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Abstract: A new method for multiscale simulation
bridging two scales, namely, the continuum scale us-
ing the generalized interpolation material point (GIMP)
method and the atomistic scale using the molecular dy-
namics (MD), is presented and verified in 2D. The atom-
istic strain from the molecular dynamics simulation is de-
termined through interpolation of the displacement field
into an Eulerian background grid using the same general-
ized interpolation functions as that in the GIMP method.
The atomistic strain is consistent with that determined
from the virial theorem for interior points but provides
more accurate values at the boundary of the MD re-
gion and in the transition region between MD-GIMP.
A material point in the continuum is split into smaller
material points using multi-level refinement until it has
nearly reached the atom size to couple with atoms in
the MD region. Consequently, coupling between GIMP
and MD is achieved by using compatible deformation,
force, and energy fields in the transition region between
GIMP and MD. The coupling algorithm is implemented
in the Structural Adaptive Mesh Refinement Application
Infrastructure (SAMRAI) for parallel processing. Both
mode I and mode II crack problems are simulated using
the coupling algorithm. The stress field near the crack tip
was verified by comparing the results from the coupled
simulations with purely GIMP simulations of the same
model. Coupled simulation results were also compared
with pure MD simulation results. In both cases, a very
good agreement was obtained.
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1 Introduction

Simulations at the continuum and atomistic levels are of-
ten used to determine the material deformation and fail-
ure at their respective length scales. The atomistic simu-
lations are usually performed at very small length scales
(from nanometer to micrometer scales) and time scales (a
microsecond or less) whereas continuum simulations are
performed at larger temporal and spatial scales. While
an atomistic scale simulation can reveal the fundamen-
tal aspects of deformation and failure behavior, it can-
not be scaled up for larger length scales due to limita-
tion in computing power. However, for nanoindentation
and crack propagation problems, a combined atomistic
and continuum simulation may provide as much infor-
mation as a purely atomistic simulation would provide.
This is especially so when MD simulations are used for
regions encompassing high stress gradient zones, such
as the crack propagation zone (Kohlhoff, Gumbsch and
Fischmeister (1991)) and the workpiece just underneath
the indenter as in nanoindentation (Shilkrot, Miller and
Curtin (2002)) and a continuum region is used for rest of
the material.

Several techniques have been proposed for simulations
bridging two or more scales (Kohlhoff, Gumbsch and
Fischmeister (1991); Shilkrot, Miller and Curtin (2002);
Curtin and Miller (2003); Shiari, Miller and Curtin
(2005); Raffi-Tabar, Hua and Cross (1998)). A transi-
tion region, or handshake region, overlapped by the outer
boundary of the atomistic region and the inner bound-
ary of the continuum region, is usually used to trans-
fer the physical quantities (Kohlhoff, Gumbsch and Fis-
chmeister (1991); Shilkrot, Miller and Curtin (2002);
Curtin and Miller (2003)). In multiscale simulation, the
finite element method (FEM) is often used at the con-
tinuum level. However, waves with wavelengths larger
than the element size can be transmitted from the MD
region into the continuum region, and waves with wave-
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length smaller than the element size get reflected artifi-
cially (Raffi-Tabar, Hua and Cross (1998)). Efforts were
made to minimize the wave reflection while enforcing
the displacement and force continuity, as well as energy
conservation in the handshake region. An intermediate
scale, namely, the mesoscale simulation was also used in
bridging the continuum and atomistic simulations (Raffi-
Tabar, Hua and Cross (1998)). Recently, nonlinear defor-
mation has been considered in coupling to capture more
physical phenomenon. The coupled atomistic/continuum
discrete dislocation (CADD) method has demonstrated
superior capability in detecting dislocations from MD
simulation and passing them to the continuum region,
as well as handling explicit material defects and inclu-
sions (Shiari, Miller and Curtin (2005)). For 2D simu-
lations, the dislocations generated in the atomistic region
can propagate into the continuum region by defining con-
tinuum elements with slip planes in front of the transition
region to detect dislocations (Shilkrot, Miller and Curtin
(2002); Curtin and Miller (2003)).

Other simulation techniques, such as the meshless lo-
cal Petrov-Galerkin (MLPG) method (Shen and Atluri
(2005)), Green’s function method (Cai, Koning, Bula-
tov and Yip (2000)), and coarse-grained molecular dy-
namics (Rudd, Broughton (1998)) are also used at the
continuum level. These techniques show advantages in
heat transfer, stress compatibility, and minimizing wave
reflection for the coupling between atomistic and contin-
uum levels. Mesh distortion associated with FEM is an
issue for large nonlinear deformations and dislocations.
Recently, the material point method (MPM) (Sulsky,
Zhou and Schreyer (1995); Sulsky and Schreyer (1996))
was introduced for dynamic simulations and the gen-
eral interpolation material point (GIMP) method (Bar-
denhagen and Kober (2004)) was presented with im-
proved simulation stability. The MPM and GIMP use
material points to represent a material continuum and uti-
lizes both the Lagrangian description for material points
carrying physical quantities and the Eulerian descrip-
tion for convection of physical variables and solution of
field equations. Since the GIMP/MPM methods do not
use a fixed body mesh so that mesh entanglement as-
sociated with highly nonlinear deformations can be pre-
vented. GIMP and MPM have been used in the compu-
tation of stresses and strains in metal forming, dynamic
fracture (Guo and Nairn (2004)), and impact problems
(Sulsky and Shreyer (1996)). Recently, GIMP has been

successfully implemented for 2D simulations covering
length scales from nanometers to millimeters (Ma, Wang,
Lu, Roy, Hornung, Wissink and Komanduri (2005)) us-
ing multi-level mesh refinement with parallel comput-
ing in the Structured Adaptive Mesh Refinement Infras-
tructure (SAMRAI) (Hornung and Kohn (2002)) frame-
work. The GIMP refinement technique proposed here
has made it possible for coupling with MD so that the
advantages of GIMP/MPM methods can be fully carried
over to multiscale simulations. This paper will describe
the GIMP/MD coupling techniques, and demonstrate it
in the mode I and mode II crack propagation problems.

One aspect of the problems associated with coupling is
the conversion of physical quantities computed from MD
region to continuum region, and vice versa. MD simu-
lation gives atom positions, velocities, etc. The stresses
and strains defined in a material continuum can be com-
puted from MD simulation using various approaches
(Gao, Huang and Abraham (2001); Buehler, Abraham
and Gao (2003); Zimmermann (1999); Horstemeyer and
Baskes (2000)). The most effective standard approach
is based on the virial theorem (Marc and McMillan
(1985); Zimmermann, Webb, Hoyt, Jones, Klein, Bam-
mann (2004)). However, this approach cannot be used
to calculate the strain at the boundary of the MD region.
Some new approaches have been developed to calculate
the atomic stress more accurately. For example, Zhou
and McDowell (2004) defined an equivalent continuum
for the atomistic system with conserved momenta, work
rates, and mass. The atomic stresses are then calculated
from the internal forces and lattice constants. Hardy,
Root and Swanson (2002) computed the atomic stresses
from the contribution of nearby atoms with spatial aver-
aging formulation using a finite-valued and finite-ranged
localization function (Zimmermann, Webb, Hoyt, Jones,
Klein and Bammann (2004)).

The atomistic strain measures the deformation of the
atomic lattice. It is also used in combined atomistic and
continuum studies of material behavior. Buehler, Gao
and Huang (2004) investigated the stress and strain fields
near the crack tip in MD simulations and revealed that
continuum mechanics can be used at nanoscale. In an-
other study, Bueher, Abraham and Gao (2003) showed
that the hyperelasticity is crucial for dynamic brittle frac-
ture and when the hyperelastic zone approaches the en-
ergy length scale, which is defined as a function of the
modulus and applied stress, the energy transport process
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is dominated by hyperelasticity in a harmonic solid with
a mode I crack.

This paper presents a method for coupling MD with
GIMP simulations in 2D. A new formulation to compute
the atomistic strain rate and strain increment is developed
by computing the velocity gradient based on the interpo-
lation of the velocity field on a background grid. Based
on the atomic strain computation, an equivalent contin-
uum can be defined for the atomic region for the purpose
of coupling MD with continuum computations using the
GIMP method. The coupled GIMP and MD simulations
use the same background mesh. The coupling scheme
is based on the atomistic strain, stress, and deformation.
The heat conduction is neglected in current simulation,
but it can be included in the coupling algorithm with fur-
ther work. Both mode I and mode II crack propagation
problems are simulated to demonstrate the coupling ap-
proaches. The coupled simulation results are compared
with purely GIMP simulations, and pure MD simulation
for verification.

2 GIMP and Refinement

In the generalized interpolation material point method
(GIMP) (Bardenhagen and Kober (2004)), a continuum
is discretized into a collection of material points. Each
material point carries all the physical variables for a fully
defined problem in solid mechanics, such as the position,
mass, velocity, stress and strain, etc. Each material point
deforms to represent the motion of the continuum while
the mass at each material point remains constant. For
a dynamic problem, using the variational principle, the
balance of linear momentum is represented by
Z

Ω

ρa ·δvdx+
Z

σσσ:∇δvdx =
Z

Ω

b ·δvdx +
Z

∂Ω

c ·δvdx (1)

where ρ is the mass density, a is the acceleration field, b
is the body force density, σσσ is the Cauchy stress tensor, δv
is an arbitrary admissible velocity field and Ω is a region
in the current configuration (Bardenhagena and Kober
(2004)). To solve this equation, a background grid is
introduced for interpolation between the material points
and the nodes on the background grid using a weighting
function. Hence, Eq. (1) can be discretized and the equa-
tion of motion is eventually solved at each node,

ṗi = fint
i + fb

i + fext
i , (2)
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Figure 1 : Two neighboring coarse and fine grid levels in
2D GIMP computations representation

where the nodal momentum, internal force and body
force are obtained by summing the contributions from
nearby material points p to node i as ṗi = ∑

p
Sipṗp, fint

i =

−∑
p

σσσp ·∇SipVp and fb
i = ∑

p
mpbSip, respectively. mp and

Vp are the particle mass and volume, respectively. The
external force is given by fext

i =
R

∂Ωc

cSi(x)dS, where c is

the surface traction. Si(x) and Sip are the grid interpola-
tion function and the weight, respectively and their defi-
nitions will be given in section 3.2. Finally, the position,
strain, and stress of the material points can be updated
using the interpolation from surrounding nodes.

For GIMP simulations, finer computational mesh and
smaller time step should be used to maintain accuracy in
areas with high stress gradient. Both spatial and temporal
refinements have been introduced in a multilevel refine-
ment algorithm (Ma, Wang, Lu, Roy, Hornung, Wissink,
and Komanduri (2005)) in which the computational do-
main consists of a hierarchy of nested grid levels with
increasing refinement. Each finer level covers part of the
next coarse level and each level is computed separately
with its own time increment. Smaller time increments
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are used for finer levels and the communication between
two grid levels are performed when these two levels are
synchronized. Figure 1 shows two neighboring coarse
and fine grid levels in 2D GIMP computations with a
refinement ratio of two. The thick line represents the
physical boundary of the fine level with four layers of
ghost cells. Initially, four material points are assigned to
each cell at the fine level. At the coarse level, the portion
overlapped by the fine level is assigned 4 material points
per cell. Hence, these material points have the same size
and initial positions as those at the fine level. The rest
of the coarse level is assigned one material points per
cell. Two data exchange processes, i.e., refinement and
coarsening are used in the communication. The refine-
ment process passes information from a coarser level to
its next finer level, while the coarsening process passes
information from a finer level to its next coarse level. In
the refinement process, physical variables at the fine ma-
terial points inside the thick lines are copied directly to
replace the material points in the coarser level. In the
coarsening process, the physical variables at coarse ma-
terial points are copied to the ghost cells of the next finer
level.

Using SAMRAI, each grid level can be divided into mul-
tiple patches for parallel processing. Each patch is rect-
angular and is assigned to a processor. The patches are
overlapped by ghost cells for communication. The paral-
lel processing scheme will be discussed in more detail in
section 4.2.

3 MD Simulation and Atomistic Strain

Molecular dynamics (MD) simulations compute the mo-
tion of the atoms by integrating the equations of motion
given by Newton’s second law. In general, short range
interaction among atoms within the cutoff radius is gov-
erned by an atomic potential function. With the rapid
increase of computing power, MD simulation is becom-
ing a powerful tool in simulation of material behavior.
The MD code used in this paper is the LAMMPS code
(Plimpton (1995)) developed at the Sandia National Lab-
oratories.

To couple MD with a continuum simulation, using the
GIMP method, we need to pass MD results to the contin-
uum simulation. For this purpose, variables in MD must
be consistent with those in the GIMP simulation. The
most critical issue is passing the atom velocities and de-
formations to the continuum region. This involves the

computation of continuum strain fields based on the dis-
crete atom deformations.

Ba
i j =

1
λ

N

∑
b �=a

Δxab
i Δxab

j

R2
ab

(3)

where Δxab
i = xa

i − xb
i , Δxab

j = xa
j − xb

j , Rab is the unde-
formed distance between atoms a and b, and N is usually
limited to the nearest neighbors. λ is a factor depending
on the lattice structure. For example, λ = 3 for the 2D
triangular lattice if the six nearest neighboring atoms are
considered only (Zimmermann (1999)). Therefore, the
components of the Eulerian strain tensor for atom a are
found as

εa
i j =

1
2
(δi j − [Ba

i j]
−1) (4)

where δi j is the Kronecker delta. The virial strain is
meaningful instantaneously in time and space. However,
at locations where the nearest neighbor list does not exist
or cannot be determined, such as at the external bound-
ary, crack surfaces and interfaces, Eq. (3) is invalid. To
resolve this problem, we propose an alternative approach
as described in the next section to calculate the atomistic
strain based on the strain rate.

3.1 Incremental atomic strain

To construct the deformation field from the MD simula-
tion, the GIMP Eulerian background grid is utilized. All
the quantities defined at atoms, such as the mass, veloc-
ity, and forces can be projected to the background nodes
through interpolation. While the nodal positions are fixed
in space, the nodal quantities can vary with time. The ve-
locity of atom a inside the grid is

v(xa, t) =
n

∑
i=1

Sia(xa)Vi(t), (5)

where n is the number of nodes and Sia(x) is the interpo-
lation function between node i and atom a. By definition,
the infinitesimal strain tensor of atom a is then

εεε(xa, t) =
1
2
{∇u(xa, t)+[∇u(xa, t)]T}, (6)

where u(xa, t) is the displacement field. The strain rate
is given by

ε̇εε(xa, t) =
1
2
{∇v(xa, t)+[∇v(xa, t)]T}. (7)
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The velocity gradient at atom a can be expressed as

∇v(xa, t) =
n
∑

a=1
∇Sia(x)

aVi(t). Using the backward Euler

time integration scheme, we calculate the strain at atom
a for the next time step through

εεεt+Δt
a = εεεt

a + ε̇εεt+Δt
a Δt, (8)

where ε̇t+Δt
a = 1

2

n
∑

i=1
(∇SiaVt+Δt

i +Vt+Δt
i ∇Sia).

The nodal mass, force, and momentum are com-

puted from neighboring atoms as Mt
i =

n
∑

a=1
Siamt

a, Ft
i =

n
∑

a=1
Siaft

a, Pt
i =

n
∑

a=1
Sia(mt+Δt

a vt+Δt
a ), respectively. The up-

dated nodal momentum and velocity are Pt+Δt
i = Pt

i +
Ft

iΔt and Vt+Δt
i = Pt+Δt

i /Mt
i .

3.2 Interpolation function

To ensure conservation of mass, momentum, and energy
between the nodes and the atoms, the interpolation func-
tion should satisfy partition of unity. The interpolation
function Sia(x) can be chosen to be the isoparametric
shape functions used in finite element analysis. However,
the generalized interpolation functions with C1 continu-
ity in GIMP has shown better simulation stability when
an Eulerian grid is used (Bardenhagen and Kober (2004);
Ma, Wang, Lu, Roy, Hornung, Wissink and Komanduri
(2005) and it is used to compute the atomic strain in this
investigation.

The generalized interpolation function introduced by
Bardenhagen and Kober (2004) consists of two functions,
the nodal shape function and the particle characteristic
function. Both the nodal shape function and the mate-
rial point characteristic function can be extended to 3D.
In three dimensional situations, the nodal shape function
for node i is

Si(x) = Sx
i (x)Sy

i (y)Sz
i (z), (9)

and the particle characteristic function for a brick particle
p is

χp(x) = χx
p(x)χy

p(y)χz
p(z), (10)

where

Sx
i (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x−xi ≤ −Lx

1+(x−xi)/Lx −Lx ≤ x−xi ≤ 0
1− (x−xi)/Lx 0 ≤ x−xi ≤ Lx

0 Lx ≤ x−xi

, (11)

and

χx
p(x) = H[x− (xp − lx)]−H[x− (xp + lx)], (12)

where H(x) is the Heaviside step function.
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Figure 2 : 2D representation of a particle and a grid cell

Figure 2 shows a rectangular grid cell with a particle in it.
The particle position is taken at the center of the particle.
It may be noted that the grid associated with the general-
ized interpolation function is a structured grid, which is
convenient to construct and process.

Both the nodal shape function and the particle character-
istic function are a partition of unity, i.e., ∑

p
χp(x) = 1 and

∑
i

Si(x) = 1. The generalized interpolation function is a

volume averaged weighting function between node i and
material points p given by

Sip =
1

Vp

Z

Ω∩Ωp

χp(x)Si(x)dx, (13)

where Ω is the entire computational region, Ωp is the
space occupied by particle p, and Vp is the current parti-
cle volume.

The atoms are generally considered as spherical in shape.
The characteristic function of a sphere can also be found.
However, to simplify the computation of the interpola-
tion function and its gradient, we consider that the atoms
are cubic in shape with the same volume of a spherical
atom for the purpose of coupling. We also assume that
the shape and orientation of the atoms do not change in
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Figure 3 : The generalized interpolation function in 2D

the simulation. Consequently, Eq. (13) is simplified as

Sip =
1

8lxlylz

xp+lxZ

xp−lx

Sx
i (x)dx

yp+lyZ

yp−ly

Sy
i (y)dy

zp+lzZ

zp−lz

Sz
i (z)dz. (14)

The final expression of the interpolation function and its
gradient can be found in Bardenhagen and Kober (2004).
The interpolation function is plotted in Figure 3. The
vertical axis is the interpolation function and horizontal
plane is the particle position. The node is at (0, 0). The
cell size is 1×1 and the particle size is 0.5×0.5. The
interpolation function is C1 continuous. We note that the
sum of all the interpolation weights between an atom and
its neighboring nodes is one.

3.3 Numerical verification

Several MD simulations are performed to calculate the
atomistic strain in 2D. In these simulations, the atomic
potential chosen is the Lennard-Jones potential given by

U(r) = 4ε0(
σ12

r12 − σ6

r6 ) (15)

with ε0 = 1.0 and σ = 1 . The mass of each atom ma is
assumed to be 1. Dimensionless MD units are used in
this study (see, Allen and Tildesley (1989)) and there-
fore, the units for time, velocity and stress/pressure are
σ
√

ma/ε0 ,
√

ε0/ma and ε0/σ3 , respectively. The po-
tential in Eq. (15) gives the longitudinal wave speed cl =
8.99, the shear wave speed cs = 5.19, and the Rayleigh
wave speed cR = 4.80. A 2D triangular lattice is used

(a) (b) 

X

Y

Figure 4 : Two examples to calculate the atomistic
strains (a) Tension and (b) Shear

in the simulations. The model has 40 lattices in the X-
direction and 20 lattices in the Y-direction. The size of
the model is 44×39 and the cut off radius is 2.5. The
atom is assumed to be cubic with a volume of unity.

The first simulation is simple tension, as shown in Fig-
ure 4 (a). The model is constrained in the X-direction
on the left while a constant velocity is applied on two
layers of lattices on the right. The strain histories of the
atom initially at (24.5, 11.2) calculated using the virial
formula and the new incremental approach are plotted in
Figure 5 (a). It is seen that in general the strains calcu-
lated from different methods agree reasonably well. The
virial strain shows more oscillations than the incremental
strain. It may be noted that the interpolation between the
nodes and the atoms is also a spatial averaging process.
Two cell sizes, 2 and 2.5 are used in the background grid
to investigate the effect of cell size. It can be seen that
oscillations in the strain values are smaller when the cell
size is bigger and vice versa because the nodal quantities
are interpolated from a bigger number of atoms. A large
content of noise, as a result of random thermal vibration
of the atoms, has been suppressed due to averaging over
a number of atoms. For comparison, the strain from con-
tinuum simulation (assuming the model material to be
homogeneous, isotropic, and linearly elastic) using the
finite element method is also plotted. It can be seen that
all simulations show that the strain first increases at time
between t = 2.5 and 3. The calculated rise time is t = 2.8
based on the longitudinal stress wave speed.

The second simulation is a shearing problem, as shown
in Figure 4 (b). Constant upward velocity is applied on
the two lattices on the right. The resulting shear strain
at location (24.5, 11.2) is plotted in Figure 5 (b) from
these simulations. The virial strain again shows largest
variation while the strain computed from the incremen-
tal strain approach defined in this work shows much less
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Figure 5 : Strain histories from different simulations
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Figure 6 : Comparison of the normal strain of a
surface atom in tension

oscillations.

It may be noted that the approach for the computation of
the incremental atomic strain can be used for any atomic
potential functions and the lattice structures, since the de-
formation field is evaluated at the grid nodes using inter-
polation. It is known that the virial formula is not appli-
cable to atoms on the surface, see Zimmermann (1999).

The incremental formulation developed in this investiga-
tion, however, does not have this restriction because the
surface velocities can be interpolated to the background
grid correctly. The strains of the atom at the top surface
(in the middle of the model) from three computations are
plotted in Figure 6. It can be seen that atomic strain com-
puted from the incremental strain formulation is reason-
ably in good agreement with the finite element analysis.

The capability to compute the strains for atoms at the
boundary and at the surface is essential for coupling sim-
ulations. For example, the strain at the crack surface is
needed in coupling. It may be noted that the virial for-
mulation computes a transient strain so that it does not
depend on the strain history. The incremental strain pro-
posed herein is computed from the strain rate so that it
must be computed at every time increment during the en-
tire strain history of interest.

4 Coupling of GIMP and MD Simulations

4.1 Coupling scheme

To enable coupling between GIMP and MD, the informa-
tion must be exchanged between the atomistic simulation
on one side and the continuum simulation on the other. A
successful coupling is indicated by the seamless transfer
of the deformation, internal forces, heat, kinetic energy,
etc. at the interface of two different simulation regions.

In the coupling scheme presented in this paper, heat
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Figure 7 : Illustration of coupled GIMP and MD simulations. The circles represent atoms and squares (smaller than
physical size) material points. The material points connect to each other without a gap to represent continuum

transfer between the continuum and the atomistic regions
is not considered. Moreover, the transition region is as-
sumed to remain in the linear elastic regime. Figure 7
(a) shows the overall coupling model and Figure 7 (b)
shows details of the transition zone. The MD region cov-
ers a small portion of the overall model and the contin-
uum region covers the rest. The transition region, where
the communication between GIMP and MD simulations
take place is divided into three zones, namely, the inner
zone, the “incommunicado” zone, and the outer zone, as
shown in Figure 7 (b).

In the inner zone, the information is passed from MD
to GIMP. The atomic strain is computed using the incre-
mental scheme presented in Sections 3.1 and 3.3. The
velocity and strain rate at the material points overlapped
within the atomistic region are computed using Eqs. (5)
and (7) by replacing the atom positions with the posi-
tions of the material points. Hence, the stresses of these
points are computed based on continuum theories. Con-
sequently, the material points inside the atomistic re-
gion can be updated by the atomistic information. These
material points can participate in the overall continuum
computation to provide information for the rest of the
continuum region. The innermost rectangle in Figure 7
(a) represents the region in which all material points are
updated based on the atomistic information. These mate-
rial points are shown in Figure 7 (b) as filled squares. The
unfilled squares are the material points that are updated

in regular continuum computations.

The boundary atoms in the outer zone (shown as filled
circles in Figure 7) update their velocities based on the
interpolation of physical quantities computed at the back-
ground grid nodes using Eq. (5). The nodal velocities of
the background grid are computed from the velocities of
the material points weighted by the masses of the mate-
rial points, as

Vi(t) =
∑
p

Sip(xp)mpvp(xp, t)

∑
p

Sip(xp)mp
. (16)

Once the velocities of the boundary atoms are known,
their displacements can be determined from the time in-
tegration of the velocities. The width of the outer zone
should be larger than the cut-off radius to ensure that the
interactions with the interior atoms are fully defined by
the inter-atomic potentials as in conventional MD simu-
lations.

In the proposed coupling scheme, two different zones are
used for communication in different directions, i.e. from
GIMP to MD or from MD to GIMP. The “incommuni-
cado” zone is between the inner and outer zones. This
zone serves as a buffer for the communication between
the material points and the atoms and contains 3 to 4 lay-
ers of material points. In this coupling scheme, iteration
to obtain the converged solution in the transition zone
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is not necessary, as the source of information is guaran-
teed to be correct and the communication in each zone
is unidirectional. This approach not only simplifies the
coupling algorithm but also improves the stability and re-
duces the computational cost.

The time step for MD simulation is usually smaller than
the time step for GIMP and can be used in the coupled
simulation to reach stability in coupled simulation. How-
ever, with the use of this small MD time step as the
time step in the overall coupled simulation, the amount
of computation is enormous. In this coupling algorithm,
a temporal coupling scheme is developed. A temporal
factor N is defined as the ratio of the GIMP time step to
the MD time step, i.e.,

N =
dtGIMP

dtMD
, (17)

where dtGIMP = cL/
√

E/ρ is the GIMP time step, L is
the cell size, and c is a constant factor (0.1 in this paper).
In the coupling, MD simulation advances N time steps
for each GIMP time step. In the computation, the GIMP
time step is estimated first based on the ratio of the cell
size to the stress wave speed. Next, the temporal factor
N is rounded to an integer based on Eq. (17). Finally, the
GIMP time step is determined from dtGIMP = N · dtMD.
The reduction in the computational time as a result of
temporal coupling scheme is significant, as indicated by
the numerical examples that will follow.

We next summarize the coupling scheme with the aid of
the flowchart shown in Figure 8. The material points in-
side the atomistic domain are updated based on the nodal
information interpolated from the atoms. These mate-
rial points join the GIMP calculation to provide bound-
ary conditions but are not updated again. The velocity
and position of the boundary atoms are updated based
on the nodal information interpolated from the material
points. These boundary atoms join the MD calculation to
provide the boundary conditions as well, but the veloci-
ties are not updated. The concept of temporal coupling
is introduced by advancing the MD simulation N steps
for every GIMP step, in order to reduce computational
time. It may be noted that the material points further in-
side the MD region can be ignored to reduce the amount
of computation since only a few layers of material points
are needed to provide boundary conditions to the exterior
material points.

One regular GIMP step, but do

not update the material particles

inside MD region  

Update the velocities of the

boundary atoms  

One regular MD step, but do

not update the velocities of the

boundary atoms  

Update the material particles

inside MD region  

N times? 
No

Yes, next increment 

Figure 8 : Flow chart of the coupling algorithm for each
increment

4.2 Parallel processing of the coupled model

Level 1 (coarsest)

Level 2 

Level_3

MD domain

Figure 9 : Illustration of three GIMP grid refinements
and the domain decomposition for coupling

The parallel processing for the GIMP with multilevel re-
finement using SAMRAI has been discussed in detail in
a previous paper (Ma, Wang, Lu, Roy, Hornung, Wissink
and Komanduri (2005)). The coupling between GIMP
and MD is performed at the finest level only, which
is always larger than the MD domain. And the finest
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level is divided into rectangular regions using SAMRAI
“patches”. Each patch is assigned to one processor and
the communication between patches is performed after
each patch is computed. To eliminate data transferring
between processors in the coupling process, the MD re-
gion is decomposed into rectangular regions that are of
the same size as the patches. Each processor thus handles
the same spatial region for both GIMP and MD. Figure
9 shows three levels of refinement for GIMP with MD
coupled in the finest level. The dashed lines divide the
finest level as well as the MD domain into six rectangu-
lar regions. Each region is computed by a processor and
the communication between the material points and the
atoms for coupling is performed within the processor. No
data transfer between the processors is necessary. One
disadvantage of this approach is that the load balancing
of the processors is more difficult due to changing num-
ber of atoms and material points during computation.

5 Numerical Results

5.1 Multiscale simulation of mode I crack

H

a

L

p

p

X

Y

Figure 10 : Coupled GIMP/MD simulation of a 2D mode
I edge crack. The dashed lines are boundaries of the
atomistic domain

The coupling scheme is implemented into a multiscale
simulation of a mode I crack problem as shown in Figure
10. The overall model size is 1968×1808 and the size of
the MD domain is 890×600. Three levels of refinement
in GIMP are applied. The finest level has a grid size of 4
and the two coarser grid sizes are 8 and 16, respectively.
The finest level is coupled with MD and is divided into
six patches as shown in Figure 9. It may be noted that

(a) Pure GIMP  

(b) Coupled 

(c) Coupled after eliminating the
material points inside MD 

Figure 11 : Stress distribution at simulation time t = 64
with the applied pressure p = 0.3
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(a) Pure GIMP  

(b) Coupled 

(c) Coupled with elimination of 

material points inside MD 

Figure 12 : Stress distribution at simulation time t = 112
with the applied pressure p = 0 .3

the sizes of the material points and the grid cells deter-
mine the cut-off wavelength that can be transmitted from
the MD simulation to the continuum. In this simulation,
the high frequency waves are not desirable in the contin-
uum region. Hence, to conserve computational time, the
minimum grid size is chosen as 4. The total number of
atoms is 497,111 and the initial crack length, a is 498 at
the height, Y is 301. The applied pressure, p is 0.3 and
the time step of the MD simulation is 0.002. The tem-
poral factor N is chosen as 40, and therefore, the GIMP
time step for the coupling level is 0.08. For comparison,
the same problem is also simulated using GIMP alone
without coupling.

Figure 11 shows the stress distribution in the model at
simulation time t = 64 when the stress wave just trav-
eled to the transition region. Figure 11 (a) corresponds
to pure GIMP simulation, and Figure 11 (b) with cou-
pling. Due to thermal vibrations of the atoms, the stress
in the MD region varies randomly between ±0.15∼0.2
at stress free state. The material points further inside the
MD region can be ignored and hence dumped to reduce
the computational load. Figure 11 (c) shows the results
for this case in which only 3 layers of material points im-
mediately inside transition region are kept and the rest
dumped. It can be seen that the stress distribution is not
affected by eliminating the material points inside the MD
region. The computational time, however, was reduced
by ∼50% for this case. Close to the crack tip, the stress
distribution is affected by dislocations and crack propa-
gation. In later discussions, we present only the results
with material points in the middle eliminated.

Figure 12 (a), (b) and (c) show the stress distributions
at time t = 112. At this instant the stress concentration
at the crack tip has resulted in the initiation and opening
of the crack. The stress fields from pure GIMP simula-
tion and coupled simulation are shown in Figure 12 (a)
and (b), respectively. The difference in the value of the
maximum normal stress in the Y-direction is 8%. The
coupling region is zoomed in and shown in Figure 13,
corresponding to the region indicated by the dashed rect-
angle in Figure 12 (c). The material points at three levels
of refinement are plotted with different sizes. Only 20%
of the atoms are plotted in Figure 13 to reveal the material
points within the transition region overlapped by the MD
region. The material points further inside the MD region
were eliminated in simulations as indicated in Figure 13.

It may be noted that the reduction of computational time
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MD 

3 levels 

Figure 13 : Simulation model with an edge crack with
p = 0.3 at t = 208
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Figure 14 : Energies in the model with p = 0.15

due to temporal coupling with N = 40 is about 75% as
compared to the same simulation with N = 1 (no tempo-
ral coupling). The GIMP step involves regular GIMP cal-
culation and communication between patches and levels
(refinement and coarsening). In this coupling example
the computational time of one GIMP step is longer than
that of an MD step. Temporal coupling has reduced the
computational time significantly while maintaining the
accuracy of coupling, as shown in Figure 12.

To investigate the energy release rate of a mode I crack
using the coupling algorithm, a tensile pressure of 0.15 is
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Figure 15 : Energy release rate with p = 0.15

applied from t = 0 to t = 210. The crack started to prop-
agate at t = 225 and stopped at t = 334. The external in-
put energy, the total potential energy and the total energy
from the simulation are plotted in Figure 14. Due to nu-
merical damping in the GIMP part of simulation, the total
energy decreases as time increases. The energy loss at t =
360 is 20%. Numerical simulation was conducted for the
same model without damping and the difference between
the input energy and the system energy gain is less than
8%. In this case, it was observed that the total computed
energy in the model varied with time about a mean value
which was the external input energy. The potential en-
ergy is the sum of the potential energy of the atoms and
the strain energy of the material points. It increases at
first when the model is stretched. After the crack starts
to propagate, the potential energy decreases. The energy
release rate, as well as the crack resistance for this sim-
ulation, is plotted in Figure 15. The energy release rate
fluctuates as the crack propagates and its magnitude is
larger than the crack resistance. After t = 330 the energy
release rate decreases below the crack resistance, leading
to crack arrest.

5.2 Atomic friction between two plates

Next, we use the coupling algorithm to simulate the
atomic friction between two plates of the same material
at 0 K temperature. The model is of the same size and
the MD potential is the same as the one shown in Figure
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X

Y

Vx

Vy

Crack

Weak zone 

Figure 16 : Applied boundary conditions to simulate the
atomic friction problem

10. It was simulated by applying velocities on the left
side of the model as shown in Figure 16. The applied
shearing velocities in the X-direction, were -0.1 and 0.1
for the top and bottom halves, respectively. The inter-
face was assumed to be atomically smooth and the fric-
tion/interaction was governed by the pairwise L-J inter-
action with a break radius of 1.6. Hence, the interface
is a weak zone compared to the interior of each block.
Moreover, in order to create a pure shearing condition at
the interface and to eliminate the boundary effect, the in-
terface up to X = 67 was set free. To avoid the contact
and penetration of the free interfaces, a small velocity Vy

was applied on the left boundary, 0.003 to the top half
and -0.003 to the bottom half. At the right , both the top
and bottom surfaces were constrained in the Y-direction
to avoid possible rotation of the model in the simulation.

The velocities of the atoms in the X-direction from the
coupled simulation are plotted in Figure 17 (a). The path
of the shearing front was observed to be straight, as an ex-
tension to the initial free interface. The relative shearing
motion between the two layers of atoms, which slipped
against each other, occurred in the stick/slip mode, as in-
dicated by Figure 17 (a). The blue spots indicate atoms
moving to the left at a velocity of∼0.7 and relative veloc-
ity between the atoms on the top and bottom is ∼0.8. Be-
tween the blue spots, the relative velocity is very small,
in the range of 0 to 0.2. Most of the shear surfaces stick
together and slip occurs at isolated spots.

The model was simulated with pure MD to verify the
coupling algorithm. The velocities of the atoms in the X-

(a) Coupled 

(b) Pure MD 

Figure 17 : Comparison of the velocities in the X-
direction from pure MD and coupled simulations at t =
112

direction from the pure MD simulation are shown in Fig-
ure 17 (b). It can be seen that the velocity contours match
well with the coupled simulations, providing further veri-
fication on the accuracy of the coupling algorithm. It may
be noted that for this size of model, there are 3.3 million
atoms in the pure MD simulation, and only 0.5 million
atoms and three levels of material points in the coupled
simulation. The computation time and memory for cou-
pled simulation are 8% and 30% less than that for the
pure MD simulation, respectively. As the model grows
bigger, there will be more savings in both computation
time and memory consumption.

As shown in Figures 18 (a) and (b), at t = 56, the first
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(a) t = 56 

(c) t = 72 

(b) t = 64 

(d) t = 112 

Figure 18 : Evolution of multiple slip and Mach lines

slip spot is generated at the crack tip and it propagates to
the right at a speed of 3.2. At t = 64, a second slip is de-
veloped, respectively. At t = 72, a third slip is developed
and symmetric Mach lines at the first slip location can be
observed clearly and these Mach lines form a 45 degree
angle with the slip path as shown in Figure 18 (c). The
Mach lines travels in the same direction as the slip loca-
tion and a pair of Mach lines are generated for each sub-
sequent slip location. The Mach lines for different slip
locations are nearly parallel to each other, as shown in
Figure 18 (d). Similar Mach lines under micro stick/slip
conditions were observed by Coker, Lykotrafitis, Needle-
man and Rosakis (2005) at the continuum scale.

The atom velocities and potential energies along the slip

plane at t = 112 are plotted in Figure 19. The deep val-
leys in the velocity diagram correspond to the slip zones,
slipping to the left as indicated by negative velocities.
The areas of small variation in velocity between neigh-
boring deep valleys correspond to the stick area. Within
the stick zone between two deep valleys in velocity di-
agram, the oscillation in velocity could potentially indi-
cate some stick/slip at a smaller scale within the larger
scale stick zone. It may be noted that a zero Kelvin tem-
perature was assigned at the beginning of the simulation,
so that the velocity variation between two deep valleys
was most likely induced by even smaller scale stick/slip
phenomenon.

The potential energy at each slip zone is high due to
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Figure 19 : Atom velocity and potential energy along
slip plane at t = 112

lattice dislocations along the slip plane. Within each
stick zone, the potential energy is low, indicating that the
atoms have partially returned to the regular lattice posi-
tions, giving lower potential energy as a result. This pro-
cess is usually called self-healing. It can be seen from
Figure 19 that both kinetic (inferred from velocity di-
agram) and the potential energies at each slip zone are
high. During slipping, the atoms on top of the slip plane
move to the left according to the applied boundary condi-
tion, pulling the neighboring atoms at the right to the left,
and transferring part of the high energies to these neigh-
boring atoms at the right, and in the meanwhile, causing
the slip pulse to move to the right. As the shearing con-
tinues, slip zones possessing high energies are created
one by one and extend to the right.

6 Conclusions

A coupled atomistic/continuum simulation method is
presented by coupling MD simulations with GIMP sim-
ulations. To enable coupling, a method for the computa-
tion of atomistic strain is developed based on the compu-
tation of strain rate. The atomic strain rate is computed
by first interpolating the velocities of the atoms to the
background Eulerian grid and then computing the gradi-
ent of grid velocities. The computed atomic strain shows
less cyclic variation than that computed by the virial the-
orem due to noise reduction in the interpolation process.

The generalized interpolation function is chosen as the
interpolation function for GIMP and a structured grid is
used for the background grid. The atomic stress is then
computed based on strain using the isotropic and homo-
geneous constitutive law.

The coupling algorithm uses a common background grid
for MD and GIMP. The velocities of the boundary atoms
are computed from the grid velocities which are interpo-
lated from the material points. The material points inside
the MD region are updated based on the atomic informa-
tion and these points join rest of the material points in
the GIMP computation. This approach ensures the com-
patibility of deformation and stresses at the MD/GIMP
interface region.

A multi-level refinement scheme for GIMP is used to re-
fine the material points close to the atomistic size. The
coupling algorithm is implemented using the SAMRAI
(Structural Adaptive Mesh Refinement Application In-
frastructure) for parallel processing. The finest GIMP
level is coupled with the MD simulation. The MD region
is decomposed into domains with the same geometry as
the GIMP patches. Each patch is assigned to a processor
and the coupling between the atoms and material points
is performed inside each processor without extra inter-
processor communication.

The coupling algorithm was verified by comparing the
coupling results with pure GIMP and pure MD simula-
tions.

A mode I crack propagation problem was simulated us-
ing the coupling technique presented here. The stress
field of the coupled model is verified through compari-
son with pure GIMP simulations in the elastic stage. The
energy release rate is also computed. It is found that the
crack arrests after the energy release rate is less than the
crack resistance.

In model II loading, stick/slip pulses were observed at the
crack surfaces and the results compared well with pure
MD simulation. Within (larger) the sticking zones there
are smaller scale high frequency component of stick/slip
pulses.

While the current implementation is in 2D, the coupling
algorithm can be extended to 3D.
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