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Sequential Limit Analysis of Rotating Hollow Cylinders of Nonlinear Isotropic
Hardening

S.-Y. Leu1 and J.T. Chen2

Abstract: Plastic limit angular velocity of rotating hol-
low cylinders made of the von Mises materials with non-
linear isotropic hardening is investigated numerically and
analytically in the paper. The paper applies sequential
limit analysis to deal with the rotating problems involv-
ing hardening material property and weakening behavior
resulted from the widening deformation. By sequential
limit analysis, the paper treats the plasticity problems as
a sequence of limit analysis problems stated in the up-
per bound formulation. Rigorous upper bounds are ac-
quired iteratively through a computational optimization
procedure with the angular velocity factor as the objec-
tive function. Especially, rigorous validation was con-
ducted by numerical and analytical studies of rotating
hollow cylinders in terms of the plastic limit angular ve-
locity as well as the onset of instability. It is found that
the computed limit angular velocities are rigorous upper
bounds and agree very well with the analytical solutions.

keyword: Sequential limit analysis, Plastic limit angu-
lar velocity, Rotating cylinder, von Mises criterion, Non-
linear strain-hardening, Instability.

1 Introduction

Plastic limit angular velocity of cylinders is useful in-
formation requested frequently for an optimal struc-
tural design. Much effort, see Davis and Connelly
(1959), Lenard and Haddow (1972), Nadai (1950), Rim-
rott (1960), has been made to such important topics by in-
vestigting the elastic-plastic behavior and the fully plastic
state. Similar attention, see Alexandrova and Alexandrov
(2004), Eraslan and Argeso (2002), Güven (1997), Ma,
Hao and Miyamoto (2001), Orcan and Eraslan (2002),
is also paid to the limit angular velocity of disks. How-
ever, efficient and accurate computational optimization
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procedures for investigating such problems of optimiza-
tion feature are still in need for general and effective con-
siderations of cylinders or disks optimal design.

As it is well known that limit analysis is effective to
set a rigorous bound on the asymptotic behavior of an
elastic-plastic material by the lower bound or the up-
per bound theorem. Moreover, limit analysis seems to
play the role of a snapshot look at the structural per-
formance of rotating cylinders by efficiently providing
the limit solution based on only simple input data. On
the other hand, it is sequential limit analysis with a se-
quence of limit analysis problems conducted sequentially
suitable for the large deformation analysis, see Corradi,
Panzeri and Poggi (2001), Corradi and Panzeri (2004),
Huh and Lee (1993), Huh, Lee and Yang (1999), Hwan
(1997), Leu (2003), Leu (2005), Yang (1993), with up-
dating local yield criteria in addition to the configuration
of the deforming structures while conducting a sequence
of limit analysis problems sequentially. In each step and
therefore the whole deforming process, rigorous upper
bound or lower bound solutions are supposedly acquired
sequentially as to bound the real limit solutions.

Actually, not only can we establish theoretically the
equality relation between the greatest lower bound and
the least upper bound by duality theorems, see Yang
(1991a), Yang (1993), but also we can acquire numer-
ically the limit results efficiently and accurately by the
use of finite element methods, see Reddy (1993), to-
gether with mathematical programming techniques, see
Luenberger (1984) , Zhu, Liu, Wang and Yu (2004).
Furthermore, it is possible to assure the accuracy of
limit analysis or sequential limit analysis and extend its
applicability to more complex problems in engineering
applications with the aid of finite-element methods to-
gether with an appropriate numerical algorithm. Espe-
cially, a combined smoothing and successive approxi-
mation (CSSA) algorithm presented by Yang (1982) has
been utilized successfully, with satisfactory results at a
modest cost, in certain problems of limit analysis, see
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Huh and Yang (1991) and sequential limit analysis, see
Huh and Lee (1993), Huh, Lee and Yang (1999), Hwan
(1997), Leu (2003), Leu (2005), Yang (1993). Its un-
conditional convergence and numerical accuracy have
been demonstrated by practical applications. It is noted
that sophisticated constitutive models are considered to
model more realistic materials, see Haghi and Anand
(1991), Karšaj, Sansour and Sorić (2004), Le Tallec
(1986), Liu (2005). Accordingly, its convergence anal-
ysis was recently performed and validation was also con-
ducted rigorously while extending the CSSA algorithm
further to sequential limit analysis of viscoplastic prob-
lems, see Leu (2003), or involving materials with nonlin-
ear isotropic hardening, see Leu (2005).

The paper aims to apply sequential limit analysis to in-
vestigate the plastic limit angular velocity of rotating hol-
low cylinders of the von Mises materials with nonlinear
isotropic strain-hardening. By sequential limit analysis,
the paper is to treat the plasticity problems as a sequence
of limit analysis problems stated in the upper bound for-
mulation seeking the least upper bound of the plastic an-
gular velocity involving the prescribed action of internal
and/or external pressure. Especially, it implies the nu-
merical challenges facing the treatment of material hard-
ening and weakening behavior induced by the widening
deformation.

2 Problem formulation

2.1 Lower bound formulation

The hollow cylinder is considered to rotate about its axis
at constant angular velocityω. It is assumed that the
angular velocity varies very slowly such that the angu-
lar acceleration is negligible. We consider the plane-
strain problem with the domain D consisting of the static
boundary ∂Ds and the kinematic boundary ∂Dk. The
problem is to seek the maximum allowable angular ve-
locity factor ρω2 (σ) under constraints of static and con-
stitutive admissibility such that

maximize ρω2 (σ)
subject to ∇ ·σ+ρω2 ⇀r = 0 in D

σ ·⇀n = qs1

⇀
t s1 on ∂Ds1 (1)

σ ·⇀n = qs2

⇀
t s2 on ∂Ds2

‖σ‖∨ ≤ σY (ε) in D

∂Ds = ∂Ds1∪∂Ds2

where ρ is the constant material density of the rotating
hollow cylinders, ω is the angular velocity, ρω2⇀r is the
centrifugal force with ⇀r the position vector, ⇀n indicates
the unit outward normal vector of the boundary and the
traction vectors ⇀qs1, ⇀qs2 are the prescribed loads on the
boundaries ∂Ds1 , ∂Ds2, respectively; ‖σ‖∨denotes the
von Mises primal norm on stress tensor σ and the current
yield stress σY is a function of the equivalent strain ε de-
scribing isotropic hardening. Therefore, this constrained
problem is to sequentially maximize the angular velocity
factor ρω2 (σ), representing the magnitude of the driving
load, in each step corresponding to σY (ε). Obviously, the
problem statement leads naturally to the lower bound for-
mulation seeking the greatest lower bound on statically
admissible solutions.

2.2 Upper bound formulation

Now we are to transform the lower bound formulation to
the upper bound formulation as similar to the previous
work of Huh and Yang (1991). Equilibrium equations
can be restated in a weak form asZ

D

⇀u ·
(

∇ ·σ+ρω2 ⇀r
)

dA = 0 (2)

where ⇀u is a kinematically admissible velocity field. In-
tegrating by parts, using the divergence theorem and im-
posing static boundary conditions, we may rewrite Eq.
(2) to give an expression for ρω2 (σ) as
Z

D

⇀u · (ρω2⇀r)dA = ρω2 (σ)
Z

D

⇀u ·⇀rdA

=
Z

D
σ : ε̇dA−

Z
∂Ds1

⇀u ·⇀qs1dS−
Z

∂Ds2

⇀u ·⇀qs2dS (3)

where ε̇ is the strain rate tensor. Since ⇀u appears homo-
geneously and linearly in Eq. (3), we can normalize the
equation by setting the following normalization
Z

D

⇀u ·⇀rdA = 1 (4)

which is to be treated as one of constraints. Note that,
the normalization condition involving the velocity field
is imposed on the whole domain. In the previous works,
e.g. Huh and Yang (1991), Leu (2003, 2005), the nor-
malization condition was, in stead, simply related to the
velocity filed prescribed along some boundaries.

Notice that the power σ : ε̇ is nonnegative, it implies σ :
ε̇ = |σ : ε̇|. Further, according to a generalized Hölder
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inequality, see Yang (1991b), and the normality condition
in plasticity, see Drucker (1959), it results in

σ : ε̇ = |σ : ε̇| ≤ ‖σ‖∨ ‖ε̇‖−∨ (5)

where ‖ε̇‖−∨ is the dual norm, see Huh and Yang (1991),
of ‖σ‖∨ based on the flow rule associated with the von
Mises yield criterion. Therefore, ρω2 (σ) can be bounded

above by ρω2
(

⇀u
)

as

ρω2 (σ) =
Z

D
σ : ε̇−

Z
∂Ds1

⇀u ·⇀qs1dS−
Z

∂Ds2

⇀u ·⇀qs2dS

≤
Z

D
‖σ‖∨ ‖ε̇‖−∨ dA−

Z
∂Ds1

⇀u ·⇀qs1dS−
Z

∂Ds2

⇀u ·⇀qs2dS

= ρω2
(

⇀u
)

(6)

Thus, the upper bound formulation is stated in the form
of a constrained minimization problem as

minimize ρω2
(

⇀u
)

subject to ρω2
(

⇀u
)

=
R

D ‖σ‖∨ ‖ε̇‖−∨ dA

−
Z

∂Ds1

⇀
u ·⇀qs1dS−

Z
∂Ds2

⇀
u ·⇀qs2dS (7)

R
D

⇀u ·⇀rdA = 1 in D

∇ ·⇀u = 0 in D

kinematic boundary conditions on ∂Dk

where ∇ ·⇀u = 0 is the incompressibility constraint inher-
ent in the von Mises model. Therefore, the upper bound
formulation seeks the least upper bound on kinematically
admissible solutions.

Note that the primal-dual formulations (1) and (7)
are convex programming problems, see Huh and Yang
(1991), Yang (1993). Thus, for each step, there exist
unique maximizer and minimizer to Problems (1) and
(7), respectively. Therefore, the extreme values of the
lower bound functional ρω2 (σ) and its corresponding

upper bound functional ρω2
(

⇀u
)

are equal to the unique,

exact solution ρω∗2 for each step in a process. Namely

maximize ρω2 (σ) = ρω∗2 = minimize ρω2
(

⇀u
)

(8)

2.3 Discretized and augmented functional

To discretize the continuous domain and surface bound-
ary, we adopt four-node quadrilateral isoparametric ele-

ments, see Reddy (1993). Applying finite-element dis-
cretization, the original functional in the problem equa-
tion (7) is approximated by a new one in a finite-
dimensional space of the vector {U}, the discrete approx-
imation of the velocity field. We restate the problem as

minimize ρω̃2 ({U}) =
Ne

∑
e=1

σY (ε)
√

{U}t [Ke1]{U}

−
Ns1

∑
se1=1

{U}t {Qse1}−
Ns2

∑
se2=1

{U}t {Qse2}

(9)

subject to {U}t {R}= 1

{U}t {C} = 0

where Ne , Ns denote the numbers of elements used to
discretize the domain and surface boundary respectively;
the superscript tdenotes transposition; {Qse1} and {Qse2}
are the nodal-point force vectors corresponding to ⇀qs1
and ⇀qs2, respectively; [Ke1] is the element stiffness ma-
trix, {C} and {R} are vectors.

To deal with the constrained minimization problem equa-
tion (9), we utilize the penalty function method, see
Reddy (1986), and the Lagrangian multiplier method, see
Reddy (1986), to relax the incompressibility constraint
and to impose the normalization condition. The cor-
responding unconstrained minimization problem is then
expressed as

minimize ρω̃2 ({U})+
β
2

p({U})−λ({U}t {R}−1)

(10)

with p({U}) =
Ne

∑
e=1

{U}t [Ke2]{U}
where the penalty parameter β is a sufficiently large pos-
itive constant, λ is the Lagrangian multiplier, and [Ke2] is
the coefficient matrix corresponding to the incompress-
ibility constraint. It is noted that the element stiffness
matrix [Ke1] is positive semi-definite such that the objec-
tive functional is non-smooth over some rigid regions.
The resulting numerical difficulty is to be overcome in
the next section.

3 Computations

To solve the minimization problem equation (10), we
apply the necessary condition for the minimum of
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ρω̃2 ({U}) + β
2 p({U})− λ({U}t {R}− 1), namely tak-

ing its first derivative with respect to {U}, and the La-
grangian multiplier λ, respectively. Moreover, the ob-
jective functional is smoothed by a small real number δ
to overcome the numerical difficulty resulting from non-
smoothness over some rigid regions as detailed by Huh
and Yang (1991). Reorganizing the nonlinear equations,
linear matrix-vector equations are then produced as

[K]{U}= λ{R}+{Qs1}+{Qs2} (11)

{U}t {R}−1 = 0 (12)

with

[K]{U} =
Ne

∑
e=1

σY (εn)
[Ke1]{U} j+1√

{U∗}t
j [Ke1]{U∗} j +δ2

+β
Ne

∑
e=1

[Ke2]{U} j+1

{Qs1} =
Ns1

∑
se1=1

{Qse1}

{Qs2} =
Ns2

∑
se2=1

{Qse2}

where subscriptions j, ( j + 1) indicate quantities corre-
sponding to any successive iterations. At the first step,
we have the equivalent strain rate ε1 = 0. For the current
step n ≥ 2, the value of εn is obtained as the following
expression

εn =
n−1

∑
i=1

ε̇iΔti (13)

where Δti is the step size.

Combining Eqs. (11) and (12), we express λ, {U} in
each step as follows

λ =
1−{R}t [K]−1 ({Qs1}+{Qs2})

{R}t [K]−1{R} (14)

{U}= λ [K]−1{R}+[K]−1 ({Qs1}+{Qs2}) (15)

where [K]−1 is the inverse of [K].
As expressed in Eq. (14), the current value of λ j+1 is
based on the value of {U∗} j obtained at the preceding
iteration j. With the acquired λ j+1, the other unknown

{U} j+1 is then calculated as expressed in Eq. (15). In
the beginning, an arbitrary {U}0 is assumed as the ini-
tial estimate. A convergent sequence of λ({U∗} j) is then
generated iteratively and converges to the plastic limit
angular velocity. Computationally, an inner and outer
iterative sequence is conducted to solve the minimiza-
tion problem. From one outer iteration to the next, the
smoothing parameter δ used in the inner iteration is al-
lowed to decrease and then convergence to zero finally.
Stopping criterion based on the ratio of Euclidean norms

Eu =
∥∥∥{U∗} j −{U∗} j−1

∥∥∥
2
/
∥∥∥{U∗} j−1

∥∥∥
2

is applied to

check the convergence of each step.

All the abovementioned procedures are summarized as
the flowchart shown in Figure 1.

4 Numerical examples

The paper is aimed to apply sequential limit analysis to
the plastic limit angular velocity of hollow cylinders in-
volving strain-hardening materials in plane-strain condi-
tions. In the formulation, the action of angular veloc-
ity contributes to the driving load to cause the rotating
cylinders fully plastic. Comparisons between numerical
results and analytical solutions are made as to show the
reliable applications. In the computations, the present
paper adopts the Voce hardening law

σY = σ∞ − (σ∞ −σ0)exp(−hε) (16)

where σ0 is the initial yield strength, σ∞ is the satura-
tion stress, h is the hardening exponent. For the sake
of rigorous validation, analytical solutions for the angu-
lar velocity are derived as detailed in Appendix A. To be
complete, the onset of the instability is also study analyt-
ically in Appendix B.

In the numerical examples, the initial inner and outer
radii are denoted as a0 and b0, respectively. The an-
gular velocity required to keep the deforming cylinder
fully plastic is then computed sequentially by using the
CSSA algorithm. In the following case studies, we adopt
the following non-dimensional parameters: a0 = 5.0,
b0 = 10.0, h =

√
3 and a constant step size Δt = 1.0.

As shown in Figure 1, only one quarter of the axisymmet-
ric structure is simulated. Four-node bilinear quadrilat-
eral isoparametric elements are utilized to discretize the
problem domain without numerical difficulties. As men-
tioned by Huh, Lee and Yang (1999), however, the suc-
cessful choice of the linear element may depend on the
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Figure 1 : Flowchart of the computational procedures

nature of a problem. The finite element mesh of 15×25
elements shown in Figure 2 is adopted in the following

computations. In the beginning, the first-step limit an-
gular velocity is obtained. The first-step solution is the
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limit value of the angular velocity causing the cylinder
of dimensions a0 and b0 fully plastic. Following the first
step, each step in sequential limit analysis starts with the
result obtained in the preceding step. A sequence of limit
analysis problems is then solved to obtain sequential nu-
merical solutions of the rotating problem.

Figure 2 : Schematic finite-element model for a rotating
hollow cylinder

Firstly, we consider the rotating cylinder free of any ac-
tion of internal or external pressure. Accordingly, the
computed first-step limit angular velocity factor ρω2,
normalized by σ0/b2

0, is 2.13622 with the convergence
tolerance Eu = 0.00001 compared to 2.13434 by Eq. (38)
in Appendix. A sequence of limit analysis problems is
then solved to obtain sequential numerical solutions of
the rotating problem. Parametric studies are performed
with various values of R = σ∞/σ0. The results normal-
ized by σ0/b2

0 are summarized in Figure 3. All the com-
puted upper bounds agree very well with the analytical
solutions at a modest cost.

Secondly, the combination action of internal and external
pressure is also considered. In the following computa-
tions, the values of internal and external pressure are pre-
scribed constants. Accordingly, we still consider a prob-
lem of widening deformation with the angular velocity
contributing to the driving load. As shown in Eqs. (37)
and (38) in Appendix A, the action of internal pressure is
to reduce the plastic limit angular velocity while the ac-
tion of external pressure is to increase the plastic limit an-
gular velocity. Figure 4 shows the effect of (Pi −Po)/σ0

with various values on the plastic limit angular velocity.
Again, the computed upper bounds are in good agree-
ment with the analytical solutions.

On the other hand, as shown in Figures 3∼4 and the ana-
lytical solutions derived in Appendix B, the rotating hol-
low cylinders of σ∞/σ0 > 2 are strengthened due to the
strain-hardening described by the Voce hardening law
with h =

√
3 until the onset of instability. Following

that, however, the weakening phenomenon is observed
while the effect of widening deformation counteracts that
of the strain-hardening. Note that, the onset of insta-
bility concerned is about the plastic instability marked
by the rotating speed maximum while dealing with
thick-walled cylinders, see Rimrott (1960), Chakrabarty
(1987). Namely, the strengthening due to material hard-
ening is exceeded by the weakening resulted from the
widening deformation, see Rimrott (1960). The effect of
the hardening index on the strengthening/weakeningphe-
nomenon is as shown in Figure 5 with σ∞/σ0 = 2. The
higher the hardening index value is, the more significant
hardening phenomenon can be observed.

As detailed in Appendix B, the onset of instability can be
calculated by the following mathematical condition

∂(ρω2b2
0/σ0)

∂a
= 0 (17)

Thus, the onset of instability, corresponding to the initial
inner and outer radii a0, b0 and the strain-hardening de-
scribed by the Voce hardening law with h =

√
3, can be

shown as follows:

a
a0

=

√
(b0/a0)2 −1

X −1
(18)

with the change of variables as follows

X =
A+

√
A

2 +4(b0/a0)2

2
(19)

A =
(b0/a0)2 −1
(σ∞/σ0 −1)

(20)

Note that, considering the strain-hardening described by
the Voce hardening law with h =

√
3, the stability condi-

tion for the widening problem of rotating hollow cylin-
ders is σ∞/σ0 > 2 regardless of the geometry of rotat-
ing hollow cylinders as detailed in Appendix B. Fig-
ure 6 shows the relationship between the onset of insta-
bility and R = σ∞/σ0 with various values of b0/a0 for
σ∞/σ0 ≥ 2. Again, the computed results for the onset of
instability agree very well with the analytical solutions as
shown in Figure 4 and Figure 6.



Sequential Limit Analysis of Rotating Hollow Cylinders 135

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 1.2 1.4 1.6 1.8 2

a/a0

present------R=3.0

analytical---R=3.0

present------R=2.5

analytical---R=2.5

present------R=2.0

analytical---R=2.0

present------R=1.5

analytical---R=1.5

present------R=1.0

analytical---R=1.0

Figure 3 : Plastic limit angular velocity factor ρω2b2
0/σ0 vs. inner radius a/a0 with R = σ∞/σ0

0

0.5

1

1.5

2

2.5

3

3.5

1 1.2 1.4 1.6 1.8 2

a/a0

L
im

it
 A

n
g
u

la
r 

V
el

o
ci

ty
 F

ac
to

r

Figure 4 : Effect of internal and outer pressure on plastic limit angular velocity factor ρω2b2
0/σ0 with σ∞/σ0 = 3

5 Conclusions

The problem seeking plastic limit angular velocity of ro-
tating hollow cylinders is of optimization feature and is

encountered frequently for optimal structural design. By
utilizing sequential limit analysis, the paper deals with
rotating hollow cylinders made of the von Mises mate-
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rials with nonlinear isotropic hardening. The plasticity
problem was then formulated as a sequence of limit anal-
ysis problems stated in the upper bound formulation with

the angular velocity factor as the objective function. In
addition, the action of prescribed internal and/or exter-
nal pressure was also considered. Specifically, the cor-
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responding normalization condition is imposed on the
whole domain. Finally, the limit angular velocity, con-
tributing to the driving load, was expressed in a simpli-
fied formulation.

Numerically, rigorous upper bounds are acquired itera-
tively through a computational optimization procedure
based on a general algorithm involving inner and outer
iterations. The general algorithm is comparable for its
simple implementation, unconditional convergence. An-
alytic solutions of the plastic limit angular velocity and
the onset of instability corresponding to the Voce harden-
ing law was also derived in the paper for rigorous com-
parisons.

Numerical and analytically studies of rotating hollow
cylinders have demonstrated the accuracy of the numer-
ical procedure presented here. Especially, the computed
upper-bound results are in good agreement with analyti-
cal solutions at a modest cost.
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Güven, U. (1997): The fully plastic rotating disk with
rigid inclusion. ZAMM, vol. 77, pp. 714-716.

Haghi, M.; Anand, L. (1991): Analysis of strain-
hardening viscoplastic thick-walled sphere and cylinder
under external pressure. International Journal of Plas-
ticity; vol. 7, pp. 123-140.

Huh, H.; Yang, W. H. (1991): A general algorithm for
limit solutions of plane stress problems. International
Journal of Solids and Structures, vol. 28, pp. 727-738.

Huh, H.; Lee, C. H. (1993): Eulerian finite-element
modeling of the extrusion process for working-hardening
materials with the extended concept of limit analysis.
Journal of Materials Processing Technology, vol. 38, pp.
51-62.

Huh, H.; Lee, C. H.; Yang, W. H. (1999): A general al-
gorithm for plastic flow simulation by finite element limit
analysis. International Journal of Solids and Structures,
vol. 36, pp. 1193-1207.

Hwan, C. L. (1997): An upper bound finite element pro-
cedure for solving large plane strain deformation. Inter-
national Journal for Numerical Methods in Engineering,
vol. 40, pp. 1909-1922.
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Appendix A:

We consider a plane-strain problem with a rotating hol-
low cylinder simulated by the von Mises model with non-
linear isotropic hardening. The cylinder has its initial in-
terior and exterior radii denoted by a0 and b0. As shown
in the Eq. (1), the rotating hollow cylinder may be sub-
jected to internal and/or external pressure in addition to
the centrifugal force ρω2⇀r. In the following derivation,
the values of internal and external pressure are consid-
ered constant. Accordingly, we consider a problem of
widening deformation with the centrifugal force being
the driving load.

The behavior of nonlinear isotropic hardening is de-
scribed by the Voce hardening law

σY = σ0 +(σ∞ −σ0) [1−exp(−hε)]
= σ∞ − (σ∞ −σ0)exp(−hε) (21)

where σ∞ is the saturation stress and h is the hardening
exponent.

Similar to the procedures adopted by the previous work
of Leu (2005), we derive the analytical solutions as fol-
lows.

In the cylindrical coordinate system, the incompressibil-
ity condition requires that

∂v
∂r

+
v
r

= 0 (22)

where v is the radial velocity at a point (r,θ). Accord-
ingly, the radial velocity can be expressed as

v =
B
r

(23)

where B is a constant.

Accordingly, we can express the strain rates as

ε̇r =
∂v
∂r

= − B
r2 (24)

ε̇θ =
v
r

=
B
r2 (25)

ε̇z = 0 (26)
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and from Eqs. (24)∼(26) we obtain the equivalent strain
rate

ε̇ =

√
2
3
(ε̇2

r + ε̇2
θ + ε̇2

z )

=
2√
3

B
r2 (27)

Accordingly, the equivalent strain is obtained as

ε =
Z

ε̇dt =
1√
3

ln
r2

r2
0

(28)

where r0 is the initial radius to the location concerned.

The components of the stress deviator, sr, sθ, sz, can be
obtained by considering the flow rule and satisfying the
yield condition. Thus, we obtain

sr = − 1√
3

[σ∞ − (σ∞ −σ0)exp(−hε)] (29)

sθ =
1√
3

[σ∞ − (σ∞ −σ0)exp(−hε)] (30)

sz = 0 (31)

Thus, the stresses are given as

σr = s+ sr (32)

σθ = s+ sθ (33)

σz = s+ sz (34)

where s is the mean normal stress.

Substituting Eqs. (32)∼(34) into the following equilib-
rium equation

∂σr

∂r
+

σr −σθ

r
= −ρω2r (35)

Therefore, we obtain

∂σr

∂r
= −σr −σθ

r
−ρω2r

=
2
r

[
σ∞√

3
− σ∞ −σ0√

3
exp(−hε)

]
−ρω2r (36)

Note that h =
√

3 is used in the derivations. Thus, with
the boundary conditions σr(r = a) = Pi and σr(r = b) =
Po, the limit value of the angular velocity factor ρω2 at
the current radii a, b is given by

ρω2 =
2

b2−a2 (Pi −Po)

+
2

b2 −a2

{
σ0√

3
ln

b2

a2 −
(σ∞ −σ0)√

3

(
a2

0

a2 −
b2

0

b2

)}
(37)

If the angular velocity factor ρω2 is normalized by σ0/b2
0,

then we have the dimensionless angular velocity factor
ρω2b2

0/σ0 in the form as

ρω2b2
0

σ0
=

2b2
0

b2 −a2

(
Pi −Po

σ0

)

+
2b2

0

b2 −a2

{
1√
3

ln
b2

a2 −
(σ∞/σ0 −1)√

3

(
a2

0

a2 −
b2

0

b2

)}
(38)

Note that, the sign convention for Pi and Po in Eqs. (37)
and (38) is positive for tension and negative for compres-
sion.

Appendix B:

To consider instability and then the existence of the maxi-
mum value of the limit angular velocity during the whole
widening process, we apply the necessary condition for
the maximum of ρω2b2

0/σ0, namely the following math-
ematical expression with the current interior radius a

∂(ρω2b2
0/σ0)

∂a
= 0 (39)

Considering Eqs. (38) and (39), we get the condition of
instability in the form

b2
0 −a2

0

(σ∞/σ0 −1)
=

a2
0

a2 (a2 +b2
0 −a2

0)−
a2b2

0

(a2 +b2
0 −a2

0)
(40)

For convenience, we set

X =
a2 +b2

0 −a2
0

a2

=
a2 +b2 −a2

a2

=
b2

a2 > 1 (41)
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and

A =
b2

0 −a2
0

(σ∞/σ0 −1)

= a2
0
(b0/a0)2−1
(σ∞/σ0 −1)

= a2
0A (42)

Then Eq. (40) can be rewritten as

X2 −AX − (b0/a0)2 = 0 (43)

Therefore, we have the explicit solution

X =
A+

√
A

2 +4(b0/a0)2

2
(44)

When X has been obtained for given a0/b0 and σ∞/σ0 ,
the onset of instability can be identified from Eq. (41) as

a
a0

=

√
(b0/a0)2 −1

X −1
(45)

Finally, we come to consider the condition of stability,
namely the existence of hardening phenomena before the
weakening behavior. Mathematically, it is to consider the
case expressed in the form

∂(ρω2b2
0/σ0)

∂a
> 0 (46)

Certainly, the condition expressed by Eq. (46) is equiva-
lent to see if there is the solution a/a0 > 1 to Eqs. (45).
Therefore, we can get the stability condition, correspond-
ing to the strain-hardening described by the Voce harden-
ing law with h =

√
3, by Eqs. (42), (44) and (45) as

σ∞/σ0 > 2 (47)

Therefore, there exists strengthening phenomenon if ro-
tating cylinders are made of hardening materials with
σ∞/σ0 > 2 . Accordingly, the hardening behavior is to
be observed in the range in the following expression

1 <
a
a0

<

√
(b0/a0)2 −1

X −1
(48)


