i j +

dṽ0i j

dx

)
= Ñyi j (59)

D11
d2w̃i j

dx2 −β2
i D12w̃i j = M̃yi j (60)

−D11
d3w̃i j

dx3 + ıβ2
i D12

dw̃i j

dx
− I2γ2

j
dw̃i j

dx
= Ṽi j

i = 0, 1, . . .,m−1 (61)

The final transformed ODEs given by Eqns. 55, 57, 58
and the boundary conditions Eqns. 59 to 61 are used
for 2-D WSFE following a procedure very similar to 2-
D FSFE formulation [Chakraborty and Gopalakrishnan
(2005)] and is explained in the next section.
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Next, for imposition of other restrained boundary con-
ditions along the lateral edges of plate structure, first,
Eqn. 51 is written in a different form as

A11
d2û0i j

dx2 +(A12 +A66)
1
�Y

m−1

∑
l=i−N+2

dv̂0l j

dx
Ω1

i−l

+A66
1

�Y 2

m−1

∑
l=i−N+2

û0l jΩ2
i−l = −I0γ2

j û0i j

i = 0, 1, . . . ,m−1 (62)

This is done by taking inner product on both sides of
Eqn. 50 with the translates of scaling functions ϕ(ζ− i),
where i = 0 to (m−1)− (N−2) instead of i = 0 to (m−
1). Thus, the above Eqn. 62 can be written in a matrix
form as

A11

{
d2û0i j

dx2

}
+(A12 +A66)[Λ1

R]
{

dv̂0i j

dx

}
+A66[Λ1

R]2
{

û0l j
}

= −I0γ2
j

{
û0i j

}
(63)

where, [Λ1
R] is a (m + N − 2)× (m + N − 2). Now, at

the two lateral boundaries given by y = 0 and y = LY ,
û0 j(x,y) or û0 j(x,ζ) can be written in terms of the coeffi-
cients û0i j as

û0 j(x,0) =
0

∑
l=−N+2

û0l jϕ(−l) (64)

û0 j(x,LY ) = û0 j(x,m−1) =
m−1

∑
l=m−N+2

û0l jϕ(m−1− l)

(65)

From Eqns. 64 and 65, the coefficients û0(−N+2) j and
û0(m−1) j are derived in terms of the other coefficients
and a (m+N −2)× (m+N −2) restraint matrix [R] can
be formed which is used for transformation from unre-
strained to restrained coefficients as

{û0i j}restrained = [R]{û0i j}unrestrained (66)

when the boundary conditions are specified in terms of
the displacements. Similarly for boundary conditions
given in terms of their derivatives e.g slope, Eqn. 66 can
be written as{

dû0i j

dy

}
restrained

= [R]
{

dû0i j

dy

}
unrestrained

(67)

The restraint matrix [R] is rank deficient and its order
is equal to the number of boundary conditions speci-
fied. [R] is formed by inserting two rows obtained from
Eqn. 64 and 65 to a (m + N − 2)× m identity matrix.
Thus, after imposing the restraint, e.g for a fixed-fixed
boundary condition given by û0 j(x,0)= v̂0 j(x,0) = 0 and
û0 j(x,LY ) = v̂0 j(x,LY ) = 0, Eqn. 63 will be of the form

A11

{
d2û0i j

dx2

}
+(A12 +A66)[Λ1

R][R]
{

dv̂0i j

dx

}
+A66[Λ1

R]2[R]
{

û0i j
}

= −I0γ2
j

{
û0i j

}
(68)

Similarly, the other equation corresponding to Eqn. 43 is

A66

{
d2v̂0i j

dx2

}
+(A12 +A66)[Λ1

R][R]
{

dû0i j

dx

}
+A22[Λ1

R]2[R]
{

v̂0i j
}

= −I0γ2
j

{
v̂0i j

}
(69)

Again, for fixed-fixed boundary condition (out-of-plane
loading), ŵ j(x,0) = ∂ŵ j/∂y(x,0) = 0 and ŵ j(x,LY ) =
∂ŵ j/∂y(x,LY ) = 0 and the final reduced ODEs obtained
from Eqn. 44 is

D11

{
d4ŵi j

dx4

}
+2(D12 +2D66)[Λ1

R][R][Λ1
R][R]

{
d2ŵi j

dx2

}
+D22[Λ1

R]3[R][Λ1
R][R]

{
ŵi j

}
= I0γ2

j{ŵi j}

− I2γ2
j

({
d2ŵi j

dx2

}
+[Λ1

R][R][Λ1
R][R]{ŵi j}

)
(70)

As mentioned earlier, the matrices involved in Eqns. 68
to 70 are rank deficient by two and thus the first and last
rows and columns are truncated to solve the equations
that is required for the spectral finite element formulation
discussed in the next section. The coefficients û0(−N+2) j

and û0(m−1) j are then obtained from the other coefficients
using Eqns. 64 and 65 respectively. The boundary condi-
tions, Eqns. 45 to 47 after transformation and imposition
of restraints are

A11

{
dû0i j

dx

}
+A12[Λ1

R][R]
{

v̂0i j
}

=
{

N̂xi j

}

A66

(
[Λ1

R][R]
{

û0i j
}

+
{

dv̂0i j

dx

})
=

{
N̂yi j

}
(71)

D11

{
d2ŵi j

dx2

}
+D12[Λ1

R][R][Λ1
R][R]

{
ŵi j

}
=

{
M̂yi j

}
(72)



Wavelet based 2-D Spectral Finite Element 57

−D11

{
d3ŵi j

dx3

}
−D12[Λ1

R][R]
{

d3ŵi j

dx2

}

− I2γ2
j

{
dŵi j

dx

}
=

{
V̂i j

}
(73)

5 Spectral Finite Element Formulation

The degrees of freedom associated with the element for-
mulation is shown in Fig. 1(b). The element has four de-
grees of freedom per node, which are ũ0i j, ṽ0i j, w̃i j and
∂w̃i j/∂x. From the previous sections, for unrestrained lat-
eral edges we get a set of decoupled ODEs (Eqns. 55,
57 and 58) for isotopic plate using CPT, in a trans-
formed wavelet domain. These equations are required
to be solved for ũ0i j, ṽ0i j w̃0i j and the actual solutions
u0(x,y, t), v0(x,y, t), w(x,y, t) are obtained using inverse
wavelet transform twice for spatial Y dimension and
time. For finite length data, the wavelet transform and
its inverse can be obtained using a transformation matrix
[Williams and Amaratunga (1994)]. Here, the spectral
finite element technique is explained for the decoupled
ODEs given by Eqns. 55, 57 and 58 for unrestrained i.e
free lateral edges. However, for restrained boundary con-
ditions the transformed ODEs given by Eqns. 68 to 70 are
coupled and spectral finite element formulation for such
cases follows similar steps, except that for each time dis-
cretization points j, m−N×m−N matrix ODE is solved
instead of m decoupled ODEs.

It can be seen that the transformed decoupled ODEs have
a form similar to that in FSFE [Doyle (1999)] and thus,
WSFE can be formulated following the same method as
for FSFE formulation. In this section, the subscripts j
and i are dropped hereafter for simplified notations and
all the following equations are valid for j = 0, 1, . . ., n−
1 and i = 0, 1, . . . , m−1 for each j.

The exact interpolating functions for an element of length
LX , obtained by solving Eqns. 55, 57 and 58 respectively
are

{ũ0(x), ṽ0(x), w̃(x)}T = [R][Θ]{a} (74)

where, [Θ] is a diagonal matrix with the di-
agonal terms [e−k1x, e−k1(LX−x), e−k2x, e−k2(LX−x),
e−k3x, e−k3(LX−x), e−k4x, e−k4(LX−x)] and [R] is a 3× 8
amplitude ratio matrix for each set of k1, k2, k3 and k4.

[R] =

⎡
⎣ R11 . . . . . . R18

R21 . . . . . . R28

R31 . . . . . . R38

⎤
⎦ (75)

k1, k2, k3 and k4 are obtained by substituting Eqn. 74 in
Eqns 55, 57 and 58 and solving the characteristic equa-
tion. The characteristic equation is obtained by equat-
ing the determinant of the 3 × 3 companion matrix to
zero. The corresponding [R] is obtained using singular
value decomposition of the matrix. This method of de-
termining wavenumbers and corresponding amplitude ra-
tios was developed to formulate FSFE for graded beam
with Poisson’s contraction [Chakraborty and Gopalakr-
ishnan (2004a)]. k1, k2,k3 and k4 corresponds to the three
modes and as explained in reference Mitra and Gopalakr-
ishnan (2006), these are the wavenumbers but only up to
a certain fraction of Nyquist frequency.

Here, {a}= {A, B, C, D, E, F, G, H} are the unknown
coefficients to be determined from transformed nodal dis-
placements {ũe}, where {ũe} = {ũ01 ṽ01 w̃1 ∂w̃1/∂x
ũ02 ṽ02 w̃2 ∂w̃2/∂x} and ũ01 ≡ ũ0(0), ṽ01 ≡ ṽ0(0),
w̃1 ≡ w̃(0), ∂w̃1/∂x ≡ ∂w̃(0)/∂x and ũ02 ≡ ũ0(LX),
ṽ02 ≡ ṽ0(LX), w̃2 ≡ w̃(LX), ∂w̃2/∂x ≡ ∂w̃/∂x(LX ), (see
Fig. 1(b) for the details of degree of freedom the element
can support). Thus we can relate the nodal displacements
and unknown coefficients as

{ũe}= [B]{a} (76)

From the forced boundary conditions, (Eqns. 59 to 61),
nodal forces and unknown coefficients can be related as

{F̃e} = [C]{a} (77)

where, {F̃e} = {Ñx1 Ñy1 Ṽ1 M̃y1 Ñx2 Ñy2 Ṽ2 M̃y2} and
Ñx1 ≡ −Ñx(0), Ñy1 ≡ −Ñy(0), Ṽ1 ≡ −Ṽ(0), M̃y1 ≡
−M̃y(0) and Ñx2 ≡ Ñx(LX), Ñy2 ≡ Ñy(LX), Ṽ2 ≡ Ṽ (LX),
M̃y2 ≡ M̃y(LX) (see Fig. 1(b)). From Eqns. 76 and 77 we
can obtain a relation between transformed nodal forces
and displacements similar to conventional FE

{F̃e} = [C][B]
−1{ũe} = [K̃e]{ũe} (78)

where [K̃e] is the exact elemental dynamic stiffness ma-
trix. After the constants {a} are known from the above
equations, they can substituted back to Eqn. 74 to obtain
the transformed displacements ũ0, ṽ0, w̃, ∂w̃/∂x at any
given x.

6 Numerical Experiments

Here, the formulated 2-D WSFE is used to study ax-
ial and transverse wave propagation in an isotropic alu-
minum cantilever plate in both time and frequency do-
main. The plate shown in Fig. 2(a) is fixed at one edge
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Figure 2 : Cantilever (a) uniform and (b) stepped plate.

and free at the other edge along Y -axis. Numerical exper-
iments are performed by considering the other two edges
along X-axis to be free-free and fixed-fixed. The dimen-
sions are LX and LY along X and Y axis respectively,
while the depth (= 2h) is kept fixed at 0.01 m for the uni-
form plate shown in Fig. 2(a). However, both the lengths
of the plate is kept small to show the effectiveness of the
developed modeling technique in capturing the effects of
these edges on the wave propagation behavior.

In all the examples provided, the load applied is an unit
impulse of time duration 50 µs and frequency content 44
kHz. The load is shown in time and frequency domains
in Fig. 3.

The load is applied at the free edge along the Y -axis and
has a spatial distribution of F(Y ) = e−(Y/α)2

, where, α is
a constant and can be varied to change the Y -axis varia-
tion of the load.

The 2-D WSFE model is formulated with Daubechies
scaling function of order N = 22 for temporal approxi-
mation and N = 4 for spatial approximation. The time
sampling rate is �t = 2 µs, unless otherwise mentioned,
while the spatial sampling rate �Y is varied depending
on LY and load distribution F(y). As mentioned earlier,
only one 2-D WSFE is used to simulate the responses of
the uniform plate in Fig. 2(a). However, two elements
are used to model the stepped plate in Fig. 2(b) because
of the discontinuity present.

The accuracy of the responses simulated using the devel-
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ce 0 20 40 60 80
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Figure 3 : Impulse load in time and frequency (inset)
domain.

oped 2-D WSFE is validated with 2-D FE results. The FE
meshing is done with 4-noded quadrilateral plane stress
elements. Time integration is done using Newmark’s
scheme with time step 1 µs. The WSFE results are also
compared with those obtained using FSFE to emphasize
the advantages of the former method for wave propaga-
tion analysis of 2-D structures with finite dimension. Fi-
nally, the the developed technique is used in modeling
further complex stepped plate shown in Fig. 2(b).

6.1 Axial wave propagation

The spectrum relation for the plate with LY = 0.25 m
(see Fig. 2(a)) is plotted in Figs. 4 for axial wave prop-
agation. The real and imaginary parts of the wavenum-
bers are plotted in Figs. 4(a) and (b) respectively for a
Y wavenumber of 50 with �t = 8 µs i.e for Nyquist
frequency fnyq = 62.5 kHz. Comparison is also made
with FSFE [Chakraborty and Gopalakrishnan (2005)] re-
sults and it can be seen that WSFE predicts accurate
wavenumbers, however, up to a certain fraction pN of
the Nyquist frequency fnyq. Here, we see that wavenum-
ber has significant real and imaginary parts. That is, the
wave, as it propagates, also attenuates. Such waves are
called inhomogeneous waves. As said earlier, this frac-
tion pN depends on the order of the Daubechies scaling
function and is ≈ 0.6 for N = 22 [Mitra and Gopalakr-
ishnan (2006)].

Figs. 5(a) and (b) show the axial velocities of a can-
tilever plate as in Fig. 2(a), measured at mid and quar-
ter points respectively, on the free edge AB along the Y-
axis. Here, the results simulated with the formulated 2-D
WSFE is compared with 2-D FE results for validation.
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Figure 4 : The (a) real and (b) imaginary parts of the
wavenumbers for axial wave propagation.

It can be seen that the responses obtained with the two
methods match very well. The plate has a finite dimen-
sion of LX = 4.0 m and LY = 0.5 m and is free-free on
the other two edges AC and BD along X-axis. LY is pur-
posely chosen to be much smaller than LX so as to show
that the developed WSFE can efficiently capture the re-
flections from lateral edges AC and BD apart of those
from the fixed edge CD. The impulse load (Fig. 3) with
α = 0.05 for Y-variation, is applied along the edge AB in
axial direction. As mentioned earlier only one WSFE is
used to model the structure and the time window is kept
Tw = 1024 µs with number of sampling points n = 512
and �t = 2 µs. The number of discretization points along
Y-axis is m = 64 and thus the spatial sampling rate is
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Figure 5 : Axial velocity of free-free cantilever plate (see
Fig. 2(a)) with LX = 4.0 m and LY = 0.5 m at measured
at (a) mid and (b) quarter points of the free end AB.

�Y = LY /(m−1)= 0.0079 m. A very refined mesh with
12864 4-noded plane stress quadrilateral elements were
used for the 2-D FE analysis, while, Newmark’s scheme
with time step 1 µs was used for time integration.

Similar comparison between WSFE and 2-D FE results
is made in Fig. 6(a), but, here the two edges AC and
BD are considered fixed. Otherwise the plate dimensions
and loading conditions are same as the previous example.
The axial velocities plotted are measured at mid-point of
AB. Even for this case, the responses compare very well.
It can be seen from the figure, that the first reflection from
fixed edges AC and BD is reversed if compared with the
similar response of the free-free plate shown in Fig. 5(a).
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Figure 6 : Axial velocity of fixed-fixed cantilever plate
(see Fig. 2(a)) with LX = 4.0 m, (a) LY = 0.5 m and (b)
LY = 0.25 m measured at mid-point of free end AB.

In Fig. 6(b), the axial velocity at the mid-point of AB
simulated with a single WSFE is plotted and shows good
comparison with 2-D FE results for a plate very simi-
lar to that in last example, except, LY = 0.25 m. The unit
impulse load is applied along AB in axial direction, how-
ever, here α = 0.03 for Y -variation. The FE mesh, time
integration scheme and the parameters involved in WSFE
modeling is similar to the previous case.

The axial velocities at the mid and quarter points of edge
AB (see Fig. 2(a)) are plotted in Figs. 7(a) and (b) re-
spectively. The plate is free along the edges AC and BD,
the dimensions are LX = 4.0 m and LY = 0.25 m. The
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Figure 7 : Axial velocity of free-free cantilever plate (see
Fig. 2(a)) with LX = 4.0 m and LY = 0.25 m at measured
at (a) mid and (b) quarter points of the free end AB.

same impulse load with α = 0.03 is applied along AB
in axial direction. The results are validated with 2-D FE
analysis. The details of WSFE and FE modeling are as
in previous example. The main aim of the example is to
provide a comparison of the WSFE results with those ob-
tained using FSFE. As stated earlier, it can be seen from
the figures, that unlike WSFE, FSFE is unable to accu-
rately capture the reflections from the lateral edges, AC
and BD in this example. Thus, for structures with finite
or short dimensions, FSFE results will deviate substan-
tially from the actual responses. In addition, simulation
with FSFE requires “throw-off” element to impart arti-
ficial damping to the structure and a large time window



Wavelet based 2-D Spectral Finite Element 61

0  200 400 600 800 1000  
−0.004

−0.002

0.0 

0.002 

0.004 

0.006 

0.008 

Time (μs)

A
xi

al
 V

el
oc

ity
 (

m
m

/s
)

Stepped plate
Uniform plate

(a)

0  200 400 600 800 1000  
−0.004

−0.002

0.0 

0.002 

0.004 

0.006 

0.008 

Time (μs)

A
xi

al
 V

el
oc

ity
 (

m
m

/s
)

Stepped plate
Uniform plate

(b)
Figure 8 : Axial velocity (mm/s) of free-free uniform
and stepped cantilever plate (see Fig. 2(a) and (b)) with
LX = 2.0 m and LY = 1.0 m at (a) mid and (b) quarter
points on edge AB.

Tw = 16384 µs (�t = 2 µs and n = 8192) to remove the
distortions due to “wrap around” problem. It should be
restated here, that the accuracy of the response simulated
using WSFE is independent of the time window Tw which
is chosen as required for observation.

In Figs. 8(a) and (b), the axial velocities at the mid and
quarter points on the edge AB are plotted respectively for
both uniform and stepped plates shown in Figs. 2(a) and
(b). The plates have free-free lateral edges AC, BD and
LX = 2.0 m, LY = 1.0 m. The uniform plate has a depth
of h = 0.01 m as used in earlier examples. In the stepped
plate, the depth of thicker part of length LX1 = 1.5 m is
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Figure 9 : Axial velocity (mm/s) of free-free cantilever
plate (see Fig. 2(a)) with LX = 1.0 m and LY = 0.25 m at
time instances (a) T = 248 µs and (b) T = 372 µs.

h = 0.02 m and is h = 0.01 m for the thinner part of length
LX2 = 0.5 m. The responses measured are for impulse
load with α = 0.03 applied along the free edge AB. As
mentioned earlier, modeling of the stepped plate requires
two WSFE due to the discontinuitypresent. However, the
uniform plate is modeled with a single WSFE and num-
ber of sampling points in Y direction are m = 128 for both
the cases. It can be seen from the Figs. 8(a) and (b), that
though the velocities do not differ much in amplitude,
the responses of the stepped plate show more reflections
arising from the discontinuity present. For example, in
Fig. 8(a), the response of the stepped plate shows an ad-
ditional wave immediately after the incident wave and it
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Figure 10 : Axial velocity (mm/s) of stepped free-free
cantilever plate (see Fig. 2(b)) with LX = 1.0 m and LY =
0.25 m at time instances (a) T = 248 µs and (b) T =
372 µs.

is due to the reflection from the discontinuity present at a
distance LX2 = 0.5 m from AB or location of incidence.

Figs. 9(a) and (b) show the snapshots of axial velocities
of the cantilever plate with free-free lateral edges (AC
and BD) shown in Fig. 2(a) at time instances T = 248 µs
and T = 372 µs respectively. The plate dimensions are
LX = 1.0 m and LY = 0.25 m, and is modeled using sin-
gle WSFE with m = 64 sampling points on Y-direction.
The loading condition is same as in previous example.
However, here shorter dimensions are chosen to study
the effects of the reflections from all boundaries which

include the two free lateral edges (AC and BD) and the
other two fixed free ends (CD and AB). It should be men-
tioned here that the velocities at all the sampling points
along Y direction and at any points along X direction
used to obtain the snapshots are obtained from a single
simulation. In Figs. 10(a) and (b), similar axial veloci-
ties snapshots under the same loading condition are pre-
sented for time instances T = 248 µs and T = 372 µs
respectively. However, here, the plate has a stepped form
as shown in Fig. 2(b), with LX = 1.0 m and LY = 0.25
m, while the depth is h = 0.02 m for the thicker half and
h = 0.01 m for the remaining half of the plate. Due to
the discontinuities present, two WSFE is assembled to
model the plate and the number of sampling points in Y-
direction is m = 64. It can be seen from the snapshots
that there is much difference in the deformation patterns
rather than the amplitudes of the axial responses of uni-
form and stepped plates. This is as expected, because
similar to that observed in the previous example, the re-
sponse of the stepped plate will contain reflections aris-
ing from the discontinuity apart from the boundaries.

6.2 Transverse wave propagation

Similar numerical experiments and validations as per-
formed for axial wave propagation are also done for
transverse wave propagation due to out-of-plane loading.

First, in Figs. 11(a) and (b), the real and imaginary parts
of the wavenumbers for transverse wave propagation are
shown respectively. The wavenumbers are plotted up to
the Nyquist frequency fnyq = 62.5 kHz for time sampling
rate �t = 8 µs and the Y -wavenumber considered is 100.
From the figures, we see that waves are inhomogeneous
in nature. As in the previous case of axial wave propa-
gation, the wavenumbers obtained from both FSFE and
WSFE are presented and can be seen that WSFE gives
accurate prediction up to the allowable frequency range
i.e the fraction pN of fnyq.

The transverse velocities at mid and quarter points on the
free edge AB of the cantilever plate shown in Fig. 2(a)
are presented in Figs. 12(a) and (b) respectively. The re-
sponses obtained using the present 2-D WSFE method is
compared with 2-D FE results and a good match is ob-
served. The two edges AC and BD of the plate are free
and the dimensions are given as LX = 4.0 m and LY = 0.5
m. The unit impulse load is applied along the free edge
AB in transverse direction and the Y -distribution is ob-
tained using α = 0.05. Single WSFE is used to simu-
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Figure 11 : The (a) real and (b) imaginary parts of the
wavenumbers for transverse wave propagation.

late the responses with n = 1024, �t = 2 µs and thus
Tw = 2048 µs. The spatial sampling rate is �Y = 0.0079
m, number of sampling points being m = 64. The FE
mesh has 12864, 4-noded plane stress quadrilateral el-
ements and time integration is done using Newmark’s
scheme with time step 1 µs.

In Figs. 13(a) and (b), the transverse velocities are plotted
for the mid and quarter points of the free edge AB respec-
tively. The plate configuration is same as the previous
example except LY = 0.25 m. As before the unit impulse
load with α = 0.03 is applied along AB in transverse di-
rection. In these figures, the responses simulated using
WSFE, 2-D FE and FSFE methods are plotted for com-
parison. The parameters for WSFE modeling, FE mesh
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Figure 12 : Transverse velocity of free-free cantilever
plate (see Fig. 2(a)) with LX = 4.0 m and LY = 0.5 m at
measured at (a) mid and (b) quarter points of the free end
AB.

and Newmark’s time integration are similar to those in
the last example. It can be seen that the WSFE and 2-
D FE results correlate very well. Similar to axial wave
propagation, FSFE cannot capture the effect of the lat-
eral edges AC and BD even for transverse wave propaga-
tion. In addition, for structures with finite/short dimen-
sions as in this example, the FSFE results varies consider-
ably from the 2-D FE results. As mentioned earlier, apart
from the above limitation, simulation with FSFE requires
the semi-infinite “throw-off” element to add damping to
the structure and a large time window Tw = 16384 µs
i.e number of sampling points n = 8192 with �t = 2 µs
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Figure 13 : Axial velocity of free-free cantilever plate
(see Fig. 2(a)) with LX = 4.0 m and LY = 0.25 m at mea-
sured at (a) mid and (b) quarter points of the free end
AB.

to remove the distortions resulting from “wrap around”.
However, it can be seen from this example that the devel-
oped WSFE is free from any of the above problems, also
for transverse wave propagation.

In Figs. 14(a) and (b), the transverse velocities at the
mid and quarter points on the edge AB are plotted re-
spectively for both uniform and stepped plates shown in
Figs. 2(a) and (b). The plates have free-free lateral edges
AC, BD and LX = 2.0 m, LY = 1.0 m. The uniform plate
has a depth of h = 0.01 m as used in earlier examples.
In the stepped plate, the depth of thicker part of length
LX1 = 1.75 m is h = 0.02 m and is h = 0.01 m for the
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Figure 14 : Transverse velocity (mm/s) of free-free uni-
form and stepped cantilever plate (see Fig. 2(a) and (b))
with LX = 2.0 m and LY = 1.0 m at (a) mid and (b) quar-
ter points of free edge AB.

thinner part of length LX2 = 0.25 m. The responses mea-
sured are for impulse load with α = 0.03 applied along
the free edge AB. Due to the discontinuity present, two
WSFE are used to model the stepped plate. However, the
uniform plate is modeled with a single WSFE and num-
ber of sampling points in Y direction are m = 128 for
both the cases. From Figs. 14(a) and (b) it can be seen
that though the velocities do not differ much in ampli-
tude, the response of the stepped plate differ consider-
ably from that of the uniform plate because of the reflec-
tions arising from the discontinuity present. In Fig. 14(a),
the response of the stepped plate shows an additional
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Figure 15 : Transverse velocity (mm/s) of free-free
cantilever plate (see Fig. 2(a)) with LX = 1.0 m and
LY = 0.25 m at time instances (a) T = 372 µs and (b)
T = 500 µs.

wave after the incident wave and it is the wave reflected
from the discontinuity present at a distance LX2 = 0.25 m
from AB. The responses of the plates at the quarter point
shown in Fig. 14(b) do not vary much since here, within
the time window observed the reflections from the lateral
edges are predominant. However, the responses will start
deviating at a later time.

Figs. 15(a) and (b) show the snapshots of the trans-
verse velocities of the cantilever plate with free lateral
edges AC and BD shown in Fig. 2(a), at time instances
T = 372 µs and 500 µs respectively. The plate dimen-
sions are LX = 1.0 m and LY = 0.25 m, and is modeled

0  

0.1

0.2

0  

0.2

0.4

0.6

0.8

1  

−0.4

−0.2

0.0 

0.2 

0.4 

Y direction (m) 

X direction (m) 

(a)

0  

0.1

0.2

0  

0.2

0.4

0.6

0.8

1  

−0.4

−0.2

0.0 

0.2 

0.4 

Y direction (m) 

X direction (m) 

(b)
Figure 16 : Transverse velocity (mm/s) of stepped free-
free cantilever plate (see Fig. 2(b)) with LX = 1.0 m and
LY = 0.25 m at time instances (a) T = 372 µs and (b)
T = 500 µs.

using single WSFE with m = 64 sampling points in Y di-
rection. The impulse load with α = 0.03 is applied at the
free edge AB. Similar to the snapshots of axial velocities,
here also the velocities at all the sampling points along Y
direction and at any points along X directions are avail-
able by performing only one simulation. In Figs. 16(a)
and (b), similar snapshots of transverse velocities under
the same loading conditions are presented for time in-
stances T = 372 µs and 500 µs respectively. However,
here, the plate has a stepped form as shown in Fig. 2(b),
with LX = 1.0 m and LY = 0.25 m, the thickness are
h = 0.01 m for the half near free edge AB and h = 0.02 m
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for the other half of the plate near the fixed end. Similar
to the previous example, two WSFE are used to model
the plate due to discontinuity present and the number of
sampling points along Y direction is m = 64. It can be
observed from the Figs. 15 and 16, that the small dimen-
sions of the plates result in multiple reflections from all
the edges and are captured with the snapshots. Further, it
can be seen that, the distribution of the transverse veloc-
ity for the stepped plate varies considerably from that of
the uniform plate. This is primarily due to the presence
of the discontinuity in the stepped plate which results in
reflections in addition to those from the four edges.

7 Conclusions

In this paper, a 2-D wavelet based spectral method is
developed for wave propagation studies. Spectral el-
ement method proves to be an efficient alternative FE
analysis of wave propagation problems and decreases
computational costs substantially. The formulated spec-
tral finite element technique circumvents several impor-
tant limitations of the conventional FFT based spectral
finite element method, while retaining the advantages
like computational efficiency, simultaneous time and fre-
quency domain analysis. Firstly, the localized nature
of the Daubechies basis functions for WSFE method al-
lows modeling of plate structures with finite dimensions
which is otherwise not possible with the corresponding
FFT based method. In addition, similar to 1-D WSFE,
the 2-D WSFE is also free from “wrap around” prob-
lem associated with FSFE due to the assumption of pe-
riodicity in time approximation. Consequence of this is
that FSFE, unlike WSFE, cannot model undamped finite
length structures and even in presence of damping, larger
time window is needed to remove the distortions arising
from “wrap around”.

First, the responses simulated using 2-D WSFE are val-
idated with 2-D FE results for both axial and trans-
verse wave propagation. Numerical experiments are also
performed to emphasize the advantages of WSFE over
FSFE. Finally, wave propagation in a stepped plate is
studied to show effectiveness of the developed technique
in modeling relatively complex structures.
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