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A lattice-based cell model for calculating thermal capacity and expansion of single
wall carbon nanotubes

Xianwu Ling1 and S.N. Atluri

Abstract: In this paper, a lattice-based cell model is
proposed for single wall carbon nanotubes (SWNTs).
The finite temperature effect is accounted for via the lo-
cal harmonic approach. The equilibrium SWNT config-
urations are obtained by minimizing the Helmholtz free
energy with respect to seven primary coordinate vari-
ables that are subjected to a chirality constraint. The
calculated specific heats agree well with the experimen-
tal data, and at low temperature depend on the tube radii
with small tubes having much lower values. Our calcu-
lated coefficients of thermal expansion (CTEs) are uni-
versally positive for all the radial, axial and circumferen-
tial directions, and increase with increasing temperature.
The armchair tubes see very large circumferential CTEs,
while the zigzag tubes see very large axial CTEs. The
tube chirality affects mostly the axial and the circumfer-
ential CTEs, but not the radial CTEs.

1 Introduction

Carbon nanotubes (CNTs) possess high stiffness and
strength and low aspect ratio and density. These ex-
traordinary mechanical properties arouse tremendous in-
terests in CNTs-based nanocomposites [Srivastava &
Atluri (2002), Chung & Namburu (2004), Shen & Atluri
(2004), Nasdala, Ernst & Lengnick (2005), Gao & Gao
(2005)]. Thermal conductance and expansion of the
CNTs are two key properties influencing the mechani-
cal behaviors of the nanocomposites in manufacturing
and operation. Electrically, a single wall carbon nan-
otube (SWNT) can be either metallic or semi-conducting
depending on its chirality, leading to the possibility to
create CNT-based nanoscale electronic device compo-
nents [Maiti (2002)]. The observation that conductance
of a metallic CNT changes by orders in magnitude when
strained also opens the door to the potential application
of strain-tuned nanoscale electronic transducer, transis-
tor and switcher [Yang, Han & Anantram (2002)]. The
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thermal properties of CNTs also play critical roles in con-
trolling the performance and stability of these nanoscale
electronic components [Liew, Wong & He (2005)].

Many research efforts have been made to determine the
specific heat of CNTs, both theoretically and experi-
mentally. Yi, Lu, Zhang, Pan & Xie (1999) experi-
mentally indicated that over the temperature range of
10− 300oK, the specific heat of multiwall carbon nan-
otubes (MWNTs) follows a linear temperature depen-
dence, which they attributed to the constant phonon spec-
trum. Their results indicated that the out-of-plane acous-
tic mode (as in a graphene sheet) dominated the heat
capacity. Mizel, Benedict & Cohen (1999) measured
the specific heat for MWNTs in the temperature range
1 < T < 200oK and found a quadratic temperature depen-
dence of the specific heat at low temperature (< 50oK)
and a linear temperature dependence above that. Hone,
Batlogg, Benes & Johnson (2000) and Popov (2002)
made similar observations as Mizel, Benedict & Cohen
(1999). Cao, Yan & Xiao (2003) calculated the specific
heat using a two-atom unit cell model and the lattice dy-
namics. The specific heat was found to be proportional
to the tubule diameter at low temperatures and inversely
proportional to the square of the diameter at high tem-
peratures. Zhang, Xia & Zhao (2003) used a contin-
uum based model to calculate the phonon dispersion re-
lations for SWNTs, based on which they found that the
axial lattice wave propagations contributed the most to
the specific heat. Li & Chou (2005) calculated the spe-
cific heat of SWNTs using molecular structural mechan-
ics and showed that the specific heat increased with in-
creasing tube diameter within the temperature range of
25−350oK.

Studies on the thermal expansion of CNTs are very lim-
ited. Due to the difficulty in nanoscale experiments,
most of the experiments focused on CNT bundles and
ropes. Ruoff & Lorents (1995) suggested that the radial
coefficient of thermal expansion (CTE) of MWNTs be
essentially identical to the axial CTE. The radial CTE
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of MWNTs was found to increase with temperature,
nearly identical to that of the c-axis thermal expansion
of graphite [Bandow (1997)]. The average tube diam-
eter was observed to increase with increasing growth
temperature [Bandow & Asaka (1998)]. Maniwa, Fuji-
wara, Kira & Tou (2000) reported a radial CTE range of
1.6×10−5−2.6×10−5/K for the MWNTs. The X-ray
studies by Yosida (2000) and Maniwa, Fujiwara & Kira
(2001) on SWNT bundles suggested negative radial CTE
at low temperatures and positive radial CTE at high tem-
peratures. Although the CTE of SWNT is of fundamental
importance to both the nanoelectronics and nanocompos-
ites, experimental data are not available on the CTE for
individual SWNT. Theoretical investigations of the ther-
mal expansion of SWNTs are also lacking, and some-
times with contradicting results. Raravikar, Keblinski
& Rao (2002) performed MD simulations on (5,5) and
(10,10) nanotubes and reported temperature independent
positive values for both the radial and axial CTEs. The
MD simulations by Kwon, Berber & Tománek (2004) in-
dicated negative CTES for SWNTs up to 900oK. Jiang
& Liu (2004) showed that both the radial and axial CTEs
of SWNTs are negative at low temperature but positive at
high temperature, but they did not consider the multibody
interactions in deriving the atom vibrating frequencies.
Lately, the molecular structural approach by Li & Chou
(2005) indicated that both the axial and radial CTEs were
positive and increase with increasing temperature.

In this paper, we endeavor to analyze the specific heats
and the thermal expansion based on a lattice-based cell
model. In Section 2, the framework of the cell model for
calculating the specific heat and the thermal expansion
coefficient is presented. In Section 3, we present results
and analysis of the calculated specific heats and CTEs
versus temperature and tube radii for different tube chi-
ralities. Section 4 summarizes the work.

2 Cell model for SWNT using the local harmonic
approach

The cell model for SWNT is illustrated in Figure 1. In
Figure 1, the representative atom A is surrounded by
three nearest neighbor atoms B, C and D, forming a lat-
tice cell that can be taken as the basic element of the
tube. The second nearest neighbor atoms B1, B2, C1,
C2, D1, D2 interact with A through multibody atomistic
potentials (e.g., the Tersoff-Brenner potential in below).
Now we introduce a polar coordinate system such that

xA = r, yA = zA = 0, where r is the radius of the tube.
The polar coordinates of atom B are given by (r,ϕB, zB),
where ϕB = cos−1xB/r. The positions of atoms C,D are
similarly given. The second nearest neighbor atoms are
located using the nearest neighbor atom coordinates. For
instance, the equivalence of bond BB1 and CA yields

ϕB1 = ϕB +(ϕA −ϕC) = ϕB −ϕC , (1)

zB1 = zB +(zA− zC) = zB − zC. (2)

Similarly, the positions of B2, C1, C2, D1, D2 can be
derived.

(a) Tubular SWNT

(b) Unrolled planar structure

Figure 1 : Cell model of SWNT in the tubular and un-
rolled planar structures.

SWNTs can be imagined as a rolled graphene sheet. The
unrolled planar graphene sheet, as illustrated in Figure
1(b), can be visualized by cutting the SWNT along its ax-
ial direction followed by “unrolling” it without stretching
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to the tangent plane at A. In the planar graphene, we set a
2D Cartesian coordinate system such that xA = 0, yA = 0.
Then, the positions of the nearest neighbor atoms in
the 2D Cartesian system are given by (rϕi, zi), where
i = B,C,D. The graphene basis vectors a1 and a2 are
now given by

a1 =
−→
BD = [r(ϕD −ϕB), zD− zB] , (3)

a2 =
−→
CD = [r(ϕD −ϕC), zD− zC ] . (4)

In carbon nanotubes (CNTs), the graphene is rolled up in
such a way that a graphene lattice vector c = na1 + ma2

becomes the circumstance of the tube, where the chirality
(n,m) uniquely determines the tube. Utilizing the equa-
tions (3) and (4), the circumstance of the tube is now
given by

|c|= √
c · c

=
√(

r2 [n(ϕD −ϕB)+m(ϕD −ϕC)]2

+[n(zD − zB) +m(zD − zC) ]2
)
. (5)

Meanwhile,

|c|= 2πr. (6)

Equations (5) and (6) yield

g = r2( [n(ϕD −ϕB)+m(ϕD −ϕC)]2 −4π2)
+[n(zD − zB) +m(zD − zC) ]2 ≡ 0, (7)

where g is a geometric constraint that connects the tube
chirality to the coordinate variables.

LeSar, Najafabadi & Srolovitz (1989) proposed the local
harmonic (LH) approach to calculate the Helmholtz free
energy for a finite-temperature equilibrium atomic solid.
At the heart of the LH approach is the local description
of the atomic vibrations, i.e.,∣∣∣∣ω2

iκI3×3− 1
mC

∂2Utot

∂xi∂xi

∣∣∣∣ = 0, i = 1,2, . . . N, (8)

where mC is the carbon atom mass, Utot is the total poten-
tial energy of the system, and ωi is the vibrating frequen-
cies of atom i (varying from 1 to N – the total number of
atoms) in the κ(= 1,2,3) direction determined with the
rest atoms fixed at their equilibrium positions (as implied
by the partial derivatives). The LH model neglects the

vibration coupling among different atoms, thus provid-
ing an computationally efficient and conceptually simple
method to calculate the free energy of a system.

In order to calculate the total potential Utot , the in-
teratomic potential is introduced herein. For carbon
atoms, we employ the Tersoff-Brenner potential [Bren-
ner (1990)], which is expressed as

Vi j = VR(ri j)−B i jVA(ri j), (9)

for atoms i and j, where ri j is the distance between them.
The repulsive and attractive terms are given by

VR(r) =
D(e)

S−1
e−

√
2Sβ(r−R(e)) fc(r), (10)

VA(r) =
D(e)S
S−1

e−
√

2/Sβ(r−R(e)) fc(r), (11)

where the function fc is a smooth function used to limit
the range of the potential to the nearest neighbor atoms,
i.e., fc(r) = 1, 1

2{1 + cos
[
π(r−R(1))/(R(2)−R(1))

]},0
for r < R(1),R(1) < r < R(2), r > R(2), respectively. The
parameter B i j takes account of the multibody interaction
through the bond angles formed at atom i, and is given
by

B i j =
1
2

(Bi j +B ji) , (12)

where

Bi j =

[
1+ ∑

k( �=i, j)
G

(
θi jk

)
fc(rik

]−δ

, (13)

G(θ) = a0

[
1+

c2
0

d2
0

− c2
0

d2
0 +(1+cos θ)2

]
, (14)

and where cosθi jk = r2
i j + r2

ik − r2
jk/2ri jrik defines the an-

gle subtended by the adjoint carbon bonds i− j and i−k.
The material parameters employed in this paper are given
in the Appendix.

The Helmholtz free energy using the local harmonic
model is now given as [LeSar, Najafabadi & Srolovitz
(1989), Foiles (1994)]:

H = Utot +kBT
N

∑
i=1

3

∑
κ=1

ln

[
2sinh

(
hωiκ

4kBT

)]
, (15)



94 Copyright c© 2006 Tech Science Press CMES, vol.14, no.2, pp.91-100, 2006

where kB and h are the Boltzmann and the Planck’s con-
stants, respectively. The total potential Utot directly in-
fluenced by a change of atom A’s position is reflected in
those bonds of the first closest layers, i.e., AB,AC,AD,
and through the bond angles in those of the second closet
layers, i.e., BB1,BB1,CC1,CC2,DD1,DD2. Therefore,
the total energy can be expressed as

Utot = VAB +VAC +VAD

+VBB1 +VBB2 +VCC1 +VCC2 +VDD1 +VDD2

+bond energies independent of atom A. (16)

Jiang & Liu (2004) erroneously neglected the multibody
energy contributions represented by the second line on
the right-hand side of equation (16), as the second nearest
neighbor atoms (B1, B2, C1, C2, D1, D2) could not be
characterized in their model.

The vibrating frequencies at atom A can now be derived
by substituting the total energy Utot (16) into equation
(8). In doing so, we point out the seven primary variables
(namely, unknowns) in our model, i.e., (ϕB, zB), (ϕC , zC),
(ϕD, zD) and r. The second nearest atoms are specified
using the bond equivalence as represented by equations
(1) and (2). It can be readily proved for a SWNT of a
homogenous temperature T , the frequencies ωiκ are in-
dependent of the atom i and can be taken the same as
those of the representative atom A. However, we need
to mention that although the global diagonalization from
the quasiharmonic to the local harmonic approaches de-
couples the vibrating among atoms, the directional cou-
pling within the local harmonic model cannot be readily
taken as null. Hence, the off-diagonal component in the
local dynamic matrix cannot be neglected as did in Jiang
& Huang (2005).

Now the Helmholtz free energy of the system at finite
temperature can be obtained as

H = Utot +kBT N
3

∑
κ=1

ln

[
2sinh

(
hωAκ

4kBT

)]
, (17)

where ωAκ is also a function of the primary variables.
The total potential energy Utot for the Tersoff-Brenner
formalism can be written as

Utot =
1
2 ∑

i
∑
j �=i

Vi j. (18)

Using the bond equivalence, it can be shown that

Utot = NUa, (19)

where

Ua =
1
2

(VAB +VAC +VAD) (20)

is the potential energy per atom. Therefore, the
Helmholtz free energy per atom Ha for the LH approach
can be expressed as

Ha = Ua +kBT
3

∑
κ=1

ln

[
2sinh

(
hωAκ

4kbT

)]
. (21)

The equilibrium atom positions for SWNTs at homoge-
nous finite temperature T can be obtained by solving for
the minimum of Ha, i.e.:

∂Ha

∂ϕi
= 0,

∂Ha

∂zi
= 0, and

∂Ha

∂r
= 0, (22)

where i = B,C,D. Note that the minimization is sub-
jected to the nonlinear chirality constraint g ≡ 0.

Once the equilibrium configuration is solved, the specific
heat per mass is given by [Jiang & Huang (2005)]

Cv =
kB

mC

3

∑
κ=1

(
1
T − d lnωAκ

dT

)
ω2

Aκ

sinh2 (ωAκ)
, (23)

where

ωAκ =
hωAκ

4πkBT
, (24)

is the dimensionless frequency. For numerical conve-
nience, (23) is approximated using a backward difference
scheme.

The thermal expansion is characterized by the coefficient
of thermal expansion, defined as

αi =
1
li

dli
dT

, (25)

where li is the instantaneous length given by

lz = max (zB − zC, zD − zC) ,

lr = r,

lc = r max(ϕD −ϕB,ϕD −ϕC) ,

where z, r, c represent respectively the axial, radial and
circumferential directions. In our numerical implemen-
tations, a central finite difference scheme is employed to
approximate (25), i.e.,

αi =
1
lT
i

lT+ΔT
i − lT−ΔT

i

2ΔT
. (26)
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3 Results and discussions

Figure 2 shows the calculated Cv for the armchair (n,n)
SWNTs. In Figure 2(a), for comparison purpose, the spe-
cific heats for graphite and diamond are also shown. In
Figure 2(b), the calculated Cv’s are shown for the low
temperature range of 2− 300oK, together with Hone et
al. [Hone, Batlogg, Benes, et al. (2000)] measured data
for SWNT ropes. Over a wide range of temperature sim-
ulated, especially for high temperature above 100oK, the
present analysis agrees well with the experimental data.
The results indicate that the specific heats do not depend
on the radius of the nanotubes, except at temperature
range of 2−300oK. This high temperature independence
of the specific heat was attributed to the phonon states of
the constituent graphene sheet [Hone, Laguno & Biercuk
(2002)]. The calculated high temperature specific heats
approach the theoretical limit value of 2078mJ/g− K,
regardless of the the chirality and radius of the tube.

Figure 3 shows the specific heats versus the radius of
the nanotubes at three levels of temperature. The open
symbols represent the data for the armchair tubes, while
the the filled tubes represent those for the zigzag tubes
(5,0), (10,0), (20,0), (30,0). Figure 3 further con-
firms that the specific heats are radius independent at
high temperature, and that at low temperature, the spe-
cific heats show a strong dependence on the tube ra-
dius for small tubes and a weak dependence on the tube
radius for large tubes. No obvious differences are ob-
served for the armchair and zigzag tubes. We also calcu-
lated the Cv for different tube chiralities (25,m), where
m = 0,3,6,9,15,20,25. Our results (not shown here) in-
dicate that Cv is only very slightly dependent on the chi-
ralities of the tubes and that Cv’s for the chirality tubes
(with m = 3, . . .,20) are contained in those of the arm-
chair and the zigzag tubes.

Our results deviates below the experimental data for tem-
perature lower than 100oK. Figure 4 shows the contribu-
tions to the specific heat from the three atom vibrating
modes for (10,10) tube. As observed by Yi, Lu & Zhang
(1999), at low temperature, our results clearly show that
the out-of-plane vibrating mode (the radial mode) domi-
nates the specific heat of the SWNT. As the temperature
increases, the contributions from the circumferential and
then the axial vibrating modes gradually increase. Fig-
ure 5 gives the normalized atom vibrating frequencies
ωκ for the armchair tubes (n,n). It can be seen that ωκ
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Figure 2 : Temperature dependence of specific heat for
(n,n) SWNTs.

(expect κ = r) is quite independent on the radius of the
tubes. In Figure 5, we also plot the horizontal line of
ln(2sinhω) = 0, namely, ω = 0.48. Above about 500oK,
ωr turns to increase, instead of decreasing, the Helmholtz
free energy. The radial mode is unique to the SWNTs
[Ravavikar, Keblinski & Rao (2002)]. The discrepancy
of the calculated Cv at low temperature is caused by the
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Figure 3 : Radius dependence of specific heats for
SWNTs.

overestimated radial vibrating frequency, which should
be much more constrained by the compressed out-of-
plane π bonding orbitals. In the original formalism of
Brenner’s potential [Brenner (2000)], the π bond is re-
flected in the multibody term B i j as

B i j =
1
2

(Bi j +B ji)+Bπ
i j, (27)

where

Bπ
i j = ΠRC

i j +BDH
i j , (28)

and where the first term ΠRC
i j represents the influence of

radical energetics and π bond conjugation on the bond
energies, and the second term BDH

i j depends on the di-
hedral angle for carbon-carbon double bonds. We tried
a constant Bπ

i j = −0.0243 (taken from Brenner [Bren-
ner (1990)] for grahpite) in our calculations. The results
overpredicted the low temperature specific heat (compar-
ing to the experimental data) by nearly two times, but
approached the experimental values at high temperature
(starting at ∼ 300oK). Due to lack of Bπ

i j data and their
derivatives for SWNTs, we made no further attempt in
enhancing the calculated low temperature specific heat.

Figure 6 shows the calculated CTE for the armchair,
zigzag and chirality tubes. In each case, the axial and
circumferential CTEs are also zeroes at 2oK, but being
shifted an amount upwards for clarity. In accordance
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Figure 4 : Mode contributions to specific heats for
(10,10) tube.
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Figure 5 : Normalized atom vibrating frequencies for the
armchair tubes.

with Li et al.’s [Li & Chou (2005)] calculations, our re-
sults indicate universal positive CTEs for the radial, ax-
ial and circumferential directions. As can be seen from
6(a), for the armchair (n,n) tubes, the smaller tubes have
slightly higher axial but lower radial CTEs than the larger
tubes. The two large tubes (20,20) and (25,25) shows
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almost the same CTEs, which means that the CTEs are
radius independent for large tubes. To the best the au-
thor’s knowledge, the circumferential CTE is for the first
time reported in the literature. Interestingly, for the arm-
chair tubes, the radial and the circumferential CTEs do
not follow the same path. For instance, the small tube
(5,5) has a lower αr but a much higher αc than those
of (10,10), although one might expect αc = αr. This
seemingly contradiction reflects the self-adjusting of the
unit cell composed of atoms A, B, C, D in the minimiza-
tion process of the Helmholtz free energy. For the small
tubes, the paradox suggests more self-extension in the
circumference.

The CTE variations for the zigzag tubes are shown in Fig-
ure 6(b). For the zigzag tubes, the tube radius has a more
pronounced effect on the thermal expansion. The large
tube (30,0) has a radial CTE that is nearly two to three
times larger than that of the small tube (5,0). But the ax-
ial CTE for (30,0) is about two to three times lower than
that for the small tube (5,0). Very high axial CTEs are
observed for the small zigzag tube. Note that the axial
direction for the zigzag tubes is the circumferential di-
rection for the armchair tubes. Hence, this observation
of high axial CTEs for the zigzag tubes is in accordance
with the above observation of high circumferential CTEs
for the armchair tube. The explanation for this prefer-
ence of thermal expansion is simple. Take the armchair
tube (10,10) for instance. Table 1 gives the atom posi-
tions in the 2D Cartesian system for T = 300,1000oK.
It is seen that atom B moves slightly away from atom A
(at xA = yA = 0) nearly along the circumference, and that
C moves slightly away from A nearly along the axial di-
rection. But atom D is also seen to move slightly away
along the circumference. Bond AD’s circumferential ex-
tension, together with bond AB circumferential extension
and counterclockwise rotations, causes the large circum-
ferential CTE for the armchair tubes. For the zigzag
tubes, no paradox is seen for the circumferential CTEs,
which now follows nearly identical paths as the radial
CTEs.

Figure 6(c) shows the effect of the chirality on the ther-
mal expansion. Opposite temperature effects are seen for
the axial and the radial CTEs. Comparing the armchair
and the zigzag tubes, the zigzag tube (25,0) has a much
larger axial CTE and a relatively lower radial CTE. And
as seen above, the armchair tube has a high circumferen-
tial CTE. We need to mention that small local oscillations
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Figure 6 : Temperature and chirality dependence of
CTEs for SWNTs.
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Table 1 : Equilibrium atom positions for (10,10). The length unit is 10−2nm
.

B C D

300 (-7.294, 12.597) (-7.267, -12.635) (14.603, 0)
1000 (-7.330, 12.600) (-7.264, -12.688) (14.640, 0)

are seen on the calculated CTEs. This small local oscilla-
tions are introduced by the built-in convergence criteria
of the IMSL optimizaiton package we used. Small and
artificial, they are smoothed out by a polynomial fitting.

4 Summary

In summary, we develop a lattice-based cell model to
calculate the specific heats and the coefficients of ther-
mal expansion of single wall carbon nanotubes. The
cell model consists of seven primary coordinate variables
while subjecting to a chirality constraint.

The specific heat and thermal expansion of the SWNTs
are studied. The calculated specific heats are in good
agreement with experimental data and for a large range
of temperatures, very close to those of graphite and di-
amond. The chirality dependence of the specific heat is
seen only up to a few hundred Kelvins. Small tubes have
much lower values at low temperature. Positive thermal
expansions are observed for all the radial, axial and cir-
cumferential directions. The coefficients of thermal ex-
pansion (CTEs) increase with increasing temperatures.
For the armchair tubes, both the radial and axial CTEs
are only slightly influenced by the tube radii. But the
armchair tubes are seen to have large values for the cir-
cumferential CTEs. The zigzag tubes have small radial
and circumferential CTEs, which also weakly depend on
the tube radii. But the zigzag tubes see very large axial
CTEs, which also strongly depend on the tube radii. The
axial and circumferential CTEs, but not the radial ones,
are much influenced by the tube chiralities.
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Appendix

The parameters for Brenner’s potentials [Brenner
(1990)]:

D(e) = 6.0eV, S = 1.22, β = 21nm−1,

R(1) = 0.17nm, R(2) = 0.27nm, R(e) = 0.139nm,

a0 = 0.00020813, c0 = 330, d0 = 3.5.

The carbon bond length for the zero temperature
graphene sheet is set to 0.14507nm. The other constants
are given as: mc = 1.9926×10−26Kg. The Planck’s con-
stant h = 6.626068×10−34Js. And the Boltzmann con-
stant kB = 1.3806503×10−23JK−1.
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