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Accurate Force Evaluation for Industrial Magnetostatics Applications with Fast
Bem-Fem Approaches
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Abstract: Three dimensional magneto-mechanical
problems at low frequency are addressed by means of
a coupled fast Boundary Element - Finite Element ap-
proach with total scalar potential and focusing especially
on the issue of global force calculation on movable fer-
romagnetic parts. The differentiation of co-energy in
this framework and the use of Maxwell tensor are criti-
cally discussed and the intrinsic links are put in evidence.
Three examples of academic and industrial applications
are employed for validation.
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1 Introduction

Several industrial relays working at low frequency dis-
play non-linear material behaviour of fixed and movable
ferromagnetic parts embedded in the linear air domain.
These features naturally call for the application of cou-
pled BEM-FEM approaches which have been discussed
in several contributions (e.g. Bossavit (1998); Frangi,
Faure-Ragani, and Ghezzi (2005); Kuhn (1998); Kuhn
and Steinbach (2002); Springhetti, Novati, and Margo-
nari (2006)) and take advantage of the versatility of the
FEM to model material non-linearities and of the abil-
ity of integral approaches to account for infinite domains
and movable structures. As often occurs in magnetostat-
ics, the total scalar potential approach is privileged, since
it is generally more robust than alternative edge element
formulations (Bossavit (1998)) and avoids cancellation
errors which are intrinsic in the perturbation scalar po-
tential approach.

One of the main goals of numerical analyses is the eval-
uation of forces and moments which govern the me-
chanical response of the relay. Generally, the meth-
ods for force calculation in low frequency devices are
based on one of two approaches (see e.g. Coulomb
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(1983); Coulomb and Meunier (1984); Henrotte, Sande,
Delige, and Hameyer (2004); Kim, Lowther, and Sykul-
ski (2005); Ren (1994); Melkebeek (2001)): the Maxwell
stress tensor (MST) and the differentiation of the co-
energy functional (DCF), or virtual work principle.
These two approaches are usually derived from some-
what different starting points, even if in Henrotte, Sande,
Delige, and Hameyer (2004); Kim, Lowther, and Sykul-
ski (2005) their strong connection has been put in ev-
idence employing concepts of material differentiations.
This common link is here re-established in the case of a
general non linear material surrounded by air in the con-
text of the coupled BEM-FEM approach. In the MST the
force is computed by integrating over a surface enclos-
ing the volume of interest provided it does not intersect
other regions with surface or volume currents. Clearly,
the quality of the solution strongly depends on the choice
of the surface. Virtual work, on the other hand, com-
putes the force on a body by evaluating the variation of
the co-energy of the system either by sensitivity analysis,
or by imposing a small physical displacement and using
finite differences. After briefly reviewing the formula-
tion adopted in Section 2, the different approaches for
computing global forces are presented in Section 3 in a
unified framework and numerical examples are presented
to validate the techniques proposed.

2 Formulation

Let us assume that the variation of currents inside the
conductor is slow enough to neglect dynamic effects and
justify the adoption of a magnetostatic formulation.

Let ΩF denote the ferromagnetic domains, ΩA the infi-
nite “air” domain surrounding ΩF and Γ the interface
between ΩF and ΩA, endowed with the unit normal n
pointing from ΩF to ΩA.

The field variables are assumed to satisfy the isotropic



42 Copyright c© 2006 Tech Science Press CMES, vol.15, no.1, pp.41-48, 2006

nonlinear constitutive relations:

BF = µr(x, |H|)µ0HF in ΩF ,

BA = µ0HA in ΩA (1)

where H is the magnetic field intensity and B the mag-
netic flux density. Also, the current density j is assumed
to vanish in ΩF while currents in ΩA are treated as input
data. The governing equations are:

∇·(µrHF) = 0 in ΩF ,

∇·HA = 0 in ΩA (2)

∇∧HF = 0 in ΩF ,

∇∧HA = j in ΩA (3)

BF ·n = BA ·n on Γ
HF ∧n = HA ∧n on Γ (4)

Using the scalar potential approach HF = ∇φ in ΩF ,
with φ total scalar magnetic potential, while in ΩA HA =
∇φp + Ha, with φp perturbation scalar magnetic poten-
tial. Ha is the magnetic field computed analytically from
the given currents j in ΩA via Biot-Savart law.

From eqn. (4) the following interface continuity condi-
tion holds for each connected surface of the problem:

∇φ∧n = ∇φp ∧n+Ha ∧n

and hence:

φ(y) = φp(y)+
Z

L
Ha ·τττds+φa(xC)

= φp(y)+φa(y) (5)

where, under certain constraints which are analysed in
Section 2.2, L is an arbitrary curve (of tangent unit vector
τττ) lying on Γ and starting from the arbitrary point xC.

A Finite Element discretization is envisaged for ΩF

based on the variational equation:
Z

ΩF

∇φ̃(x)µr(x, |∇φ|)∇φ(x)dV

=
Z

Γ
φ̃(x)Bn(x)dS, ∀φ̃ ∈ H1(ΩF) (6)

where Bn = B ·n, while collocation BE are employed for
ΩA in view of its linear constitutive behaviour. The third

Green identity written for a source point y lying on Γ
reads:

kφp(y) =
Z

Γ

{−G(y,x)Bn(x)

+[∇G(y,x) ·n(x)]φp(x)
}

dS (7)

where kernel G(y,x) is the potential theory Kelvin ker-
nel:

G(y,x) =
1

4π
1
r

with r = |x−y|

k depends on the geometry of Γ at y (k = 1/2 for a
“smooth” surface) and ∇G denotes the gradient w.r.t. x.
Taking account of eqn. (5), eqns. (6) and (7) are ex-
pressed in terms of the unknown fields Bn and φ.

2.1 Numerical implementation

For the numerical solution of the above system, ΩF is
discretized with four-node tetrahedra and the set of their
facets lying on Γ represents the triangulation employed
for the discretization of the BEM equation (7). The total
potential φ is chosen in the space of continuous piece-
wise linear functions as well as φ̃, since a Galerkin ap-
proach is adopted for the FEM equations. The normal
flux Bn is modeled as piecewise constant (constant over
each BEM). Equation (7) is then collocated at the center
of every triangular facet. Alternative elegant variational
approaches have been proposed in the literature (Kuhn
(1998); Kuhn and Steinbach (2002)), but collocation is
adopted here in order to privilege the crucial computing
speed.

The solution of the linear system is performed via an
iterative GMRES solver and the matrix vector product
required at each iteration is accelerated via fast multi-
pole techniques (Greengard and Rokhlin (1997); Chew,
Song, Cui, Velamparambil, Hastriter, and Hu (2004)). In
Frangi, Faure-Ragani, and Ghezzi (2005) a multigrid ap-
proach was used for solving very large problems; here,
on the contrary, we tackle medium size analyses like
those presented in Section 4.3 and the best performances
were obtained using an “implicit” condensation. The
normal fluxes Bn are chosen as primary unknowns. In
principle the nodal values of φ could be condensed out of
the system, but an explicit condensation is not viable and
is here replaced, at each iteration, by the following proce-
dure. Given the present estimate of Bn, eqn. (6) is solved
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for φ and the result is substituted back in eqn. (7) for eval-
uating the residuum. Since all the problems tested con-
verge very rapidly (less than � 50 iterations), this choice
drastically reduces computing time w.r.t. to explicit con-
densation and yields far better performances with respect
to other preconditioners tested.

2.2 Computation of φa

Let Γ be the union of several simply connected surfaces.
For each of these surfaces, say S, we assume that a single
valued φa exist on S such that ∇φa = Ha. This requires
that any closed loop that can be initially traced on S can
also be continuously contracted to a single point without
“cutting” a region with j �= 0. All the topologies of in-
terest for the present investigation respect this condition,
but it is worth stressing that the general situation could
be addressed with the same technique at the cost of intro-
ducing suitable cuts in ΩF with associated jump condi-
tions for φ. The evaluation of φa is performed exploiting
the surface spanning tree technique of common usage in
edge element approaches (e.g. Biro, Preis, and Richter
(1998)). Let us assume that S has been discretized with
flat triangles. A spanning tree is a set of edges (of the
triangles) which does not contain any closed loop and
which connects all the nodes of the surface mesh. A
node is selected as the root and φa is arbitrarily set to zero
there. Then Ha is integrated numerically (or analytically)
along each edge of the spanning tree. Since this line in-
tegral represents the difference between the two values at
the nodes connected by the edge, all the nodal values of
φφφa can readily be computed. The field interpolated with
linear shape functions from these nodal values is an exact
potential.

3 Computation of global forces

In industrial applications like the circuit breaker of Sec-
tion 4.3, one of the main objectives of the analysis is the
computation of forces and moments acting on the mov-
able ferromagnetic part ΩFM which can be often treated
as rigid. This poses severe difficulties especially when
the gap between ΩFM and the other fixed ferromagnetic
parts ΩFF is much smaller than the typical problem di-
mension. One of the key advantages of a coupled BEM-
FEM approach is that ΩFM can be freely moved without
having to modify the mesh or deform it, hence it is the
ideal tool for the problem at hand.

In the literature on Finite Elements several techniques are
proposed resorting either to the concept of Maxwell ten-
sor or to the differentiation of the co-energy functional.
These techniques are here revisited to discuss their appli-
cability in the present context.

Let us consider the infinite domain containing the struc-
ture of interest in which the movable part ΩFM under-
goes a given rigid body movement. We continuously ex-
tend the movement to the surrounding air by means of the
mapping y = ΦΦΦ(x, t), with initial condition x = ΦΦΦ(x,0),
which defines a domain transformation as a function of
a parameter t (fictitious time) and initial position x. We
will also assume that one can identify a surface SΦ in air
such that: i) SΦ encloses completely ΩFM and x =ΦΦΦ(x, t)
(i.e. no displacements) on SΦ and outside it (in particular
on fixed ferromagnetic parts); ii) the surface SΦ does not
enclose or cut conductors (j = 0 inside SΦ).

The transformation ΦΦΦ(x, t) induces the velocity θθθ(y, t) =
ΦΦΦ,t(x, t) which, in ΩFM, will necessarily have the rigid-
body form:

θθθ(y, t) = d(t)+ωωω(t)∧ (y−x0)

where d(t) represents the velocity of x0, ωωω(t) the angular
velocity associated to the rigid body movement and x0 is
a fixed arbitrary point.

The instant power of magnetic forces will then have the
simple expression:

P(t) = F(t) ·d(t)+C(x0, t) ·ωωω(t) (8)

where F(t) and C(x0, t) are the resultant force and resul-
tant moment with respect to x0, respectively, of forces
acting on ΩFM.

3.1 Direct differentiation of co-energy

Let us now focus the attention on the co-energy func-
tional

Ψ =
Z

Ω∞

Z H

0
BdHdV (9)

It is well known that the instant power P(t) associated to
the rigid body movement of ΩFM is the material deriva-

tive
�
Ψ (see e.g. Coulomb (1983); Coulomb and Meunier

(1984); Henrotte, Sande, Delige, and Hameyer (2004);
Kim, Lowther, and Sykulski (2005)) of Ψ when the ma-

terial derivatives
�
φ of φ in the ferromagnetic parts and



44 Copyright c© 2006 Tech Science Press CMES, vol.15, no.1, pp.41-48, 2006

�
φp of φp in air vanish. Using the formulas of material
derivatives (Appendix A:) one obtains

P(t) =
Z

Ω∞

B
�
HdV +

Z
Ω∞

(Z H

0
BdH

)
∇·θθθdV (10)

The combined use of eqns. (10) and (8) with suitable
choices of d and ωωω yields the desired values of F(t) and
C(x0, t).

Let us now focus on eqn. (10). In ΩFM ∇·θθθ = 0 since

the movement is rigid; moreover, B
�
H =−µ(∇φ ·∇θθθ) ·∇φ

and this term also vanishes for any rigid body movement.

Outside SΦ, θθθ = 0 by hypothesis. Moreover
�
H vanishes

since it is a linear function of
�
φ in ΩFF and of

�
φp in air,

and they both vanish by hypothesis. Hence, the only con-
tribution stems from the integration over the air region
ΔΩ between SΦ and ∂ΩFM:

P = µ0

Z
ΔΩ

(
−H ·∇θθθ ·H+

1
2
|H|2 ∇·θθθ

)
dV

=
Z

ΔΩ
∇θθθ :

(
−B⊗H+

1
2
(H ·B)1l)

)
dV (11)

This formula, often adopted in FEM approaches, requires
a volume integration in ΔΩ which is not meshed in the
BEM-FEM technique and hence does not represent an
appealing procedure herein.

3.2 Maxwell tensor

Considering that θθθ = 0 on Sφ and that no current sources
are present in ΔΩ by hypothesis, and hence H = ∇φ, in-
tegrating by parts one obtains:

P =
Z

∂ΩFM

(
HBn − 1

2
(B ·H)n

)
·θθθdS (12)

and the vector in parenthesis is the contraction of the
Maxwell tensor with the normal vector n. The Maxwell
tensor is continuous across ∂ΩFM, so that the power is
well defined and one obtains:

F(t) =
Z

∂ΩFM

(
HtBn +

1
2
(

1
µ0

B2
n −µ0 |Ht |2)n

)
dS (13)

C(x0, t) =Z
∂ΩFM

(y−x0)∧
(

Ht Bn +
1
2
(

1
µ0

B2
n−µ0 |Ht |2)n

)
dS

(14)

The application of eqns. (13) and (14) is straightforward,
since it can be expressed in terms of the direct unknowns
φ and Bn. Unfortunately it is not very accurate, in gen-
eral, as often remarked in the literature and commented in
the sequel. However, exploiting the fact that the Maxwell
tensor is divergence free if j = 0, we also have:

F(t) =
Z

SM

(
HtBn +

1
2
(

1
µ0

B2
n −µ0 |Ht |2)n

)
dS (15)

C(x0, t) =Z
SM

(y−x0)∧
(

HtBn +
1
2
(

1
µ0

B2
n −µ0 |Ht |2)n

)
dS (16)

where SM is any surface completely contained in ΔΩ.
The application of eqns. (15) and (16) requires the com-
putation of Bn and Ht on SM but is in general more reli-
able than eqns. (13) and (14).

One possible reason is that Ht in eqns. (13) and (14) is
obtained by differentiating the scalar potential and hence
is not as accurate as the direct BEM fields; more impor-
tantly, the currents, which are physically concentrated on
the surface in the real case, appear to be smeared out
by the numerical model over a solid region which has
approximately the size of the elements employed in the
discretization. These currents must be accounted for in
order to recover the correct forces.

Experimentally, it has been remarked that ”optimal” re-
sults can be be obtained if SM is placed at a distance from
∂ΩFM approximately equal to the characteristic mesh
size. The shortcoming of this approach is that, especially
when gaps are very narrow, the construction of such a
surface is by no means trivial and accuracy of results de-
cays anyway.

3.3 Co-energy and finite differences

The last approach consists in evaluating the derivative of
the co-energy functional using finite differences. This
technique has been proposed several times in the liter-
ature in the context of FEM approaches, but discarded
in view of possible cancellation errors, of the difficulty
intrinsic in the evaluation of the co-energy of the infi-
nite domain and of the need of multiple analyses. All
these obstacles seem to play a minor role with the present
BEM-FEM approach and finite differences turn out to be
very competitive both in terms of accuracy, as shown in
Section 4, and in terms of efficiency. Indeed, co-energy
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is a global measure and suffers marginally from the pres-
ence of local narrow gaps; moreover the analysis of in-
dustrial components is often required for a series of posi-
tions of ΩFM, so that finite differences can be computed
at almost zero cost. Even if a single geometric config-
uration is needed, the second phase, which is necessary
for computing the finite difference, can be performed em-
ploying the relative permeability ηr obtained at conver-
gence and the global cost hence gets only marginally in-
cremented.

Let us consider the co-energy of the infinite domain,
making a distinction between linear and non linear parts:

Ψ =
Z

ΩF

Z H

0
BdHdV

+
µ0

2

Z
ΩA

(∇φp +Ha) · (∇φp +Ha)dV (17)

The first term can be directly computed from the solu-
tion of eqns. (6) and (7). Focusing on the latter, we first
remark that:
Z

ΩA

(∇φp ·∇φp +2∇φp ·Ha)dV =
Z

Γ
φp(Bn +Ba

n)dS

where Ba
n = µ0Ha ·n. Moreover:

µ0

2

Z
ΩA

|Ha|2 dV = Ψa
∞ − µ0

2

Z
ΩF

|Ha|2 dV

where Ψa
∞ of the co-energy in the infinite domain if µr = 1

in ΩF .

Hence, finally

Ψ =
Z

ΩF

(Z H

0
BdH− µ0

2
|Ha|2

)
dV

+
1
2

Z
Γ
(φ−φa)(Bn +Ba

n)dS +Ψa
∞ (18)

Clearly, when computing finite differences, Ψa
∞ cancels

out since the current is assumed to be independent of
ΩFM movements.

4 Numerical examples

4.1 Levitating sphere

Let us consider the classical benchmark of a hollow
sphere with center point in (0,0,0), outer radius 50 mm,
inner radius 35 mm, µr = 500, immersed in the mag-
netic field created by a circular coil of radius 70 mm and

Table 1 : Comparison of forces [N] on hollow sphere
with different techniques

Mesh Mx MxS FD1 FD2

M1 332.7 332.4 342.87 343.02
M2 358.9 354.5 359.4 359.5
M3 370.9 362.8 365.6 365.7
M4 372.0 370.18 370.99 371.12

exact 372.88

lying in a plane x3 = 30 mm with given input current
I = 20000 A.

Four meshes (M1 with 1186 FE elements and 384 BE
elements; M2 with 2813 FE elements and 864 BE el-
ements; M3 with 6276 FE elements and 1536 BE el-
ements; M4 with 29098 FE elements and 4707 BE
elements) and four different techniques are employed
for evaluating the global vertical force: Mx employs
Maxwell tensor on SM eqns. (15) and (16); MxS still
applies Maxwell tensor but on ∂ΩFM eqns. (13) and
(14). FD1 and FD2, on the contrary, are finite differ-
ences techniques using a vertical fictitious displacement
of 0.001 mm 0.0001 mm respectively. A good conver-
gence towards the exact value is observed, even with the
first three very coarse meshes. The high accuracy of the
MxS technique on the third and fourth meshes, however,
has been obtained with an “optimal” surface SM placed at
a distance from Γ of the same order of magnitude as the
typical surface element size. The finite difference tech-
nique turns out to be almost insensitive to the entity of the
translation in a large range, numerical cancellations are
virtually absent with the values of translations adopted
and is hence a very robust approach.

4.2 Electromagnetic actuator

A second academic example is addressed in order to test
the efficiency of the proposed approach in the presence
of narrow gaps. The simple electromagnetic actuator of
Figure 1 is analysed. It consists of an inner cylindrical
core of length 100 mm and radius 20 mm, an external
hollow cylinder of length 100 mm and width 5 mm, sur-
rounded by a solenoidal winding simulated by 50 circular
wires with a gap of 1 mm w.r.t. the cylinder surface and
carrying an input current of I = 2 A each. The overlap
between the two cylinders is of 50 mm. The material of
the cylinders is assumed linear with µr = 500.
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Table 2 : Comparison of forces [N] on the inner core for
different gaps between the two cylinders

gap MxS FD Maxwell 2D

2 mm .00192 .00222 .00223
1 mm .00224 .00244 .00242
.5 mm .00212 .00251 .00253
.1 mm .00235 .00259 .00261

The gap between the cylinders is decreased progressively
from 2 mm to .1 mm.

Figure 1 : Coaxial cylinders of Electromagnetic actua-
tor: mesh adopted for the BEM-FEM approach

The results obtained are presented in Table 2 and are
compared with the 2D (axysimmetric) commercial code
Maxwell 2D. It is well know that 2D FEM codes can pre-
dict global forces with high precision, while this is not al-
ways the case in 3D. The accuracy of the 3D BEM-FEM
code with finite differences is excellent, even if the mesh
adopted is rather coarse (42291 FE elements and 11640
BE elements) and the gaps very thin. A displacement of
.1 mm has been employed for computing FD, but results
are almost insensitive up to 1 mm. As largely expected,
the accuracy of Maxwell tensor on the skin rapidly de-
cays even if results are still acceptable from an engineer-
ing point of view. The Mx approach has not been tested
in view of the difficulty of creating a separate surface in
the very thin gaps considered.

4.3 Low voltage industrial breaker

Low voltage industrial breakers are used to protect elec-
trical circuits from dangerous overloads. Particularly,
magneto-mechanical relays, like the one in Figure 2, are
composed of a mechanical actuator driven by a magnetic
force.

The latter originates from the magnetic field induced by
the electric current flowing into the line to be protected

Figure 2 : Breaker with conductor and hinges

Table 3 : Comparison of moments [Nm] around the
hinge axis

Mesh Mx MxS FD

M1 .317 .309 .316
M2 .319 .297 .315
M3 .32 .301 .319

and is typically contrasted by a tunable spring force. The
material behaviour is highly non-linear. The relative per-
meability is 667.7 for |H|< 238.7 A/m and progressively
decays to 1 at |H| ≥ 9.54105 A/m.

Three different meshes have been tested: M1 with 10653
FE elements and 4070 BE elements; M2 with 35079 FE
elements and 9264 BE elements; M3 with 124016 FE
elements and 22692 BE elements.

The upper ferromagnetic lamina (ΩFM) rotates around
the hinge axis as a consequence of sudden current peaks
in the conductor which is placed between the two dis-
joint parts of ΩF . The convergence of the non-linear
procedure to a relative residuum of 10−3 (with respect
to the rhs) is achieved in approximately 15 steps; each
step requires the solution of a linear system via GMRES
which converges to a relative residuum of 10−6 in ap-
proximately 50 iterations for the finest mesh.

The same techniques discussed for the hollow sphere in
Section 4.1 have been tested here in order to evaluate
the moment of magnetic forces with respect to the hinge
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Figure 3 : Finest mesh adopted for ΩF : original and
rotated position

axis. The gaps between different parts of ΩF still permit
to create an “optimal” SM for applying the Maxwell ten-
sor technique. However, this nonlinear example is par-
ticularly appealing for finite differences since the second
analysis (run after imposing the rotation of .001 rad to
ΩFM around the same axis) converges in only one step,
with a virtually unchanged global cost.

The results collected in Table 3 display a very consistent
behaviour of the approaches, with surprisingly small os-
cillations with respect to the mesh, even when applying
the Maxwell tensor technique on the skin (MxS).

5 Conclusions

A coupled fast Boundary Element - Finite Element ap-
proach for magnetostatic problems at low frequency has
been proposed, implemented and exploited for evaluat-
ing forces acting on movable ferromagnetic parts of in-
dustrial relays. The attention has been focused on two
different techniques having a common energy interpre-
tation: differentiation of co-energy and Maxwell tensor.

The adoption of finite differences for evaluating the vari-
ation if co-energy has been discussed. Its robustness has
been supported by three examples and competitivity with
respect to alternative techniques has been pointed out,
especially in the general case of non-linear material be-
haviour. In particular numerical cancellations have never
been remarked in all the examples tested.
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Appendix A: Material derivative formulas

Let a domain Ω undergo the continuous transforma-
tion y = ΦΦΦ(x, t) with associated transformation velocity
θθθ(x, t) = ΦΦΦ,t(x, t). Following classical concepts of con-
tinuum mechanics (see e.g. Bonnet (1999)) the material
(or Lagrangian) derivative of a scalar or tensor function
φ is defined as:

�
φ = φ,t +∇φ ·θθθ (19)

and yields the rate of variation of φ as attached to a ma-
terial particle. From eqn. (19):

(∇φ)� = ∇
�
φ−∇φ ·∇θθθ

Analogously, for a volume integral one has:

I(t) =
Z

Ω
φdV

�
I(t) =

Z
Ω

(
�
φ+φ∇·θθθ

)
dV (20)


