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The Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in
High-Speed Impact, Penetration and Perforation Problems

Z. D. Han1, H. T. Liu1, A. M. Rajendran2, S. N. Atluri3

Abstract: This paper presents the implementation of
a three-dimensional dynamic code, for contact, impact,
and penetration mechanics, based on the Meshless Local
Petrov-Galerkin (MLPG) approach. In the current im-
plementation, both velocities and velocity-gradients are
interpolated independently, and their compatibility is en-
forced only at nodal points. As a result, the time con-
suming differentiations of the shape functions at all in-
tegration points is avoided, and therefore, the numerical
process becomes more stable and efficient. The ability
of the MLPG code for solving high-speed contact, im-
pact and penetration problems with large deformations
and rotations is demonstrated through several compu-
tational simulations, including the Taylor impact prob-
lem, and some ballistic impact and perforation problems.
The computational times for the above simulations are
recorded, and are compared with those of the popular
finite element code (Dyna3D), to demonstrate the effi-
ciency of the present MLPG approach.

keyword: Meshless method, MLPG, High-speed im-
pact, Penetration

1 Introduction

With the dramatically increased high-performance com-
putational power, computational mechanics has become
an important tool in both civilian and military system de-
sign and analysis. Although the finite element method
(FEM), as the most recognized approach, has achieved
a phenomenal success, accurate and efficient numerical
simulations of armor/anti-armor systems is still a chal-
lenging task, due to the fact that these applications al-
ways involve high strain rate, non-linear deformation and
severe element distortion. Recently, a great effort has
been put into this field. Johnson et al (2003) proposed an

1 Knowledge Systems Research, LLC, Forsyth, GA 30253
2 US Army Research Office (ARO), RTP, NC
3 Center for Aerospace Research & Education, University of Cali-
fornia, Irvine

“element to particle” conversion method to alleviate the
problem of highly distorted meshes in fracture and frag-
mentation problems. This mixed mesh/particle method
seems to provide stable and useful solutions to several
impact problems; however, these types of numerical ap-
proaches tend to remain “phenomenological”, and are
limited to a small class of problems. Ortiz and his col-
leagues developed FEM based fracture and fragmenta-
tion algorithms, in which cohesive zones are assumed
between element boundaries, and cracks can be prop-
agated between the elements using cohesive laws [Or-
tiz and Pandolfti (1999)]. They used advanced nonlin-
ear error estimation and non smooth contact algorithms
to assure numerical accuracy and stability. Unfortu-
nately, this advanced FEM approach seems to suffer from
mesh-influenced solutions. In addition, these element-
based approaches require a tremendous effort in generat-
ing good quality meshes for complex geometrics, and for
component assemblies.

In contrast, the meshless methods have become very at-
tractive for eliminating the mesh distortion problems due
to large deformations. Some meshless methods are based
on the global weak forms, such as the smooth particle hy-
drodynamics (SPH), and the element-free Galerkin meth-
ods (EFG). They may require a certain node distribution
pattern, or background cells for integration, which may
be not lead to satisfactory solutions when meshes are
severely distorted during large deformations. In addi-
tion, in the usual meshless approaches, the shape func-
tions are generally very complicated, which results in
even more complicated derivatives. Thus, the accurate
calculation of the shape function derivatives is always
a time-consuming task, and many more Gaussian points
are required in the domain integration. The high compu-
tational expense and complexity is a barrier that prevents
the application of meshless method to large-scale simu-
lations. Most of the current meshless codes and applica-
tions are restricted to two-dimensional demonstrations.

Recently, Atluri and his colleagues [Atluri and Zhu
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(1998), Atluri and Shen (2002), and Atluri (2004)] pro-
posed a general framework for developing the Meshless
Local Petrov-Galerkin (MLPG) approach, which pro-
vides flexibility in choosing the local weak forms, the
trial functions, and the independent test functions for
solving systems of partial differential equations. The
MLPG approach has the following advantages: (1) all
weak forms are formulated locally; (2) various trial and
test functions can be chosen and combined together for
solving one problem; (3) overlapping local sub-domains
can be chosen in such a way as to match problems and
algorithms in any special cases. The flexibility in choos-
ing and combining various trial and test functions make
the simplification of meshless formulation possible. For
example, by choosing the heavy-side function (a unity-
valued function inside the sub-domain, and zero out-
side the sub-domain), the domain integration is elimi-
nated and the local symmetric weak form is expressed
as a boundary integration. This will reduce the number
of integration points, and greatly increase the accuracy
and efficiency. In the MLPG method, the equilibrium
and energy conservation equations are written locally
within the subdomains, which make the parallel com-
putation straightforward. As an extension, a meshless
mixed finite volume method is proposed [Atluri, Han and
Rajendran (2004), Han, Rajendran and Atluri (2005)]
to further simplify the meshless formulations. In the
MLPG mixed method, the displacement-/velocity- gra-
dients are interpolated independently from the displace-
ment/velocity interpolations. The compatibility between
the displacements/velocities and displacement-/velocity-
gradients is enforced only at nodal points. The mixed
MLPG does not require the calculation of the deriva-
tives of the complex shape functions, and thus achieves
more computational accuracy and efficiency. It should
be pointed out that the MLPG mixed method is radi-
cally and fundamentally different from the finite-element
mixed method, which is a saddle point variational prob-
lem and which is often plagued by the stability conditions
such as the Brezzi-Babuska conditions(Xue , Karlovitz,
and Atluri(1985).

In the present paper, the above described MLPG mixed
method is implemented in an explicit-time-integration
computational code, with an updated Lagrangean de-
scription. For completeness purpose, a brief description
of the MLPG mixed method is presented in the follow-
ing section. Several numerical examples are presented to

show the applicability of the meshless program.

2 MLPG Formulation

2.1 Local Nodal Interpolation

An appropriate meshless interpolation scheme should
satisfy the locality, continuity, and consistency require-
ments. Among a variety of local interpolation schemes,
the Moving Least Squares (MLS) interpolation is gener-
ally considered to be one of the best schemes to inter-
polate random data with a reasonable accuracy, because
of its completeness, robustness and continuity. With the
MLS, a trial function u(x) can be expressed as

u(x) =
N

∑
I=1

ΦI(x)ûI (1)

where ûI and ΦI(x) are the fictitious nodal values, and
the shape function of node I, respectively. The shape
functions are obtained by minimizing the L2 norm of the
weighted distance between the trial function value and its
true values at nodal points. For a detailed derivation and
explicit expressions for the shape functions, the readers
are referred to Atluri (2004).

The MLS nodal shape function ΦI(x) has a rational form,
and it is non-zero only inside the support domain of its
corresponding node I. We define the nodes whose sup-
port domain covers x as the neighbor node of x. The
trial function u(x) is only relying on its immediate neigh-
bors’ nodal values and thus the locality is preserved. The
smoothness of the shape function ΦI(x) is determined by
its basis functions and the weight functions. Therefore, it
is easy for the MLS approximation to yield a high-order
continuity for the shape functions and then the trial func-
tions. In practice, polynomials are adopted as the basis
functions and spline functions as the weight functions.
Therefore, to construct a more continuous shape function
will be a trivial task. The MLS interpolation constructed
in Eq. (1) is able to represent the jth ( j=1,2, . . . m, with
m is the number of the polynomial basis functions) com-
ponent of monomials exactly. In other words, the shape
function is consistent.

In the mixed method, we interpolate the velocities vi

and velocity gradients vi, j independently using the same
shape functions, namely

vi(x) =
N

∑
J=1

ΦJ(x)vJ
i (2)
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vi, j(x) =
N

∑
K=1

ΦK(x)vK
i, j (3)

The compatibility condition between the velocities and
velocity gradients is enforced only at the nodes by a stan-
dard collocation method as

vi, j(xI) =
∂vi(xI)

∂x j
(4)

By interpolating the velocity gradients, as one of the key
features of the mixed method, we eliminate the differ-
entiation operations of the shape functions in the local
weak form integration. Therefore, the requirement of
the completeness and continuity of the shape functions
is reduced by one-order, and thus, lower-order polyno-
mial terms can be used in the meshless approximations.
This leads to a smaller nodal influence size and speeds
up the calculation of the shape functions. The adoption
of the mixed method in our implementation greatly im-
proves the program efficiency.

2.2 Formulations for Finite Strain Problems

Since the purpose of the developed MLPG program is
to simulate high-speed dynamic problems, we adopted
an updated Lagrangian formulation in our implementa-
tion. Let xi be the spatial coordinates of a material par-
ticle in the current configuration. Let Ṡi j be the Trues-
dell stress-rate (the rate of second Piola-Kirchhoff stress
as referred to the current configuration); and let σ̇J

i j be
the Jaumann rate of Kirchhoff stress (which is J times
the Cauchy stress, where J is the ratio of volumes). It is
known [Atluri (1980)]:

Ṡi j = σ̇J
i j −Dikσk j −σikDk j (5)

Here, Di j and Wi j are the symmetric and skew-symmetric
parts of the velocity gradient, respectively. Considering
a 3D domain Ω with a boundary ∂Ω, the rate forms of
the linear and angular momentum balances are [Atluri
(1980)]:

(Ṡi j +τikv j,k),i + ḟ j = ρȧ j (6)

where, ρ is the mass density and ȧ j the acceleration
rate. In a dynamic problem, ḟ j are appropriately de-
fined in terms of the rate of change of inertia forces and
( ),i = ∂( )/∂xi; xi are current coordinates of a material
particle. In Eq. (6), τi j is the Cauchy stress in the current
configuration.

2.3 Local weak form with the large deformations

In the MLPG approaches, the weak form is established
over a local subdomain Ωs, which may have an arbitrary
shape and contain a point x in question. In our implemen-
tation, the local weak form is established for a spherical
subdomain with the radius of r (we define it as the test-
function size), namely
Z

Ωs

[(Ṡi j +τikv j,k),i + ḟ j −ρȧ j]wjdΩ = 0 (7)

where wj are the test functions. By applying the diver-
gence theorem Eq. (7) may be rewritten in a symmetric
weak form as:
Z

∂Ωs

(Ṡi j +τikv j,k)niwjdΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i − ḟ jw j +ρȧ j]dΩ = 0 (8)

with the rate definition ṫ j = (Ṡi j + τikv j,k)ni , and with
ni being the components of a unit outward normal to the
boundary of the local subdomain Ωs, in its current con-
figuration. Thus the local symmetric weak form can be
rewritten as
Z

Ls

ṫiwidΓ+
Z

Γsu

ṫiwidΓ+
Z

Γst

ṫiwidΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i − ḟiwi +ρȧ j)dΩ = 0 (9)

where Γsu is a part of the boundary ∂Ωs of Ωs, over which
the essential boundary conditions are specified. In gen-
eral, ∂Ωs = Γs ∪ Ls, with Γs being a part of the local
boundary located on the global boundary, and Ls is the
other part of the local boundary which is inside the solu-
tion domain. Γsu = Γs∩Γu is the intersection between the
local boundary ∂Ωs and the global displacement bound-
ary Γu; Γst = Γs ∩Γt is a part of the boundary over which
the natural boundary conditions are specified.

To simplify the integration and speed up the numerical
implementation, the Heaviside function is adopted as the
test function in our program program( Thus, the method
is labeled here as the “ finite-volume” MLPG method).
Thus, the local symmetric weak form in Eq.(9) becomes

−
Z

Ls

ṫidΓ−
Z

Γsu

ṫidΓ+
Z

Ωs

ρȧ jdΩ =
Z

Γst

ṫ idΓ+
Z

Ωs

ḟidΩ

(10)
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This equation has the physical meaning that it represents
the balance law of the local sub-domain Ωs, as in con-
ventional finite volume methods.

3 Numerical Implementation

In this section, we will address some numerical issues in
the implementation of the MLPG mixed method.

3.1 Determination of the Support Sizes

The support size is an important parameter in the MLPG
calculation. On the one hand, the support size should be
large enough to include enough neighboring nodes to en-
sure the regularity and reduce the computational error;
on the other hand, we should keep the support size rela-
tively small to maintain the interpolation’s locality. In the
current implementation, the support size for each node is
determined automatically from the neighbor nodes, on
demand.

To ensure the regularity of the MLS interpolation, the
minimum number of the linearly independent neighbor
nodes is decided by the order of the polynomial basis.
For the three-dimensional problems, the neighbor node
number m is calculated from the order of the polynomial
basis t as [Atluri (2004)]

m = (t +1)(t +2)(t +3)/6 (11)

Eq. (11) means that for each point x, it is required that
there are m neighbor nodes whose support domains cover
the point x. On other words, for a node J, its support size
should be large enough to cover all the nodes, of which
the node J is a neighbor node. To increase the efficiency
of the present implementation, the support sizes are not
recalculated for each time step. Therefore, a scale factor,
which is great than 1, is applied to the support sizes de-
cided by the above procedure, to account for the effect of
the nodal movement from the body’s deformation.

3.2 Determination of the Test Sizes

The test domains in the MLPG could be any overlapping
local domains. A spherical domain centered at each node
is adopted in the present implementation. For a node I,
the radius of the spherical domain (the test size) is deter-
mined as

rI
0 = αmin

{∥∥xI −xJ
∥∥}

, J = 1,2, ...,N and I �= J (12)

where α is the scale factor of the test size, which is a
constant between 0 and 1. In addition, if node I is inside
the solution domain, but close to the global boundary, a
smaller radius may be used so that the local sphere has no
intersection with the global boundary. In other words, the
local test domains of all internal nodes are restricted to be
inside the solution domain, and their local boundaries are
also inside the solution domain. Therefore, the numeri-
cal implementation becomes much simpler, because the
essential and natural boundary conditions appear in the
integrals of the nodes on the global boundary only.

3.3 Numerical Quadrature

In the present implementation, the integrations of the lo-
cal symmetric weak form [Eq. (10)] are performed nu-
merically by using the conventional Gaussian quadrature
scheme. The boundary integration in Eq. (10) over a
spherical surface involves the trigonometric functions. It
is well known that the conventional numerical quadrature
schemes are designed for polynomials, and are not effi-
cient for trigonometric or rational functions. To improve
the performance of the numerical integration, the local
subdomain (i.e. a sphere) is partitioned by triangles for
the surface integration [Han and Atluri (2004)].

3.4 Time Integration

The well known and commonly accepted Newmark β
method [Newmark (1959)] is used in the present imple-
mentation to integrate the governing equations in time.
With the determined accelerations from the system equa-
tions based on the local symmetric weak form [Eq. (10)],
the displacements and velocities are calculated from the
standard Newmark β method as

ut+Δt = ut +Δtvt +
Δt2

2

[
(1−2β)at +2βat+Δt]

vt+Λt
c = vt +Δt

[
(1− γ)at + γat+Δt] (13)

For zero damping system, this method is unconditionally
stable if

2β ≥ γ ≥ 1
2

(14)

and conditionally stable if

γ ≥ 1
2
, β ≤ 1

2
and Δt ≤ 1

ωmax
√

γ/2−β
(15)
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where ωmax is the maximum frequency in the structural
system.

This method can be used in the predictor-corrector mode,
with specified initial conditions [Atluri (2004)]. In the
present implementation, the central difference scheme is
used by setting β = 0 and γ = 1/2.

4 Ceramic Constitutive Model with Damage

In the present implementation, the Rajendran and Grove
(RG) ceramic damage model is adopted to model the
material damage and failure during the impact and pen-
etration process. The RG ceramic model [Rajendran
(1994); Rajendran and Grove (1996)] is a sophisticated,
three-dimensional, internal-state-variable-based consti-
tutive model for ceramic materials, which incorporated
both micro-crack propagation and void collapse. The
proposed RG ceramic damage model has achieved a great
success in describing the response of alumina (AD85)
subjected to various stress/strain loading conditions [Ra-
jendran (1994)]. In this section, the RG ceramic damage
model is briefly reviewed and the main formulation is
presented for completeness purposes.

4.1 Constitutive Relationships

In the RG model, the total strain εi jis decomposed into
the elastic part εe

i j and plastic part εp
i j. The pressure is

calculated through the Mie-Gruneisen equation of state
as

P =
[
PH (1−0.5Γη)+Γρ0 (I − I0)

]
(16)

with

PH = Kγ
(
β1η+β2η2 +β3η3) (17)

In the above equations, β1, β2 and β3 are empirical pa-
rameters; Γ is the Mie-Gruneisen parameter; Kγ = K/K
is the bulk modulus reduction ratio, with K being the bulk
modulus for the intact matrix and K the effective bulk
modulus for the micro-crack containing material. Fur-
thermore, ρ0 is the initial material density; I0 and I are
the internal energy at the initial and current states, re-
spectively. The engineering volumetric strain, with the
consideration of the voids, is defined as

η =
(1− f0)V0

(1− f )V
−1 (18)

Where V0 and V are the volumes of the initial and cur-
rent states; f0 and f are the initial and current porosity
densities, respectively.

The deviatoric stress is related with the deviatoric elastic
strain ee

i j as

Si j = 2RgGee
i j (19)

Here G is the effective shear modulus for micro-crack
containing material and Rg is the correction factor for
shear modulus due to the existence of porosity, which is
given in Rajendran and Grove’ paper (1996). The poros-
ity density is assumed to decrease due to void collapsing
at pressures above the HEL as

ḟ = (1− f ) ε̇p
v (20)

with εp
v the plastic volumetric strain and the dot means

the temporal derivative.

When the materials are shocked above the HEL (Hugo-
niot Elastic Limit), plastic flow occurs. In the current
model, Gurson’s pressure dependent yield function, with
considerations of the porosity, is adopted, namely

F =
3J2

Y 2 +2 f cosh

(
3P
2Y

)
− f 2 −1 = 0 (21)

with J2 = 0.5Si jSi j. A simplified Johnson-Cook strain
rate dependent strength model is used and can be ex-
pressed as

Y = C1

(
1+C3 ln

ε̇p

ε̇0

)
(22)

where C1 and C3 are model constants. ε̇p is the equivalent
plastic strain rate and ε̇0 is the reference strain rate, which
is assumed to be 1 in the current model.

4.2 Damage Definition and Evolution

The micro-crack damage is measured in terms of a di-
mensionless micro-crack damage density γ, which is ex-
pressed as

γ = N∗
0 a3 (23)

where N∗
0 is the average number of micro-flaws per unit

volume and a is the maximum micro-crack size at the
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current state. The initial values of N∗
0 and a0 are mate-

rial constants. For simplicity, it is assumed that there is
no crack nucleation during the loading, and therefore the
damage evolution is represented by the growth of micro-
crack size a, which follows a generalized Griffith crite-
rion, as

ȧ =

{
0 Gs ≤ GC

n1CR

[
1−

(
GC
GS

)n2
]

Gs > GC
(24)

where CR is the Rayleigh wave speed, GC is the critical
strain energy release rate for micro-crack growth calcu-
lated from the fracture toughness KIC, Young’s modulus
E and Poisson’s ratio v as GC = K2

IC

(
1−v2

)
/E. GS is

the applied strain energy release rate. n1 and n2 are the
parameters controlling the crack growth rate. Four pa-
rameters are used for the micro-crack extension model:
n−1 and n−2 for crack sliding, and n+

1 and n+
2 for crack

opening.

4.3 Pulverization

When the micro-crack damage density γ reaches a critical
value (usually set as 0.75) under compressive loading, the
material becomes pulverized. The bulk and shear mod-
uli for the pulverized material are set to the correspond-
ing effective bulk and shear moduli at the pulverization
point. The pulverized material does not support any ten-
sile loading and the compressive strength of the pulver-
ized material is described by the Mohr-Columb law as

Y =
{

0 ,P ≤ 0
α+βP ,P > 0

(25)

where α and β are model constants. The pressure is sim-
ply computed from the elastic volumetric strain εe

v as

P =
{

0 ,εe
v ≥ 0

−Kpεe
v εe

v < 0
(26)

4.4 Determination of Model Constants

In the Rajendran-Grove ceramic model, there are eight
material constants to describe the micro-crack behavior:
N∗

0 , a0, µ, n+
1 , n+

2 , n−1 , n−2 , and KIC. Usually, several ex-
periments such as the plate-on-plate and the bar-on-bar
impact tests are needed to determine these constants for a
specific material. Rajendran and Grove (1996) conducted
a sensitivity study of the material constants, and cali-
brated the constants for several commonly used ceramic

Table 1 : The material constants for Rajendran-Grove
model

 AD85 

Density ( 3/ cmg ) 3.42

Shear Modulus (GPa) 88.0 

Initial Porosity 10% 

Material Strength Constants  

1C  (GPa) 4.0

3C 0.029

Equation of State Constants  

1  (GPa) 150.0

2  (GPa) 150.0

3  (GPa) 150.0

0

Damage Model Parameters  
*

0N  ( 3
m ) 101.83 10

0a  ( m ) 0.58

0.72

1n 1.0

2n 0.07

1n 0.1

2n 0.07

ICK  ( mMPa ) 3.25

Pulverized Material Constants  

 (GPa) 0.1

 0.1 

materials, like SiC, B4C, TiB2, AD85, and AD995. In
the following numerical simulations, the AD85 ceramic
is used and the material constants that we employed are
listed in Table 1.

5 Numerical Examples

rigid wall 

steel

Figure 1 : Taylor’s problem: a solid cylinder impacting
a rigid surface

Two numerical examples are presented here to show the
applicability of the developed MLPG program in solv-
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(a) (b) (c)

Figure 2 : Deformed profile of the cylinder at 50 micro-seconds: (a) MLPG mixed method; (b) Finite element
model; and (c) Test

(a) (b) (c)

Figure 3 : The lower corner of the deformed profile at 50 micro-seconds: (a) MLPG mixed method; (b) Finite
element model; and (c) Test

ing contact, impact, penetration and perforation prob-
lems with large deformation. For the sake of readabil-
ity and brevity, the details of the implementation of the
MLPG contact, penetration, and perforation algorithms
are omitted here, and will be reported elsewhere.

5.1 Taylor Impact Problem

The Taylor test is often used to determine the dynamic
yield stress of a material in a state of uniaxial stress. The
Taylor impact problem can simply be described as a solid
cylinder impacting a rigid surface in the normal direction,
shown in Figure 1. In the present study, a cylinder with
a length of 12.7 cm and a radius of 76.2 cm is impact-
ing a rigid surface with an initial impact velocity of 300
m/s. The solid cylindrical rod is modeled as being elasto-
plastic, and the material is chosen as AISI 310 steel with
the following material constants: density: 8.027 g/cm3,
Young’s modulus: 199.95 GPa, Poisson’s ratio: 0.28,
yield strength: 310.26 MPa, and 1% hardening slope :
2.0 GPa.

This Taylor impact problem is simulated using the
present MLPG program. For comparison purposes, the
finite element code Dyna3D (version 2000) is also used
to analyze this problem, using the mesh generated from
the same nodal configuration. The top surface of the
cylinder reaches the lowest point at about 50 micro sec-

onds. The deformed profile of the cylinder is shown in
Fig. 2(a) using the MLPG mixed method and in Fig. 2(b)
using Dyna3D. Both codes give similar profiles. How-
ever, the MLPG method gives a straight corner while
Dyna3D gives a curved one, for this frictionless contact
impact. The corners of the deformed profiles are enlarged
in Table 1.

In analyzing this problem, the present MLPG mixed
method is used without any hour-glass control, or any
other artificial numerical treatments. In contrast, one-
point Gauss integration scheme is used in Dyna3D, along
with hour-glass control. The total CPU times for the
straightforward MLPG mixed method, and the Dyna3D
with hour-glass control and artificial viscosity, are almost
same. It clearly demonstrates the superior performance
of the present MLPG mixed method as compared to the
FEM methods.

Target Plate (AD85 Ceramic) 

Projectile 

(Tungsten) 

Figure 4 : Ballistic impact test configuration schematic
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(a) Dyna3D Results

( failed after 8 micro-seconds) 

(b) MLPG Results

(complete peneration after 19 micro-seconds) 

Figure 5 : Ballistic Impact Penetration
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Figure 6 : Remaining speed of the projectile after pene-
tration

5.2 Ballistic Impact

In this simulation, we consider a cylindrical tungsten pro-
jectile to impact with an AD85 ceramic plate at the veloc-
ity of 1500 m/s. Both the length and diameter of the pro-
jectile are 10 mm. The target ceramic plate has a thick-
ness of 5 mm and a diameter of 80 mm. Fig. 3 shows the
experimental configuration. The tungsten is modeled as
being elastoplastic, with the following material proper-
ties: density 16.98 g/cm3, Young’s modulus 299.6 GPa,
Possion’s ratio 0.21 and yield strength 1.5 GPa. The tar-
get plate is modeled using the Rajendran-Grove ceramic
damage model, which was implemented into the present
MLPG implementation, as well as in Dyna3D.

The simulation using finite element method (Dyna3D)
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Figure 7 : CPU time comparson between MLPG and
finite element apporaches

stops at 8 micro-seconds due to severe element distor-
tion, as shown in Figure 4(a). The total simulation time
with Dyna3D is over 5 hours. As pointed out by Johnson
and Robert (2003), the Lagrangian finite element algo-
rithms are not always adequate when the distortions be-
come very severe. The meshless method, which could
be used to represent severe distortions in a Lagrangian
framework, is more suitable to simulate the problems
with severe distortions like ballistic penetration.

The same problem is re-simulated by using the MLPG
method; and it is solved smoothly without any mesh dis-
tortion problems, because of the advantages of the truly
meshless method. The total solution time is 20 micro-
seconds, and it takes about 1 hour for the first 8 micro-
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seconds, and 2.5 hours to carry out the whole analysis.
The final deformation is shown in Figure 4(b), and the
fragmentation is clearly formed after the projectile pene-
trates the target plate. The steady remaining speed of the
projectile is about 1240 m/s after impact, with the veloc-
ity history chattered in Fig. 4. In addition, the MLPG
method is more stable than the FEM as a steady CPU
time is demonstrated during the whole solution time.
However, the FEM is encountering a severe mesh distor-
tion problem, and CPU time jumps up once the projectile
and plate are undergoing the large deformation right after
a few micro seconds of the solution time, shown in Fig.
5.

6 Closing Remarks

The meshless method has been a very active research
area for over ten years in the computational mechanics
field. However, due to the intrinsic complexity of the ap-
proach, most of the research is still at the academic level.
The MLPG method, as a meshless framework, provides
the flexibility to construct various meshless approaches
by different choices and combinations of the trial and test
functions; therefore, provides the possibility to simplify
the numerical procedure and lead to an efficient and sta-
ble meshless implementation.

The present development of software is based on the
MLPG mixed finite volume method for solving three-
dimensional nonlinear problems. The MLS approxima-
tions are used for both velocity and velocity-gradients in-
terpolations, independently. The adoption of the Heavy-
side function as the test function eliminates the domain
integration in the local weak form. In addition, the sup-
port size and test size are determined automatically by
the program based on the nodal density and distribution.
All of these efforts lead to a high-performance MLPG
dynamic program, which shows the potential to replace
the finite element method in some computational areas,
such as solving the high-speed impact and penetration
problems. These potentials are demonstrated through
the two numerical examples. The 3D Taylor-impact ex-
ample demonstrates that the present mixed method pos-
sesses an excellent accuracy and efficiency, as compared
to the FEM. The present method requires no special nu-
merical treatments to handle the nonlinear static and dy-
namic problems, such as the reduced integration, hour-
glass control, and so on. The ballistic-impact and per-
foration example demonstrates the ability of the MLPG

mixed method in solving high-speed problems with se-
vere distortion and fragmentation. Compared with FEM,
the MLPG is not only more stable but also more efficient.
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