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Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method For
Elasticity Problems
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Abstract: The Meshless Local Petrov-Galerkin
(MLPG) mixed collocation method is proposed in this
paper, for solving elasticity problems. In the present
MLPG approach, the mixed scheme is applied to inter-
polate the displacements and stresses independently, as
in the MLPG finite volume method. To improve the
efficiency, the local weak form is established at the nodal
points, for the stresses, by using the collocation method.
The traction boundary conditions are also imposed into
the stress equations directly. It becomes very simple and
straightforward to impose various boundary conditions,
especially for the high-order PDEs. Numerical examples
show that the proposed MLPG mixed collocation method
possesses a stable convergence rate, and is more efficient
than the other MLPG implementations, including the
MLPG finite volume method.
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1 Introduction

The meshless methods have inherent advantages over the
element-based approaches, due to the elimination of the
mesh and the high-order continuity of the trial functions.
Therefore, the meshless methods have become an impor-
tant tool in computational solid mechanics, especially for
solving the problems with severe distortion, discontinu-
ities, and moving boundaries. Tremendous efforts have
been made in the research and practice of the meshless
approaches, such as the smooth particle hydrodynam-
ics (SPH) and the element free Galerkin method (EFG).
However, these approaches require certain meshes or
background cells for the purpose of the integration of
the weak form and therefore are not truly meshless meth-
ods. Recently, Atluri and Zhu [Atluri and Zhu (1998);
Atluri (2004)] proposed the truly Meshless Local Petrov-
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Galerkin (MLPG) approach, in which both the trial func-
tions and test functions are constructed on local subdo-
mains, and no background integration cells are required.
In the MLPG framework, the choice of the trail and test
functions is flexible, and thus various meshless methods
can be constructed by different combinations of the trial
and test functions.

Generally speaking, the meshless method is intrinsi-
cally more expensive than the traditional element-based
method such as the finite element method. One source
of the high expense lies in the fact that the meshless
method usually involves more nodes for interpolation,
and thus results in a larger bandwidth of the stiffness
matrix than the finite element method. In addition, the
shape functions formed in the meshless method usu-
ally have more complicated rational form, and thus re-
quire more Gaussian points for accurate integration. The
complexity and high computational expense prevent the
meshless method from fully fulfilling its potential. The
MLPG method provides the flexibility in the choice of
the test and trial functions and therefore makes it pos-
sible to simplify the meshless implementation. For ex-
ample, in Atluri et al. (2004), the Heaviside function
is adopted as the test function; thus the domain inte-
gration in the local weak form is avoided, and only
boundary integration is required. Furthermore, the so-
called “mixed” interpolation algorithm, wherein both the
displacements and the displacement gradients are inter-
polated using the same shape functions, independently,
has recently been proposed [Atluri, Han, and Rajendran
(2004)]. The compatibility between the displacements
and the displacement-gradients is enforced only at the
nodal points. Through these efforts, the continuity re-
quirement on the trial functions is reduced by one order
and the complex second derivatives of the shape function
are avoided. High-performance implementations of the
MLPG mixed finite volume method (MFVM) were re-
ported for elasto-static problems [Atluri, Han, Rajendran
(2004), Han, Atluri (2004a)], elasto-dynamic problems
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[Han, Atluri (2004b)], nonlinear problems [Han, Rajen-
dran, Atluri (2005)], and dynamic problems with large
deformation and rotation [Han et al. (2006); Liu et al.
(20006)].

The collocation method is attractive, because of its ease
of implementation and efficiency. Compared with the fi-
nite volume method, the traditional collocation method
suffers from the instability due to the ill-conditioned
system equations formed by enforcing the balance of
momentum and traction boundary conditions at nodes.
Onate et al. [Onate et al. (2001)] proposed a stabiliza-
tion technique by introducing new terms in both the gov-
erning equations and the traction boundary conditions.
However, these artificial terms serve only for the stabi-
lization purposes, and are only suitable for some special
problems.

In the present paper, we propose a MLPG mixed collo-
cation method and hope to further improve the compu-
tational efficiency and ease of the meshless implemen-
tation. In the present MLPG collocation approach, the
moving least squares (MLS) is adopted to construct the
trial functions from discrete nodes directly, and thus no
mesh or the nodal connectivity is required. The “mixed”
interpolation is adopted in the present method, namely,
both the displacements and stresses are interpolated us-
ing the same shape functions independently, and the
compatibility condition is enforced only at the nodal po-
sitions. The system equations are established at the nodes
through the collocation method. Both the natural and
essential boundary conditions are applied directly in the
system equations, which are established in stress and dis-
placement space from the mixed interpolation. Several
numerical examples are presented, including the patch
test, a cantilever beam under a transverse load, a curved
beam under a transverse load, and a infinite plate with a
circular hole under an uniaxial load. The computational
results are compared with the theoretical predictions to
demonstrate the accuracy of the MLPG mixed collo-
cation method. Compared with the MLPG Finite Vol-
ume Method (MFVM), the proposed MLPG collocation
method is not only easier to implement but also achieves
more efficiency. In the present study, only elasto-static
problems are presented. It is expected that the general
MLPG collocation framework will be implemented in a
variety of problems including large deformations and dy-
namics, in the very near future.
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2 Meshless Interpolation

Among the available meshless approximation schemes,
the moving least squares (MLS) is generally considered
to be one of the best methods to interpolate random
data with a reasonable accuracy, because of its complete-
ness, robustness and continuity. The MLS is adopted
in the current MLPG collocation formulation, while the
implementation of other meshless interpolation schemes
is straightforward within the present framework. For
completeness, the MLS formulation is briefly reviewed
here, while more detailed discussions on the MLS can be
found in Atluri (2004).

With the MLS interpolation, a function u(x) can be
approximated over a number of scattered local points
(nodes) {x;}, I =1,2,...,m) as
u(x) =p’ (x)a(x) (1)
where p” (x) is a monomial basis, and a(x) is a undeter-
mined coefficient vector. The linear monomial basis can
be expressed as p’ (x) = [1,x1,x,] for two-dimensional
problems and p” (x) = [1,x,x2,x3] for three dimensional
problems, respectively. The coefficient vector a(x) is de-

termined by minimizing the weighted discrete L, norm,
defined as

2

where wy(x) are the weight functions and i are the fic-
titious nodal values. Once the coefficient vector a(x) is
determined and substituted into Eq. (1), the function u(x)
can be approximated by these nodal values as

3)

where i/ is the virtual nodal value at node 7, and W/(x) is
the shape function. The detailed derivations and formu-
lations can be found in Atluri (2004).

It should be noted that generally speaking, the MLS
shape function does not have the Dirac Delta property,
namely

~1

ux) = 3 ()i £
J=1

u]

“)



Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method For Elasticity Problems

143

However, with the mapping relationship between the vir-
tual and true nodal values [Eq. (4)], it is straightforward
to establish the trial functions in the true nodal values
space as

&)

The detailed formulations and discussions for the MLS
interpolation on the true nodal values can be found in
Atluri (2004). It is worthy to mention that the weight
function w;(x) defines the range of the influence of node
1. Normally it has the radial form with a compact support
size. A fourth order spline weight function is used in the
present study. The node whose influence region covers
the point x is called the neighbor node of x. To obtain
non-singular shape functions, there are at least m linearly
independent neighbor nodes for the point x. Here m is
related with the order of the monomial basis ¢ as

|

3 MLPG Mixed Collocation Method

(t+1)(t+2)/2 for 2D

(t+1)(t+2)(t+3)/6 for3D (©6)

In this section, we propose the MLPG collocation
method to solve linear elastic solid mechanics problems.

3.1 Linear Elasticity

For a linear elastic body €2 undergoing infinitesimal de-

formations, the equations of balance of linear momentum %i{X

can be written as

6;j+fi=0 @)
with the boundary conditions

u;=mu;onl,

li:Gijl’lj :;i on F[ (8)

In the above equations, f; is the body force; %; and ;
are the prescribed displacements and tractions on the dis-
placement boundary I',, and traction boundary I, respec-
tively. n; is the outward unit normal to the boundary TI".
In the present study, the isotropic linear elastic constitu-
tive relation is assumed, namely the stress tensor o;; is
linearly related to the strain tensor €;; as

€)

Oij = Cijki€ki

with Cjji; is the elasticity tensor that has the following
format for isotropic materials

Cijkt = M0;j 8 -+ 11 (88 s + 818 ) (10)
with A and u are the Lame’s constants. For infinitesimal
deformations, the strain tensor is related to the displace-
ment u; as

(sz+”]z) (1T)

NI>—‘

81']'

3.2 MLPG Mixed Collocation Method

Within the general MLPG framework, one may choose
the Dirac Delta function as the test function for the un-
symmetric local weak form, and apply it to each nodal
point. The momentum balance equation is enforced at
nodal points, as

) =0 N

0ijj(x )+f forl=1,2,..., (12)
where N is the number of total nodes in the solution do-

main.

In the present mixed scheme, we interpolate the displace-
ments u;(X) and the stresses 6;;(x) independently using
the same shape functions obtained from the MLS approx-
imation [Eq. (3)], namely

m
— Z 04
J=1

(13)

cij(x 14)

\

- Lo

Here, u and (5’ are the nodal displacements and stresses
at node J, respectlvely Upon substituting the stress in-
terpolation Eq. (14) into Eq. (12), we have

Zo

ol +fi(xl)=0; for/=12,..,N (15

It is clearly shows that there are no second derivatives of
the shape functions involved in the system equations due
to the independent interpolation of stress variables. It is
well known that the meshless approximation, specifically
the MLS, usually has very complex form of the second
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derivatives. Therefore, by adopting the mixed interpola-
tion scheme, the time-consuming calculation of the sec-
ond derivatives of the MLS shape functions is avoided,
and the efficiency is improved. Secondly, the require-
ment of the continuity of the shape functions is reduced
by one-order and thus a smaller nodal influence size can
be chosen to speed up the calculation of the shape func-
tions. We will show in the following numerical examples
that the first order polynomials basis is usually adequate
for the elasticity problems. Finally, the adoption of the
stress variables in establishing the system equations pro-
vides a way to apply the traction boundary conditions di-
rectly in the system equations. We will make a detailed
discussion on the application of boundary conditions in
the following session.

From the Eq. (15), the number of equations is less than
the number of the independent stress variables, because
the nodal stress variables are more than the displace-
ment ones. Therefore, we need to establish some more
equations in addition to Eq. (15) through the stress-
displacement relation [Eq. (9) and (11)]. The standard
collocation method may be applied to enforce the stress-
displacement relation at each nodal point. For linear elas-
ticity problems, this relation can be written as

1
—Cija [y (X") 4w (x")] (16)

o;j(x') = 3
and with the interpolations of the displacements [Eq.
(13)] and stresses [Eq. (14)], we have

1 m
oij = 5Cija 2, (@) (x g + @ (x )] (17)
J=1

Finally, we can rewrite the system equations of Eq. (15)
and (17) as

K, S=f, (18a)

S=T-u (18b)
Here, f, is the body force vector; S and u are the
nodal stress component vector and the nodal displace-
ment component vector, respectively. The number of the
equations is equal to the number of the total degrees of
freedom (nodal displacements and stresses). Therefore, it
is solvable with properly proposed boundary conditions.
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3.3 Boundary Conditions

The traction boundary conditions are enforced at each of
the traction boundary nodes K, as:

forK=1,2,....,N; (19)

K.
iy =i
with Nj is the number of the traction boundary nodes,
and nX is the outward normal at the boundary node K.
Eq. (19) can be rewritten in term of the stress component
vector, as
MK .SK =t fork=1,2,...,N, (20)
where MX is the general coupling matrix between the
stress components, representing the traction boundary
conditions.

’
X

Figure 1 : The local coordinates system

If the normal n¥ is parallel to the global coordinates, MX
is a diagonal unit matrix. For the nodes with the normal
not being parallel to the global coordinates, a local co-
ordinate system can be defined, by taking the local x’ f
direction coinciding with the outward normal direction
nX, as shown in Fig. 1. Eq. (20) can be rewritten in the
local coordinate system,

K

MY §* =, fork=1,2,...N, (21)
where
S =K.k, M* =MK.(QX)'and QX the local

transformation matrix between the coordinates. With the
use of the local coordinate system, we can represent the
known stress degrees of freedom (DOFs) as S’y = t and
the other unknown stress DOFs as S,. Egs. 3.3 and (21)
can be written for the system equations as,

K;,-Q 'S +K;, S, =1, (22a)



Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method For Elasticity Problems

145

I B

A ¥ Fi A

Figure 2 : The patch test: a rectangle under uniform tension. The two nodal configurations

Si1=Q-Ti-u=T,-u (22b)
SQ = T2 -u (220)
and

S =t (23)

Thereafter the traction boundary conditions in Eq. (23)
can be enforced by imposing it into Eq. (22)b, by using
the penalty method, as

(1 —I—OC)Sll :T,1 ‘u+tot 24)
or

S = iar % % (25)
T (1+a)

where o is the penalty number which is set to be 10°
in the present study. By substituting Eq. (25) into Eq.
(22)a, the system equations are expressed in term of the
displacement DOFs,

Ku=f (26)
where
P . _1. , .
K=K; -Q [(l—l—oc)T]] +Ky, - T
P p— . _1. (x N
f=1-K; -Q [(l—l—oc)t] 27

It should be noted that the transformation of the system
equations is only related to the stress components related
to the traction boundary node, and is done locally. The

transformation matrix Q is not formed explicitly. There-
fore, this transformation process is numerically efficient.
By imposing the displacement boundary conditions into
Eq. 4, the system equations can be solved with the dis-
placement DOFs [Han and Atluri (2004a)].

4 Numerical Examples

In this section, several 2D numerical examples, which
are solved by the proposed MLPG mixed collocation
method, are presented. The examples include: 1) the
patch test, 2) a cantilever beam under a transverse load,
3) a curved beam bent by a force at the end, and 4) an
infinite plate with a circular hole under uniaxial load.

4.1 The Patch Test

The standard patch test: a rectangle under uniform ten-
sion load (see Fig. 2) is solved as the first example. The
material parameters are as follows: the Young’s modulus
E = 1.0, and the Poisson’s ratio v = 0.25. Plane stress
condition is assumed for the 2D problem and 9 nodes are
used. Two nodal configurations are used for the testing:
one is regular, and another is irregular, as shown in Fig.
2. The proper displacement constraints are applied to the
bottom edge.

The simulation results show a linear displacement on the
lateral edges, and constant displacement on the top edge;
the normal stress in the loading direction is constant and
there is no shear stress in the solution domain.

4.2 Cantilever Beam

In the second example, we solve a cantilever beam under
a transverse load at the end, as shown in Fig. 3. For this
problem, the exact displacement solution for plane stress
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Figure 4 : The nodal configuration of the cantilever beam
for d=1.0
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Figure S : The normalized vertical displacement of the
cantilever beam under the end load

is given in Timoshenko and Goodier (1970) as

Uy = —% [3x(2L—x)+ (2+v) (" = ?)]
Uy = % [x* (BL—x) +3v(L—x)y* + (4 +5v) *x]

(28)

where the moment of inertia I = ¢* /3.

The problem is solved using the MLPG collocation
method under plane stress condition with the following

constants: P=1, E=1,c=2, L =24, and v = 0.25.
Regular uniform nodal configurations with nodal dis-
tances, d, of 1.0, 0.5, and 0.25 are used. The correspond-
ing numbers of nodes are 125, 441, and 1649, respec-
tively. The nodal configuration for d = 1.0 is shown in
Fig. 4.

This problem is simulated using the MLS with the first
order polynomial basis. The support size is chosen as
1.15d. Fig. 5 shows the normalized vertical displacement
along the central line of the beam for the nodal configura-
tion with d = 1.0. The simulation prediction agrees with
the analytical solution very well. The relative error of the
maximum vertical displacement is less than 0.6% for this
relatively coarse nodal configuration (125 nodes).

The support size (the size of the influence domain) is a
very important parameter in meshless methods. It is re-
lated to both the accuracy of the solution, as well as the
computational efficiency. On one hand, a too smaller
support size will cause the meshless approximation al-
gorithms singular, since enough neighbor nodes are not
included. On the other hand, a too large support size
leads to the loss of the interpolation locality. In the cur-
rent study, circular support domains are adopted for the
2D problems, with the radius being defined as the sup-
port size. Four support sizes are chosen for the cantilever
beam problem and they are defined to be proportional to
the nodal distance as 1.15, 1.3, 1.5, and 1.8. Two nodal
configurations are used (d =1.0 and 0.5) for the current
simulations. Fig. 6 shows that accurate results are ob-
tained for small support sizes and the results are also less
sensitive to the support size when it is small. This obser-
vation is encouraging since small support size makes the
present method even more efficient by speeding up the
MLS approximation and reducing the bandwidth of the
stiffness matrix.

The convergence rate is studied with three nodal configu-
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Figure 6 : The influence of the support size in the can-
tilever beam under the end load
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Figure 7 : The convergence rate in the cantilever beam
under the end load

rations (d =1.0, 0.5, and 0.25) and the support size 1.15d.
The maximum relative errors of the vertical displacement
are used for showing the convergence rate in Fig. 7.
The results clearly show that a stable convergence is ob-
tained for the present MLPG method. The relative error
is less than 0.6% for the coarse nodes (d =1.0) and about
0.2% for the fine nodal configuration (d =0.25). The
convergence rate of the same problem using the MLPG
Finite Volume Method (MLPG FVM) [Atluri, Han, Ra-
jendran (2004)] is also shown in this figure. The test
size in the MLPG FVM simulations is set to 0.6d as sug-
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Figure 8 CPU Time comparison between

MLPG/Mixed finite volume method and MLPG/Mixed
collocation method

gested by the authors, for the best results. As expected,
more accurate results are obtained using the MLPG FVM
than the current MLPG collocation method. However,
the increase in the accuracy of MLPG FVM is achieved
with an increase in the computational expense. In the
FVM, a boundary integration of the local weak form is
required, and a special numerical quadrature technique
and many Gaussian points are critical for the accurate
calculation of the boundary integration involving com-
plex forms of shape functions. Fig. 8§ compares the CPU
time requirement of the current MLPG method, with the
MLPG FVM. The CPU time shown in Fig. 8 is nor-
malized so that the maximum value in this figure is 1.
From the comparison, it is clearly seen that the present
MLPG collocation method is much more efficient than
the MLPG FVM. The CPU times of the FVM are over 10
times larger than the corresponding times of the present
MLPG collocation method. In computational mechanics,
there is always a compromise between accuracy and effi-
ciency. The proposed MLPG mixed collocation method
achieves a reasonable accuracy with stable convergence
rate, with much less computational expense. It should be
mentioned that the MLPG FVM used here for compari-
son purposes, is recognized as a very efficient meshless
implementation, and it even out-performs the finite ele-
ment method for some problems [Han, Atluri (2004b)].
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Figure 9 : A curved beam under an end load

4.3 Curved Beam

In this example, a curved beam under an end load is used
to evaluate the present method. The problem is shown in
Fig. 9, for which the following exact displacement solu-
tion for plane stress is given in Timoshenko and Goodier
(1970):

Uy =

P [ sin® (D(l —v)logr+A(1—3v)r* + @)
E | —2D6cosB+ K sin+ Lcos

CMES, vol.14, no.3, pp.141-152, 2006

Figure 10 : The nodal configuration of the curved beam
for d=1.0
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(29) placement of the curved beam under the end load

Uy =
P —cos@(—D(l—v)logr—l—A(S—l—v)rz—l-@
E | 2DOsin®+ K cos®+ Lsin®
where the constants are defined as
2 42 2, 12 b
N=a"—b"+(a —l—b)logz
1 a*b?
A=—B=-"—
2N 2N
2, 12
p= - _pn
2N
B(1
K_—(D(l—v)logro—l—A(l—3v)r(2)+7( ;I—v))
,
0
b
ro=% (30)

2

The problem is solved for the plane stress condition, with
P=1,E=1,a=13,b=17,and v=0.25. Regular uni-
form nodal configurations with nodal distance, d, of 1.0,
0.5 and 0.25 are used. The corresponding numbers of the
nodes are 125, 441, and 1649. The nodal configuration
of d = 1.0 is shown in Fig. 10.

For the curved beam, the displacement and stress fields
are more complicated than those in a straight beam, with
many non-polynomial terms. However the MLS interpo-
lation with the first order monomials basis is still used
to solve this problem with a support size of 1.15d. The
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Figure 12 : The influence of the support size in the
curved beam under the end load

horizontal and vertical displacements for the nodal con-
figuration with d = 0.5 are shown in Fig. 11 and a good
agreement with the analytical solutions is obtained.

The influence of the support size is shown in Fig. 12,
with the nodal distance d = 0.5 and support size 1.15d.
Here and in the following discussion of the curved beam
problem, the relative displacement error is used to char-
acterize the computational error. The relative displace-
ment error is defined as

3D

Here, u, and u, are the analytical displacement compo-
nents at the center of the end of the beam, and are calcu-
lated using Eq. 4.4; while u, and u, are the correspond-
ing displacement components obtained by the MLPG
mixed collocation simulations. It is observed that better
results are obtained for small support sizes, and the com-
putational accuracy is not sensitive when the support size
is small. This is consistent with the support size effect
observed in the straight beam simulations, and again it is
encouraging since small support size means less neigh-
boring nodes and will speed up the computation. 13
shows convergence rate of the curved beam problem with
three nodal configurations (d =1.0, 0.5, and 0.25), with
the support size of 1.15d. A stable and monotonic con-
vergence rate is observed for the curved beam with less
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Figure 13 : The convergence rate of the curved beam
under the end load
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Figure 14 : An infinite plate with a circular hole under a
uniaxial load

than 0.2% error for the finest nodal configuration.

4.4 Infinite Plate with a Circular Hole

Finally, we show the computational results of an infinite
plate with a circular hole subjected to a uniaxial traction
P at infinity as shown in Fig. 14. The exact solutions for
stresses and displacements for this problem are

2

a
o, =P{1-=
X { r2

6, = —P a’
y = r2

[% cos (20) +cos (46)] + % cos (40) }

B cos (28) — cos (46)] + % cos (40) }

21 . 3a*
Oy = —P{i—2 [5 sin (20) + sin (46)] — %sm (46)}
(32)
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Figure 15 : : The nodal configurations and boundary
conditions of the infinite plate with a circular hole (a)
389 nodes and (b) 822 nodes
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respectively. In the above equations, G is the shear mod-
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Figure 16 : The horizontal displacement along y = Ofor
the two nodal configurations
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Figure 17 : The normal stress 0, along x = 0 for the two
nodal configurations

ulus and ¥ = (3 —v)/(1 +v) with v the Poisson’s ratio.
Due to symmetry, only the upper right square quadrant
of the plate is modeled [see Fig. 14]. The edge length
of the square is Sa,with a being the radius of the circular
hole. Symmetry boundary conditions are imposed on the
left and bottom edges and the tractions obtained from the
analytical solution [Eq. 5] are applied to the top and right
edges as shown in Figure 15.

The problem is solved using the MLPG mixed colloca-
tion method, under a plane stress condition, with the fol-
lowing constants: P =1, E = 1, and v = 0.25. Two nodal
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configurations with 380 and 822 nodes, respectively, are
used and shown in Figure 15. The MLS with linear basis
is used in the simulation and the support size is 1.65d ,
with d being the average nodal distance. The horizon-
tal displacement u, along the bottom edge (y = 0), and
the stress component G, along the left edge (x = 0) are
shown in Figure 16 and Figure 17, respectively. Com-
pared with the analytical solutions, good agreements are
obtained for both the displacements and stresses.

5 Closure

The MLPG mixed collocation method is developed
through the MLPG framework in this paper. The
mixed interpolation is adopted in the current study with
the Moving Least Squares (MLS) scheme, namely the
stresses and displacements are interpolated using the
same shape functions independently. The collocation
method is adopted for establishing the system equations.
By performing a coordinate system transformation, the
traction boundary conditions are converted into stress
values on the boundary nodes, and therefore can be ap-
plied to the system equations directly. As a result, a very
simple formulation is achieved, and the implementation
is easy and straightforward. For elasticity problems, only
the first derivatives of the shape functions are required,
and no integration either over local domain or over the lo-
cal boundary is needed. Therefore the continuity require-
ment on the trial functions is reduced by one-order; and
the use of complex second derivatives of the shape func-
tions are avoided. This not only improves the computa-
tional efficiency, but also results in ease of implementa-
tion. The numerical examples show that the first order
monomials basis is adequate, even for the complicated
curved beam problem. When the support size is kept
small, more accurate and less sensitive results are ob-
tained. The combination of first order MLS, and a small
support size, requires only a few neighboring nodes, and
thus will speed up the computation.

The intrinsic complexity and high computational expense
are the main barriers for the meshless approaches to fully
fulfill their application potentials. The MLPG mixed col-
location method is presented to keep a balance between
the accuracy and efficiency. Although it is demonstrated
here only for static problems, in which the global system
equations are required to be formed, the present method
is even more efficient for solving the dynamic transient
problems by using the explicit algorithms [Han, Liu, Ra-

jendran and Atluri (2006) and Liu, Han, Rajendran and
Atluri (2006)]. Since the traction boundary conditions
can be imposed directly, the present MLPG mixed collo-
cation method can be used in conjunction with iteration
solvers, for better performance. The numerical examples
presented in this paper demonstrate that the proposed
MLPG mixed collocation method is capable of solving
various solid mechanics problems efficiently with rea-
sonable accuracy. The convergence studies in the nu-
merical examples demonstrate that the present method is
stable.
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