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On the NGF Procedure for LBIE Elastostatic Fracture Mechanics

L.S. Miers1 and J.C.F. Telles2

Abstract: This work aims at extending the concept
of the Numerical Green’s Function (NGF), well known
from boundary element applications to fracture mechan-
ics, to the Local Boundary Integral Equation (LBIE) con-
text. As a ”companion” solution, the NGF is used to re-
move the integrals over the crack boundary and is intro-
duced only for source points whose support touches or
contains the crack. The results obtained with the cou-
pling of NGF-LBIE in previous potential discontinuity
Laplace’s equation problems and the authors’ experience
in NGF-BEM fracture mechanics were the motivation for
this development.
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1 Introduction

Meshless methods are increasingly proving to be quite
accurate in the analysis of the most common problems
found in engineering applications. They can be very ef-
ficient, in terms of computer time, in solving problems
that need a great number of node repositioning during the
analysis, which can be more expensive than the analysis
itself when using mesh-based methods.

Normally, a meshless method is a mesh-free counter-
part of a well-established mesh-based method [Atluri and
Shen (2002); Atluri, Sladek, Sladek and Zhu (2000)] and
because of this, there is no reason to believe that the im-
provements made for the mesh-based procedures cannot
be implemented in their mesh-free versions.

In this work, the concept of the numerical Green’s func-
tion (NGF) for 2-D elastostatic fracture mechanics is in-
troduced in the local boundary integral equation (LBIE)
method, which has been brought into existence from the
boundary integral equation, basic to the boundary ele-
ment method (BEM). Many meshless fracture mechanics
applications can be recently found in the literature [Gao,
Liu and Liu (2006); Andreaus, Batra and Porfiri (2005);
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Sladek, Sladek, Krivacek and Zhang (2005)]. The NGF
for fracture mechanics was first used in a BEM approach
[Telles, Castor and Guimarães (1995)] during the last
decade and has recently been used for potential disconti-
nuity simulations, already applied to the LBIE, generat-
ing very good results [Miers and Telles (2005)].

The approximation scheme for the trial function used
here is the well-known moving least squares (MLS)
method, which is the most common alternative in the bib-
liography [Lancaster and Salkauskas (1981)]. The singu-
lar integrals are computed using Kutt’s quadrature [Breb-
bia, Telles and Wrobel (1984)] procedure, well-known
from previous BEM implementations.

2 LBIE for liner elasticity problems

Consider the following 2-D linear elasticity problem de-
fined within the domain Ω and boundary Γ,

σi j, j +b j = 0 (1)

where σi j is the stress tensor, bi is the body force and (),i

denotes the derivative with respect to xi. The boundary
conditions are

ui = ui on Γu

pi ≡ σi jn j = pi on Γp (2)

where the bar indicates prescribed values, respectively,
for displacements u and tractions p and Γu and Γp are the
parts of the boundary Γ where they are prescribed.

Using uG
i as test function, the weak form of Equation (1)

can be written as
Z

Ω
(σi j, j +b j) uG

i dΩ = 0 (3)

and integrating Eq.(3) by parts twice, the following ex-
pression is obtained:

−
Z

Ω
σG

i j, juidΩ +
Z

Γ
pG

i uidΓ =
Z

Γ
piu

G
i dΓ+

Z
Ω

biu
G
i dΩ

(4)
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Figure 1 : Sub-domains, boundaries, supports and the domains of definition of the MLS approximation

In the present case, uG
i is chosen to be the solution of

a unit load in an infinite plane containing cracks, to be
discussed later on. This solution satisfies the following
condition

σG
i j, j(ξ,x)+δ(ξ,x)ei = 0 (5)

where δ(ξ,x) is the Dirac delta function and ei is the unit
load vector on the xi direction. The test functions can be
rewritten as

uG
i = uG

kiek

pG
i = pG

kiek (6)

where uG
ki and pG

ki are, respectively, the i-th components
of displacements and tractions due to a unit load in the xk

direction.

Substituting Eqs.(6) and (5) in Eq.(3) leads to the so-
called Somigliana’s identity, which gives the values of
displacements in any point of the domain in terms of the
boundary values of displacements and tractions:

ui(ξ) =
Z

Γ
uG

i j(ξ,x)p j(x)dΓ−
Z

Γ
pG

i j(ξ,x)u j(x)dΓ

+
Z

Ω
uG

i j(ξ,x)b j(x)dΩ (7)

where ξ is the source point and x is the field (generic)
point.

If instead of the real domain Ω and boundary Γ of the
problem, a sub-domain Ωs and its boundary ∂Ωs located

Figure 2 : Definition of e θ, θ1 and θ2.

entirely inside Ω (see Fig.1) are considered, Eq.(7) be-
comes

ui(ξ) =
Z

∂Ωs

uG
i j(ξ,x)p j(x)dΓ−

Z
∂Ωs

pG
i j(ξ,x)u j(x)dΓ

+
Z

Ωs

uG
i j(ξ,x)b j(x)dΩ (8)

For a source point located on the global boundary Γ,
Eq.(8) can be rewritten as

αi j(ξ)ui(ξ) =
Z

Ls+Γs

uG
i j(ξ,x)p j(x)dΓ

−
Z

Ls+Γs

pG
i j(ξ,x)u j(x)dΓ+

Z
Ωs

uG
i j(ξ,x)b j(x)dΩ (9)

and considering two dimensions only, its matrix form is
as follows,

αu =
Z

Ls+Γs

uGpdΓ−
Z

Ls+Γs

pGudΓ+
Z

Ωs

uGbdΩ (10)
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Figure 3 : Superposition of effects

where

uG =
[

uG
11 uG

12
uG

21 uG
22

]
; pG =

[
pG

11 pG
12

pG
21 pG

22

]
;

u =
[

u1

u2

]
; p =

[
p1

p2

]
; b =

[
b1

b2

]
. (11)

and αi j (α) is a constant matrix that depends on the shape
of the boundary at ξ.

α(ξ) =

[
θ
2π − sin 2θ1−sin 2θ2

8π(1−ν)
cos2θ1−cos2θ2

8π(1−ν)
cos2θ1−cos2θ2

8π(1−ν)
θ

2π + sin 2θ1−sin2θ2
8π(1−ν)

]
(12)

where θ, θ1 and θ2 are defined in Fig.2 and

ν =
{

ν for plane strain
ν

1+ν for plane stress
(13)

In most situations found in current elastostatics literature
[Atluri, Sladek, Sladek and Zhu (2000), Vavourakis, Sel-
lountos and Polyzos (2006)], the functions ( )G adopted
are Kelvin’s fundamental solution for an infinite plane
plus a “companion” solution, whose sole purpose is to
vanish the fundamental displacements at Ls in order to
eliminate the integration of the traction terms over Ls.
This approach is not used here due to the built-in pres-
ence of the crack, which mathematically leads to another
term to be added to the Kelvin fundamental solution.

3 Numerical Green’s function for fracture mechan-
ics

Consider an infinite elastic plane with an unloaded crack
inside under the action of a unit point load applied at
ξ. The fundamental displacements and tractions for this
case can be calculated by the superposition shown in

Figure 4 : Crack openings

Fig.3, which mathematically reads

uG
i j(ξ,x) = u∗i j(ξ,x)+uc

i j(ξ,x)

pG
i j(ξ,x) = p∗i j(ξ,x)+ pc

i j(ξ,x) (14)

where ( )∗ refers to Kelvin’s fundamental solution
(Fig.3B) and ( )c indicates the complementary part
(Fig.3C).

According to [Telles, Castor and Guimarães (1995)], the
complementary part of the solution can be calculated as
follows

uc
i j(ξ,x) =

Z
Γi

p∗jk(x,ζ) · cik(ξ,ζ)dΓ(ζ)

pc
i j(ξ,x) =

Z
Γi

P∗jk(x,ζ) · cik(ξ,ζ)dΓ(ζ) (15)

where ζ is a point on Γi and cik(ξ,ζ) are the crack open-
ings (see Fig.4)

cik(ξ,ζ) = uc
ik(ξ,ζs)−uc

ik(ξ,ζi) (16)

which can be calculated by solving the following system
of equations

Sci j(ξ,ζ) = p∗i j(ξ,ζ) (17)
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Matrix S is square of dimension 2N (N is the number of
points on Γi) that depends only of the crack’s geometry.
This complete formulation can be seen in [Telles, Castor
and Guimarães (1995)].

Notice that the complementary part vanishes if no part
of the crack lies inside the integration boundary ∂Ωs.
Hence, only the nodes whose sub-domains contain part
or the whole crack have non-zero complementary parts.
For all other nodes the NGF degenerates to the simpler
Kelvin solution. Consequently, the burden of computing
the complementary part is avoided.

4 Moving least squares (MLS) approximation
scheme

The MLS scheme is by far the most used in meshless
methods to approximate the trial function uh(x). Its
definition will be briefly presented in this section and,
for more details, see [Lancaster and Salkauskas (1981),
Atluri and Shen (2002); Atluri, Sladek, Sladek and Zhu
(2000); Chen, Eskandarian and Oskard (2004)]. It has
the following form

uh(x) =
n

∑
i=1

φi(x)ûi = ΦΦΦT · û ∀x ∈Ωx;

xi = [xi,yi, zi]
T (18)

where Φ is the MLS shape function, û is the “fictitious”
nodal values of the trial function and n is the number of
nodes inside the domain of definition Ωx of the consid-
ered node. The domain of definition of a certain node x
is composed by the nodes who have x inside their sup-
port.The shape function is defined as

ΦΦΦT (x) = pT (x)A−1(x)B(x) or

φi(x) =
m

∑
j=1

p j
(
A−1(x)B(x)

)
ji (19)

where m is the size of the complete monomial basis p,
e.g.:

pT =

⎧⎨
⎩

[
1 x y

]
, linear basis: m = 3[

1 x y xy x2 y2
]
,

quadratic basis: m = 6

(20)

and

A(x) = PT W(x)P

B(x) = PT W(x) (21)

where

W(x) =

⎡
⎢⎢⎢⎣

w1(x) 0 . . . 0
0 w2(x)
...

. . .
0 wn(x)

⎤
⎥⎥⎥⎦ ;

P =

⎡
⎢⎢⎢⎣

pT (x1)
pT (x2)
...
pT (xn)

⎤
⎥⎥⎥⎦ (22)

wi(x) being the weight function associated with node i.
In this work a Gaussian function of the following form is
used

wi(x) =
e
−

(
di
ci

)2k

−e
−

(
ri
ci

)2k

1−e
−

(
ri
ci

)2k for 0≤ di ≤ ri

wi(x) = 0 for di ≥ ri (23)

where di = ||x – xi||, ci is a constant that controls the
shape of wi, ri is the size of the support of wi asso-
ciated with xi and k is a parameter here chosen as 1.
There are many other functions suitable for use in MLS
approximation, like cubic and quadric spline functions
[Atluri and Shen (2002); Atluri, Sladek, Sladek and Zhu
(2000); Chen, Eskandarian and Oskard (2004)], but for
many applications found in the literature, the best results
were obtained with the Gaussian function. The radius
of the supports is defined in order to guarantee that all
nodes contain at least m nodes in their domains of defi-
nition, keeping the discrete approach of the interpolation
scheme [Atluri and Zhu (1998)].

The derivative of φi with respect to xk is

φi,k =
m

∑
j=1

{
p j,k

(
A−1B

)
ji + p j

[
A−1B,k +

(
A−1)

,k B
]

ji

}
(24)

where(
A−1)

,k =−A−1A,kA−1 (25)
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Figure 5 : “Visibility” criterion adopted in presence of the crack

Once having a crack inside Ω, there is a discontinuity of
displacements between the regions divided by the crack.
Hence, the interpolation scheme must take this issue into
consideration. The way this is done in MLS is restricting
the support of the nodes by using a so-called “visibility”
criterion, as presented in Fig.5.

In this criterion, the crack is considered opaque to an ob-
server that lies on the considered node and only the nodes
inside its Ωx that can be seen are considered in the ap-
proximation.

5 Numerical implementation

Consider the parts of the global boundary Γ where the
prescribed values are displacements as Γu and the trac-
tion counterparts as Γp. The intersections of these parts
with the local sub-domains Ωs, for each source point (re-
defined as xi), are designated respectively as Γsu and Γsp.
Eq.(10) can then be rearranged, leading to the following
system of equations

αiui =
Z

Ls

uG(xi,x)p(x)dΓ−
Z

Ls

pG(xi,x)u(x)dΓ

+
Z

Γsu

uG(xi,x)p(x)dΓ−
Z

Γsp

pG(xi,x)u(x)dΓ

+
Z

Γsp

uG(xi,x)p(x)dΓ−
Z

Γsu

pG(xi,x)u(x)dΓ

+
Z

Ωs

uG(xi,x)b(x)dΩ (26)

where u(x) and p(x) are the prescribed displacements
and tractions. Substituting the trial function and its
derivatives by their MLS approximations, isolating the

unknown terms on the left-hand side, simplifying the no-
tation and rearranging leads to the following system of
equations

Kû = f←→
N

∑
j=1

Ki jû j = fi(i = 1,2, . . .,N) (27)

where

fi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R
Γsp

uGpdΓ−R
Γsu

pGudΓ−R
Ωs

uGpdΩ−αiui

where ui is known

R
Γsp

uGpdΓ−R
Γsu

pGudΓ−R
Ωs

uGpdΩ
where ui is unknown

(28)

and

Ki j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R
Γsq

pGφ jdΓ−R
Γsu

uGNDB jdΓ−R
Ls

uGNDB jdΓ
+

R
Ls

pGφ jdΓ where ui is known

R
Γsq

pGφ jdΓ−R
Γsu

uGNDB jdΓ−R
Ls

uGNDB jdΓ
+

R
Ls

pGφ jdΓ+αiφ j(xi) whereui is unknown

(29)

Here, D is the stress-strain matrix and

N =
[

n1 0 n2

0 n2 n1

]
; B j =

⎡
⎣ φ j,1 0

0 φ j,2

φ j,2 φ j,1

⎤
⎦ (30)

The system presented in Eq.(26) can be solved by any
conventional method, like Gauss elimination. Notice that
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Figure 6 : Geometry and node cloud of examples 1 and 2

Figure 7 : Crack openings: (a) example 1; (b) example 2

the solution of the equations system is a vector contain-
ing the fictitious values ûi, which must be post-processed
using Eq.(17) and its normal derivative in order to ob-
tain the real values of displacements and tractions at all
points.

The integrals involving pG(x) in Γsu have singularities of
order (1/r2), which are computed using Kutt’s quadrature
[Telles, Castor and Guimarães (1995)]. Other schemes
of integration applicable to the singular parts can also be
found in [Sladek, Sladek, Atluri and van Keer (2000)],
but due to its simplicity and accuracy, Kutt’s method has
been selected.

6 Examples

Three examples are presented in order to validate the
NGF-LBIE procedure and they are all based on the same

model (an axially loaded plate containing a crack). The
difference between them is the actual results analyzed.
In the first and second examples, the crack opening and
the σxx stresses in the crack neighborhood are presented.
In the last one, the stress intensity factor KI is the result
compared. For all examples presented, the relation (ri/ci)
for the MLS weight function is equal to 4.0. This value
can guarantee a good “decay” of w.

It can be seen that the adopted node cloud is denser in
the neighborhood of the crack, but without any node po-
sitioned right on it. The distribution of nodes, influenced
by the presence of the crack, can be uniform or not, but
the crack tips must have denser clouds near them because
of the natural difficulty in representing the behavior of
stresses in that region. Good results were obtained when
at least 10% of the total number of nodes is influenced by
the crack. In addition, displacement discontinuity values



On the NGF Procedure for LBIE Elastostatic Fracture Mechanics 167

(a)

(b)

Figure 8 : σxx stress: (a) example 1; (b) example 2

have been computed over the crack surfaces by simple
MLS extrapolations.

6.1 Crack opening and σXX stresses in the crack
neighborhood

The first and second examples analyzed are presented in
Fig.6 and the difference between them is only the value
of 2a, which for the first is 0.30 and for the second is
0.36. The nodes near the crack are equally distributed
along its length. In both examples the Young modulus
and Poisson’s rate are E = 10000 and ν = 0.33, and the
number of nodes N = 372. The results are compared
with a well-established BEM [Brebbia, Telles and Wro-
bel (1984)] code.

The results presented are the opening of the cracks
(Fig.7) and the σxx stresses around the cracks (Fig.8, be-
cause of the symmetry, only the superior-right quadrant
is shown). The results obtained by both methods were
almost the same and the differences are imperceptible in
Fig.8.

6.2 Stress intensity factor

Basically, this example is almost the same as the last two,
varying a little bit in geometry, as depicted in Fig.9. Dif-
ferently from the first example, the distribution of nodes
near the crack is not uniform, but the node density close
to the tips is still high. The results are compared with the
ones presented in [Telles, Castor and Guimarães (1995)].
For this example it is considered: E = 50000, ν = 0.2,
number of nodes N = 210.

The stress intensity factor KI is obtained here using the
following relation [Barra and Telles (1999)]

KI =
G
√

2π
4(1+ν)

np

∑
i=1

c11(ζi,ζ)
√

ri

ri
(31)

where G is the shear modulus, c11(ζi,ζ) is the value of
the crack opening at node ζi, ri is the distance between
ζi and the nearest crack edge and np=6 is the number of
nodes considered. The chosen positions of the nodes ζi

are presented in Fig.10, in intrinsic coordinates.

The comparison of the results obtained with this tech-
nique and those found with NGF-BEM (numerical
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Figure 9 : geometry and node cloud of example 3

Figure 10 : Position of ζi for KI calculation

Table 1 : Comparison of results
Method KI/K0 Error (%)
NGF-LBIE 1.182 0.51
NGF-BEM 1.1877 0.99
AGF-BEM 1.1871 0.94
estimated 1.176±g% -

Green’s function with BEM) and AGF-BEM (analytical
Green’s function with BEM) are presented in Table 1

In order to present the results in non-dimensional form,

they are divided by K0 = σ
√

πa, where σ is the applied
load and a is the half-length of the crack.

7 Conclusion

This work aimed at introducing the concept of the NGF
for fracture mechanics into the context of the LBIE
method. Here the LBIE formulation was presented for
the elastostatic problem, as well as the procedure for ob-
taining the NGF for fracture mechanics and the MLS ap-
proximation scheme used to interpolate the trail function.

The results produced illustrate the accuracy of the NGF-
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LBIE procedure and encourage new developments in this
area of research.
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