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An Efficient Simultaneous Estimation of Temperature-Dependent Thermophysical
Properties

Chein-Shan Liu1

Abstract: In this paper we derive the first-order and
second-order one-step GPS applied to the estimation
of thermophysical properties. Solving the resultant al-
gebraic equations, which usually converges within ten
iterations, it is not difficult to estimate the unknown
temperature-dependent thermal conductivity and heat ca-
pacity simultaneously, if some supplemented data of
measured temperature at a time T is provided. When the
measured temperature in the conducting slab is contami-
nated by noise, our estimated results are also good. The
new method does not require any prior information on the
functional forms of thermal conductivity and heat capac-
ity. Numerical examples are examined to show that the
new approaches, namely the one-step estimation method
(OSEM), have high accuracy and efficiency even there
are only few measured data.

keyword: One-step Group preserving scheme, Inverse
heat conduction problem, Estimation of thermophysical
properties.

1 Introduction

Inverse problems and their stable and efficient compu-
tations are presently becoming more and more important
in many fields of engineering and science. They typically
result in mathematical models that are not well-posed in
the sense of Hadamard, which means that one or more of
the following well-posed properties are lost: for all ad-
missible data the solution exists; for all admissible data
the solution is unique; the solution depends continuously
on the data. The problems that fail to meet these prereq-
uisites are said to be ill-posed.

Over the last several decades, much interest has been di-
rected towards the employment of inverse techniques to
solving the engineering problems that cannot be depicted
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by direct methods. This situation transpires when all the
required data to solve a direct problem or to procure a
trustworthy direct solution is not available immediately.
Inverse problems are much more difficult to solve than
the direct ones. The reason for this is that they are usually
ill-posed and very sensitive to the measurement errors of
data.

For heat conduction problems, a practical engineering in-
terest is that of which the thermophysical properties de-
pend on the temperature itself. Many theoretical and ex-
perimental methods were developed to measure the ther-
mophysical properties of materials. On the other hand, a
number of numerical methods has been used to integrate
the resulting quasilinear parabolic equations when the
thermophysical properties are dependent on temperature,
some applicable to any type of temperature-dependent
thermophysical properties, and others restricted to partic-
ular types. In some cases, algebraic solutions have been
expressed in terms of a single integral, for example, the
Boltzmann transformation and the Kirchhoff transforma-
tion.

Roughly speaking, the direct heat conduction problem is
already a mature subject, which is concerned with the
determination of temperature at the interior points of a
body when initial and boundary conditions, thermophys-
ical properties and heat generation are specified. Con-
versely, the inverse heat conduction problem, which in-
volves the determination of initial condition, the surface
temperature or heat flux conditions, energy generation
or thermophysical properties from the temperature mea-
surements undertaken at a finite number of points within
the body, is still an open subject required more study to
clarify its behaviors and properties no matter from ana-
lytical or numerical aspect. For example, Ling and Atluri
(2006) have proposed matrix algebraic method to study
the solution stability of inverse heat conduction prob-
lems, and of which, Chang, Liu and Chang (2005) have
proposed a group preserving scheme to calculate the un-
known boundary temperature.
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The determination of temperature-dependent thermo-
physical properties from a measured temperature pro-
file is one of the inverse heat conduction problem. It is
more difficult than that of the determination of the ther-
mophysical properties of temporal-dependent type and
spatial-dependent type. In order to calculate this inverse
problem, there appears certain progress of the method-
ology in this issue, including the Laplace transforma-
tion method [Chen and Lin (1998)], the conjugate gra-
dient method [Alifanov and Mikhailov (1978), Huang,
Yan and Chen (1995), Huang and Yan (1995)], the least-
square method [Huang and Ozisik (1991)], the linear in-
verse method [Yang (1998, 1999, 2000)], the Davidon-
Fletcher-Powell method [Tervola (1989)], the Kirchhoff
and other transformation methods [Lesnic, Elliott and In-
gham (1995), Lesnic (2002), Kim, Kim and Kim (2003)],
and the boundary element method [Lesnic, Elliott and In-
gham (1996)].

Since the development of group preserving scheme
(GPS) by Liu (2001), there have appeared several ad-
vances in this direction. First, the GPS is proved to be
very effective to deal with ordinary differential equations
(ODEs) with special structures as shown by Liu (2005)
for stiff equations and by Liu (2006a) for ODEs with
multiple constraints. Then, Liu (2006b) has developed
a one-step GPS method, which is named the Lie-group
shooting method (LGSM), to calculate the multiple so-
lutions of second order ODEs. About the partial differ-
ential equations (PDEs), Liu (2006c) has developed the
numerical line method together with the GPS to calcu-
late the solutions of Burgers equation. The same strategy
is also used by Liu and Ku (2005) to solve the Landau-
Lifshitz equation, where an effective combination of GPS
and Runge-Kutta method is employed to enhance the sta-
bility and accuracy of numerical solutions. On the other
hand, in order to effectively solve the backward in time
problems of parabolic PDEs, a past cone structure and
a backward group preserving scheme (BGPS) have been
successfully developed by the author, such that the new
numerical methods can be used to solve the backward
in time Burgers equation by Liu (2006d), and the back-
ward in time heat conduction equation by Liu, Chang and
Chang (2006).

All that made the development of the so-called one-
step estimation method (OSEM) based on the Lie-
group possible. Liu (2006e) has used this concept to
develop the numerical estimation method for the un-

known temperature-dependent heat conductivity of one-
dimensional heat conduction equation. This new method
is rather promising to provide better results than other
numerical methods. In this paper we would develop
the one-step first and second orders group preserv-
ing schemes and derive quasilinear algebraic equations
for the inverse problem of estimating the temperature-
dependent thermophysical properties. The new method
is fully different from the other numerical methods cited
above. It is an extension of the work of Liu (2004,
2006e).

Our proposed scheme is based on the numerical method
of line which is a well-developed numerical method that
transforms partial differential equations into a system of
ordinary differential equations. The major contributions
of this paper are applying the group preserving property
of the resultant system in the numerical scheme and
giving a conviction that the proposed scheme with
only one-step forward is workable to the inverse heat
conduction problem. Specifically, the proposed schemes
are easy to implement and the computational time is
saving. Through this study, we may have an easily-
implemented one-step estimation method (OSEM) used
in the estimation of temperature-dependent thermophys-
ical properties, the accuracy and efficiency of which are
much better than before.

2 Group-preserving scheme for ODEs

2.1 A Lie algebra formulation for ODEs

Group-preserving scheme (GPS) can preserve the in-
ternal symmetry group of the considered system. Al-
though we do not know previously the symmetry group
of nonlinear differential equations systems, Liu (2001)
has embedded them into the augmented dynamical sys-
tems, which concern not only with the evolution of state
variables but also the evolution of the magnitude of state
variables vector. That is, for an n ordinary differential
equations system:

u̇ = f(u, t), u ∈ R
n, t ∈ R, (1)

we can embed it to the following n+1-dimensional auge-
mented dynamical system:

d
dt

[
u

‖u‖
]

=

⎡
⎣ 0n×n

f(u,t)
‖u‖

ft(u,t)
‖u‖ 0

⎤
⎦[ u

‖u‖
]
. (2)
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Here we assume ‖u‖ > 0 and hence the above system is
well-defined.

It is obvious that the first row in Eq. (2) is the same as
the original equation (1), but the inclusion of the second
row in Eq. (2) gives us a Minkowskian structure of the
augmented state variables of X := (ut,‖u‖)t satisfying
the cone condition:

XtgX = 0, (3)

where

g =
[

In 0n×1

01×n −1

]
(4)

is a Minkowski metric, In is the identity matrix of order
n, and the superscript t stands for the transpose. In terms
of (u,‖u‖), Eq. (3) becomes

XtgX = u ·u−‖u‖2 = ‖u‖2 −‖u‖2 = 0, (5)

where the dot between two n-dimensional vectors de-
notes their Euclidean inner product. The cone condition
is thus a natural constraint on the dynamical system (2).

Then, we have an n+1-dimensional augmented system:

Ẋ = AX (6)

with a constraint (3), where

A :=

⎡
⎣ 0n×n

f(u,t)
‖u‖

ft(u,t)
‖u‖ 0

⎤
⎦ , (7)

satisfying

Atg+gA = 0, (8)

is a Lie algebra so(n,1). This fact prompts us to
devise the so-called group-preserving scheme, whose
discretized mapping G exactly preserves the following
properties:

GtgG = g, (9)

det G = 1, (10)

G0
0 > 0, (11)

where G0
0 is the 00th component of G, which is a proper

orthochronous Lorentz group denoted by SOo(n,1). The

term orthochronous used in the special relativity theory is
referred to the preservation of time orientation. However,
it should be understood here as the preservation of the
sign of ‖u‖ > 0.

Remarkably, the original n-dimensional dynamical sys-
tem (1) in E

n can be embedded naturally into an
augmented n + 1-dimensional dynamical system (6) in
M

n+1. That two systems are mathematically equivalent.
Although the dimension of the new system is raising one
more, it has been shown that under the Lipschitz condi-
tion of

‖f(u, t)− f(y, t)‖≤ L‖u−y‖, ∀ (u, t), (y, t)∈ D, (12)

where D is a domain of R
n ×R, and L is known as a

Lipschitz constant, the new system has the advantage of
devising group-preserving numerical scheme as follows
[Liu (2001)]:

X�+1 = G(�)X�, (13)

where X� denotes the numerical value of X at the discrete
time t�, and G(�)∈ SOo(n,1) is the group value at time t�.

2.2 GPS for differential equations system

The Lie group generated from A ∈ so(n,1) is known as
a proper orthochronous Lorentz group. An exponential
mapping of A(�) admits a closed-form representation:

exp[ΔtA(�)]=

⎡
⎢⎣ In + (a�−1)

‖f�‖2 f�ft�
b�f�
‖f�‖

b�ft�
‖f�‖ a�

⎤
⎥⎦ , (14)

where

a� := cosh

(
Δt‖f�‖
‖u�‖

)
, b� := sinh

(
Δt‖f�‖
‖u�‖

)
. (15)

Substituting the above exp[ΔtA(�)] for G(�) into Eq. (13)
and taking its first row, we obtain

u�+1 = u� +η�f� = u� +
b�‖u�‖‖f�‖+(a�−1)f� ·u�

‖f�‖2 f�.

(16)

From f� ·u� ≥ −‖f�‖‖u�‖ we can prove that

η� ≥
[
1−exp

(
−Δt‖f�‖

‖u�‖
)]

‖u�‖
‖f�‖ > 0, ∀Δt > 0. (17)

This scheme is group properties preserved for all Δt > 0.
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3 Solving heat conduction problems by one-step
GPS

3.1 Semi-Discretization

The semi-discrete procedure yields a coupled system of
ODEs, which are then numerically integrated. For the
one-dimensional heat conduction equation we adopt the
numerical method of line to discretize the partial deriva-
tives of u with respect to the spatial coordinate x by

∂u(x, t)
∂x

∣∣∣∣
x=iΔx

=
ui+1(t)−ui(t)

Δx
, (18)

∂2u(x, t)
∂x2

∣∣∣∣
x=iΔx

=
ui+1(t)−2ui(t)+ui−1(t)

(Δx)2 , (19)

where Δx is a uniform discretization spacing length, and
ui(t) = u(iΔx, t), such that we have

∂
∂x

[
k(u)

∂u
∂x

]∣∣∣∣
x=iΔx

=
k(ui+1)−k(ui)

ui+1 −ui

[
ui+1 −ui

Δx

]2

+
k(ui)
(Δx)2 [ui+1−2ui +ui−1]. (20)

Then, the one-dimensional heat conduction equation
with temperature-dependent thermal conductivity and
heat capacity:

c(u)
∂u
∂t

=
∂
∂x

[
k(u)

∂u
∂x

]
(21)

becomes n coupled nonlinear ODEs:

u̇i(t) =
1

(Δx)2ci
{ki+1[ui+1(t)−ui(t)]−ki[ui(t)−ui−1(t)]},

(22)

where ci = c(ui) and ki = k(ui).

For a direct heat conduction problem, the next step is to
advance the solution from the given boundary conditions
and initial condition to the desired time T . Really,
Eq. (22) has totally n-coupled nonlinear differential
equations for the n variables ui(t), i = 1,2, . . .,n, which
can be numerically integrated to obtain the solutions for
direct problems.

3.2 One-step GPS

Applying scheme (16) to the n ODEs in Eq. (22) we can
compute the heat conduction equation by GPS. Assum-
ing that the total time T is divided by K steps, that is, the
time stepsize we use in the GPS is Δt = T/K, and starting
from an initial augmented condition X0 = X(0) we want
to calculate the value X(T) at the desired time t = T .

By applying Eq. (13) step-by-step we can obtain

XK = GK(Δt) · · ·G1(Δt)X0, (23)

where XK approximates the real X(T ) within a certain
accuracy depending on Δt. However, let us recall that
each Gi, i = 1, . . .,K, is an element of the Lie group
SOo(n,1), and by the closure property of Lie group
GK(Δt) · · ·G1(Δt) is also a Lie group denoted by G.
Hence, we have

XK = G(KΔt)X0 = G(T )X0. (24)

This is a one-step transformation from X(0) to X(T ).

The most simple method to calculate G(T ) is given by

G(T ) = exp[T A(0)] =

⎡
⎢⎣ In + (a−1)

‖f0‖2 f0ft0
bf0
‖f0‖

bft0
‖f0‖ a

⎤
⎥⎦ , (25)

where

a := cosh

(
T‖f0‖
‖u0‖

)
, b := sinh

(
T‖f0‖
‖u0‖

)
. (26)

That is, we use the initial values of u(0) to calculate
G(T ). Then from Eq. (24) we obtain a one-step GPS:

uK = u0 +ηf0 = u0 +
b‖u0‖‖f0‖+(a−1)f0 ·u0

‖f0‖2 f0. (27)

The above one-step GPS method is an adventure in
the computational technique; however, the accuracy
and efficiency are demonstrated by numerical examples
given below.

4 Identifying the temperature-dependent thermo-
physical properties

Let us consider a heat conducting slab composed of
temperature-dependent material with heat conduction
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functions c(u) > 0 and k(u) > 0 in Eq. (21) to be esti-
mated. In order to identify the heat conduction functions
of c(u) and k(u), let us impose the following conditions:

u(0, t) = u0, u(1, t) = 0, (28)

u(x,0) = u0(x) = u0(1−x), u(x,T ) = uT (x), (29)

where u0 is a fixed temperature, and u0(x) and uT (x) are
two temperature distributions in the slab measured at two
different times t = 0 and t = T .

Let us write

∂
∂x

[
k(u)

∂u
∂x

]
= k′(u)

[
∂u
∂x

]2

+k(u)
∂2u
∂x2 , (30)

and Eq. (21) becomes a quasilinear heat conduction
equation:

c(u)
∂u
∂t

= k′(u)
[

∂u
∂x

]2

+k(u)
∂2u
∂x2 . (31)

Given u(x, t), the above equation can be viewed as a first
order differential equation for k(u) with u as independent
variable. To be an independent variable in the estimation
of k(u) we suppose that u is a monotonic function of x,
which can be achieved by specifying a suitable u0 and a
small t, since u is a monotonically decreasing function of
x at t = 0. On the other hand, we suppose that c(0) and
k(0) are known through the measurement. At the same
time the coefficients ci = c(ui), ki = k(ui), i = 1, . . .,n
in Eq. (31) are unknown to be estimated below.

4.1 Estimation of thermal diffusivity

Let yi := ki/ci be the thermal diffusivity at the i-th grid
point, and suppose that the number of grid points is large
enough or c(u) is a slowly changing function, such that
we can further approximate Eq. (22) by

u̇i(t) =
1

(Δx)2{yi+1[ui+1(t)−ui(t)]−yi[ui(t)−ui−1(t)]}.
(32)

When applying the one-step GPS to Eq. (32) from time
t = 0 to time t = T we obtain a quasilinear algebraic
equation to calculate yi:

uT
i = u0

i +
ηa

(Δx)2 [yi+1(u0
i+1−u0

i )−yi(u0
i −u0

i−1)], (33)

where uT
i and u0

i are two measured temperatures at the i-
th grid point. However, ηa in the above is not a constant
but a nonlinear function of yi as defined by Eq. (27) with

u0 := [u0
1, . . . ,u

0
n]

t, (34)

f0 :=
1

(Δx)2 [y2(u0
2−u0

1)−y1(u0
1−u0

0),

. . . ,yn+1(u0
n+1−u0

n)−yn(u0
n −u0

n−1)]
t. (35)

It is not difficult to rewrite Eq. (33) as

yi =
1

u0
i −u0

i−1

[
yi+1(u0

i+1 −u0
i )−

(Δx)2

ηa
(uT

i −u0
i )
]
.

(36)

In order to use the above equation to solve yi, let us guess
an initial yi, and ηa can be determined before the use of
Eq. (36).

Therefore, if we start from a given yn+1 = k(0)/c(0) we
can proceed to find yn, . . .,y1 sequentially by the above
equation. Substituting the new yi into ηa again we can
use Eq. (36) to generate another yi again until the values
of yi converge with a specified stopping criterion:

n

∑
i=1

|y j+1
i −y j

i |2 ≤ ε, (37)

which means that the L2-norm of the difference between
the j + 1-th and the j-th iterations of yi is smaller than a
given criterion ε.

In the following we consider two methods to proceed the
estimations of thermophysical properties.

4.2 Estimation of thermal conductivity and heat ca-
pacity

4.2.1 The first method

In the above process we can estimate y(u) = k(u)/c(u)
but not c(u) or k(u) alone. However, if we can esti-
mate y(u) accurately (see examples below), then we can
rewrite Eq. (22) as

u̇i(t) =
yi

(Δx)2{
ki+1

ki
[ui+1(t)−ui(t)]− [ui(t)−ui−1(t)]},

(38)
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and use the above equation to estimate ki very effectively.

When applying the one-step GPS to Eq. (38) from time
t = 0 to time t = T we obtain a quasilinear algebraic
equation to solve ki:

uT
i = u0

i +
ηbyi

(Δx)2

[
ki+1

ki
(u0

i+1 −u0
i )− (u0

i −u0
i−1)

]
, (39)

where yi, i = 1, . . .,n, were already known from the pre-
vious estimation provided in Section 4.1. ηb in the above
is a nonlinear function of ki+1/ki as defined by Eq. (27)
with

u0 := [u0
1, . . .,u

0
n]

t, (40)

f0 :=
1

(Δx)2

[
y1k2

k1
(u0

2 −u0
1)− (u0

1 −u0
0),

. . . ,
ynkn+1

kn
(u0

n+1−u0
n)− (u0

n −u0
n−1)

]t
. (41)

It is not difficult to rewrite Eq. (39) as

ki = ki+1

[
u0

i −u0
i−1

u0
i+1 −u0

i

+
(Δx)2(uT

i −u0
i )

ηbyi(u0
i+1−u0

i )

]−1

. (42)

In order to use the above equation to solve ki, let us guess
an initial ki, and ηb can be determined before the use of
Eq. (42).

Therefore, if we start from a given kn+1 = k(0) we can
proceed to find kn, . . .,k1 sequentially by the above equa-
tion. Substituting the new ki into ηb again we can use
Eq. (42) to generate another ki again until the values of ki

converge with a specified stopping criterion:

n

∑
i=1

|k j+1
i −k j

i |2 ≤ ε. (43)

When both y and k are estimated we can calculate the
heat capacity by c = k/y.

4.2.2 The second method

Let us consider the following variable transformation:

U =
Z u

0
y(ξ)dξ =

Z u

0

k(ξ)
c(ξ)

dξ, (44)

where U is a monotonic function of u because of y(u) =
k(u)/c(u) > 0. With this transformation in mind, it im-
mediately follows that

∂U
∂t

=
k
c

∂u
∂t

, (45)

∂U
∂x

=
k
c

∂u
∂x

, (46)

∂2U
∂x2 =

∂
∂x

[
k
c

∂u
∂x

]
=

1
c

∂
∂x

[
k

∂u
∂x

]
+k

∂
∂x

[
1
c

∂u
∂x

]
. (47)

From Eqs. (21), (45) and (47) we obtain

∂U
∂t

=
k
c

(
∂2U
∂x2 −k

∂
∂x

[
1
c

∂u
∂x

])
. (48)

However, the partial derivative of u can be replaced by
the partial derivative of U through Eq. (46):

∂U
∂t

=
k
c

(
∂2U
∂x2 −k

∂
∂x

[
1
k

∂U
∂x

])
=

k
c

1
k

∂k
∂U

(
∂U
∂x

)2

,

(49)

where k is supposed to be a function of U .

In terms of y we thus obtain a first order nonlinear partial
differential equation for U :

∂U
∂t

=
y
k

∂k
∂U

(
∂U
∂x

)2

. (50)

Consider the following forward difference:

y
k

∂k
∂U

(
∂U
∂x

)2
∣∣∣∣∣
x=iΔx

=
yi

k(Ui)
k(Ui+1)−k(Ui)

Ui+1−Ui

[
Ui+1 −Ui

Δx

]2

(51)

and then Eq. (50) becomes n-coupled nonlinear ODEs:

U̇i(t) =
yi

(Δx)2

(
ki+1

ki
−1

)
[Ui+1(t)−Ui(t)] (52)

with unknown coefficients ki = k(Ui), i = 1, . . . ,n. No-
tice that yi, i = 1, . . .,n, were already calculated previ-
ously.

When apply the one-step GPS to Eq. (52) from time t = 0
to time t = T , we obtain a quasilinear equation for ki:

UT
i = U0

i +
yiηc

(Δx)2

(
ki+1

ki
−1

)
[U0

i+1−U0
i ], (53)
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where UT
i and U0

i are two transformed temperatures at
the i-th grid point calculated by Eq. (44). Here ηc is still
defined by Eq. (27) but with

u0 := [U0
1 , . . .,U0

n ]t, (54)

f0 :=
1

(Δx)2

[
y1

(
k2

k1
−1

)
(U0

2 −U0
1 ),

. . . ,yn

(
kn+1

kn
−1

)
(U0

n+1−U0
n )
]t

. (55)

It is not difficult to rewrite Eq. (53) as

ki = ki+1

[
1+

(Δx)2(UT
i −U0

i )
ηcyi(U0

i+1−U0
i )

]−1

. (56)

From Eq. (44) we have

UT
i −U0

i =
Z uT

i

u0
i

k(ξ)
c(ξ)

dξ,

U0
i+1−U0

i =
Z u0

i+1

u0
i

k(ξ)
c(ξ)

dξ.

If we let the grid length be small enough, then

UT
i −U0

i

U0
i+1−U0

i

=
uT

i −u0
i

u0
i+1 −u0

i

is a good approximation, and Eq. (56) changes to

ki = ki+1

[
1+

(Δx)2(uT
i −u0

i )
ηcyi(u0

i+1−u0
i )

]−1

. (57)

The other procedures to estimate ki are similar to the
ones in Section 4.2.1.

4.3 Example 1

Let us consider Eq. (21) with the following thermophysi-
cal properties [Huang and Yan (1995) and Yang (2000)]:

k(u) = a1 +a2 exp

(
u
a3

)
+a4 sin

(
u
a5

)
, (58)

c(u) = b1 +b2u+b3u2. (59)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.3

0.6

0.9

u

One-step Euler method

T=0.01 sec

T=0.01 sec

T=0.004 sec

RK4

One-step GPS

One-step Euler method

Figure 1 : Comparing numerical solutions of one-step
GPS and Euler method for Example 1 with “exact” solu-
tions calculated by RK4.

In the following calculations we will fix a1 = 1, a2 = 4.5,
a3 = 80, a4 = 2.5 and a5 = 3, and b1 = 1.2, b2 = 0.02 and
b3 = 0.00001.

Before embarking the calculation of inverse problem,
let us apply the one-step GPS on this quasilinear heat
conduction problem with the above c(u) and k(u), and
with the initial condition u0(x) = sinπx and boundary
conditions u(0, t) = u(1, t) = 0. In Fig. 1 the numer-
ical results at times T = 0.004 sec and T = 0.01 sec
calculated respectively by the fourth-order Runge-Kutta
method (RK4) and one-step GPS were compared. We
have fixed Δx = 1/50 and Δt = 0.00001 sec for RK4 and
Δt = 0.004 sec and Δt = 0.01 sec for one-step GPS. It
can be seen that for this nonlinear heat conducting prob-
lem the one-step GPS is effective. In the same figure we
also plotted the numerical results obtained by the one-
step Euler method. Unlike to the one-step GPS, the one-
step Euler method gives large errors of solutions. The
major reason for its failure of the Euler method, and also
other numerical methods, in the calculations with one-
step is that they are not of the group preserving schemes,
such that the transitivity and closureness of Lie group are
not applicable in these numerical methods.

We have the idea and method to apply the one-step GPS
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method to estimate the temperature-dependent thermal
conductivity and heat capacity. The above numerical re-
sults can support this idea, because the one-step GPS can
provide rather accurate numerical solutions if the time
step employed is within a reasonable size. The estima-
tion is divided into two parts: the first part estimates
the thermal diffusivity y(u) and the second part estimates
the thermal conductivity k(u) and then the heat capacity
c(u) = k(u)/y(u).

In order to assess the validity of the new estimation
method let us consider the following errors:

max
i∈{1,...,n}

|y(ui)− ŷ(ui)|
ŷ(ui)

×100%,

max
i∈{1,...,n}

|k(ui)− k̂(ui)|
k̂(ui)

×100%,

max
i∈{1,...,n}

|c(ui)− ĉ(ui)|
ĉ(ui)

×100%,

1
n

n

∑
i=1

|y(ui)− ŷ(ui)|
ŷ(ui)

×100%,

1
n

n

∑
i=1

|k(ui)− k̂(ui)|
k̂(ui)

×100%,

1
n

n

∑
i=1

|c(ui)− ĉ(ui)|
ĉ(ui)

×100%,

where y(u) and ŷ(u) denote the exact and estimated val-
ues of thermal diffusivity, k(u) and k̂(u) denote the exact
and estimated values of thermal conductivity, and c(u)
and ĉ(u) denote the exact and estimated values of heat ca-
pacity. The first three errors are called normalized maxi-
mum errors (NME), and the last three are called average
relative errors (ARE).

In this identification of y(u), k(u) and c(u) we have fixed
u0 = 15, Δx = 1/20 and T = 0.00001 sec. Let us suppose
an initial guess yi = 1, i = 1, . . .,n. Applying Eq. (36)
to solve yi, after three iterations the solutions of yi con-
verge to the exact values according to the criterion (37)
with ε = 10−15 as shown in Fig. 2(a), and the result as
shown in Fig. 2(b) is very good with a normalized max-
imum error of NME(y)=0.0002027. When y is avail-
able we then apply Eq. (42) to solve k with an initial
guess ki = 0.5, i = 1, . . . ,n. After two iterations the so-
lutions of ki converge to the exact values according to
the criterion (43) with ε = 10−15 as shown in Fig. 2(a),
and the result as shown in Fig. 2(b) is very good with
NME(k)=0.0002288. From y and k, c is calculated by
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Figure 2 : Estimating y(u), k(u) and c(u) for Example
1: (a) comparing exact solutions and numerical solutions
calculated by one-step GPS, (b) normalized maximum
errors with s = 0.

c = k/y. The result as shown in Fig. 2(b) is very good
with NME(c)=0.0000269. In this estimation by the one-
step GPS, it requires totally five iterations, which shows
that the speed of convergence is very fast.

In Table 1 we further compare our results of this
case with others. When the average relative errors
of thermal conductivity and heat capacity are, respec-
tively, ARE(k)=0.00771% and ARE(c)=0.00116% in
the present approach, the results of Yang (2000) are
ARE(k)=0.012% and ARE(c)=0.012% and the results
of Huang and Yan (1995) are ARE(k)=0.510% and
ARE(c)=0.69%. The accuracy in these estimations are
respectively in the fifth order of our method, the fourth
order of Yang (2000) and the third order of Huang and
Yan (1995). Through this comparison one might highly
appreciate the accuracy of the new estimation method.

In the case when the measured data are contaminated
by random noise, we are concerned with the stability
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Table 1 : The comparison of present method with other methods for Example 1

s = 0 Stopping criterion NI ARE(y) (%) ARE(k) (%) ARE(c) (%)
Huang and Yan (1995) 1×10−8 148 – 0.510 0.69
Yang (2000) 2.3×10−10 7 – 0.012 0.012
One-step GPS 1×10−15 5 0.00837 0.00771 0.00116

s = 0.001
Huang and Yan (1995) 1.32×10−5 57 – 1.502 0.706
Yang (2000) 2.0×10−8 7 – 0.026 0.035
One-step GPS 1×10−15 7 1.102 0.702 0.404

s = 0.005
Huang and Yan (1995) 3.2×10−4 26 – 4.101 1.026
Yang (2000) 5.0×10−7 6 – 0.137 0.168
One-step GPS 1×10−15 8 2.653 1.578 1.108

s = 0.01
Yang (2000) 2.0×10−6 6 – 0.280 0.666
Second-order
one-step GPS 1×10−15 9 1.287 1.171 0.259

s = 0.025
Yang (2000) 1.25×10−5 6 – 0.705 0.831
Second-order
one-step GPS 1×10−15 9 1.546 1.381 0.190

of the new estimation method OSEM, which is inves-
tigated by adding the different levels of random noise
on the measured data at time T . We use the func-
tion RANDOM−NUMBER given in Fortran to gener-
ate the noisy data R(i), where R(i) are random num-
bers taken values in [−1,1]. The numerical results con-
taminated by noise were compared with the numerical
result without considering random noise in Fig. 2(a).
The noise is obtained by multiplying R(i) by a fac-
tor s. It can be seen that the noise levels with s =
0.001,0.005 disturb the numerical solutions to devi-
ate from the exact solutions small, where we use T =
0.0005 sec and T = 0.0009 sec for each case. It ap-
pears that large measurement error makes the estimated
result away from the exact solution. For the case of
s = 0.001 we have NME(y)=0.02228, NME(k)=0.01335
and NME(c)=0.01092, and for the case of s =
0.005 we have NME(y)=0.0612, NME(k)=0.0319 and
NME(c)=0.0313. For the noised estimations we also
compared our results with that calculated by Huang and
Yan (1995) and Yang (2000) in Table 1. When the noise
is added, the accuracy of our estimations are lost about

two orders, which shows that the present approach can
be improved. The improvement will be made in Section
5 by considering a higher order numerical method.

The robustness of the results obtained by Yang (2000)
can be seen. However, the method by Yang (2000) re-
quired to suppose some suitable thermophysical func-
tions a priori and the number of measured data was up
to 120 used to estimate the unknown coefficients. More
precisely, the method by Yang (2000) is a method of co-
efficients estimation, but is not a method of the functions
estimation. The numbers of iteration (NI) used in the
converged solutions were also compared in Table 1. Even
we use a rather stringent convergent criterion, the new
estimation method is very effective and converges more
fast than that of Huang and Yan (1995). A typical com-
putation of our method spends the CPU time about one
second in our PC-586 with pentium-100.

For saving sensors the number of grid points cannot be
too large, at which the data are measured. In order to get
another data in addition those at the grid points which are
measured through the mounted sensors, we can apply the
Lagrange interpolation technique [e.g., Rivlin (1969)] to
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Figure 3 : Estimating thermophysical properties for Ex-
ample 1 using only seven measured data: (a) compar-
ing exact solutions and numerical solutions calculated by
one-step GPS, (b) normalized maximum errors.

construct a smooth polynomial function F(x) to pass the
n distinct points as shown in Appendix. In Fig. 3 we use
only seven measured data at the interior of the slab. The
results in the estimation of thermophysical properties are
rather good as can be seen from Fig. 3(a). Through the
interpolation it is hardly distinct these curves from the
exact ones. Fig. 3(b) displays the NME(k) and NME(c),
which are very small in the order of 10−4.

In Fig. 4 we plot the variation of average relative errors
in the estimation of thermophysical properties with re-
spect to different final times of T taken in the OSEM in
the range of [0.00001,0.001], but fixed the grid length
to be Δx = 1/20. There appears a linear curve, which
indicates that the maximum error is increasing when T
increases. This is due to the fact that when T is larger
the one-step GPS is less accurate. However, even up to
T = 0.001 sec the average relative error is also small in
the order of 10−3.
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Figure 4 : In the estimation of thermophysical properties
for Example 1 we plot the average relative errors with
different T .

Next, we investigate the influence of grid numbers
on the average relative error. In Fig. 5 we plot the
variation of average relative errors in the estimation of
thermophysical properties with respect to different grid
numbers taken in the one-step GPS method in the range
of [5,200], but fixed the final time T = 0.0005 sec. The
average relative error tends to a saturated value when
the grid number increases. It is interesting that when
the grid numbers are smaller than twenty the average
relative errors decrease fast. This favors to use a small
number of measured data to estimate the thermophysical
properties.

4.4 Example 2

Let us consider Eq. (21) with the following thermal con-
ductivity and heat capacity [Lesnic, Elliott and Ingham
(1996)]:

k(u) = c(u) = 1+2u. (60)

In the identification of k(u) and c(u) we have fixed
u0 = 5, Δx = 1/10 and T = 0.001 sec. We first apply-
ing Eq. (36) to solve y, after two iterations the solutions
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Figure 5 : In the estimation of thermophysical properties
for Example 1 we plot the average relative errors with
different grid numbers.

of yi converge to the exact values according to the crite-
rion (37) with ε = 10−15 as shown in Fig. 6(a). Then we
applying Eq. (57) to solve k, after three iterations, the so-
lutions of ki converge to the exact values according to the
criterion (43) with ε = 10−15 as shown in Fig. 6(a). The
results as shown in Fig. 6(b) are very good with small
normalized maximum errors.

Even adding the noise level with s = 0.002, it only
slightly disturbs the numerical solutions deviating from
the exact solutions as shown in Fig. 6(a). For this
example we use the second method in Section 4.2.2 to
calculate k and c.

5 Second order estimation technique

In Section 3.2 we have used a first-order scheme to calcu-
late G(T ); however, in order to increase the accuracy and
robustness of our estimation method, we can employ a
second-order technique to calculate G(T ), which is eval-
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Figure 6 : Estimating y(u), k(u) and c(u) for Example
2: (a) comparing exact solutions and numerical solutions
calculated by one-step GPS with s = 0,0.002, (b) nor-
malized maximum errors with s = 0.

uated at the mid-point by

G(T ) =

⎡
⎢⎣ In + (â−1)

‖f̂0‖2 f̂0 f̂t0
b̂f̂0

‖f̂0‖

b̂f̂t0
‖f̂0‖ â

⎤
⎥⎦ , (61)

where

â := cosh

(
T‖f̂0‖
‖û0‖

)
, b̂ := sinh

(
T‖f̂0‖
‖û0‖

)
. (62)

That is, we use the average of initial values of u(0) and
final vaules of u(T) to calculate G(T ), where

û0 =
1
2
[u0 +uT ],

f̂0 = f
(

1
2
[u0 +uT ]

)
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Figure 7 : Estimating thermophysical properties for Ex-
ample 1: (a) comparing exact solutions and numerical
solutions calculated by the second-order one-step GPS,
(b) normalized maximum errors with s = 0.01,0.025.

are taking the values of the state variable and vector field
at the mid-point. Then from Eq. (24) we obtain a second-
order one-step GPS:

uT = u0 + η̂f̂0 = u0 +
b̂‖u0‖‖f̂0‖+(â−1)f̂0 ·u0

‖f̂0‖2
f̂0. (63)

When applying the second-order one-step GPS to
Eq. (32) we obtain

uT
i = u0

i +
η̂a

(Δx)2 [yi+1(û0
i+1− û0

i )−yi(û0
i − û0

i−1)], (64)

where û0
i = (uT

i + u0
i )/2. The above η̂a is defined by

Eq. (63) with

û0 := [û0
1, . . ., û

0
n]

t, (65)

f̂0 :=
1

(Δx)2 [y2(û0
2− û0

1)−y1(û0
1− û0

0),

. . . ,yn+1(û0
n+1− û0

n)−yn(û0
n− û0

n−1)]
t. (66)

It is not difficult to rewrite Eq. (64) as

yi =
1

û0
i − û0

i−1

[
yi+1(û0

i+1 − û0
i )−

(Δx)2

η̂a
(uT

i −u0
i )
]
.

(67)

The procedure to obtain a converged yi is the same as that
given in Section 4.1.

Similarly, applying the second-order one-step GPS to
Eq. (38) we obtain

uT
i = u0

i +
η̂byi

(Δx)2

[
ki+1

ki
(û0

i+1− û0
i )− (û0

i − û0
i−1)

]
, (68)

where η̂b is defined by Eq. (63) with

û0 := [û0
1, . . . , û

0
n]

t, (69)

f̂0 :=
1

(Δx)2

[
y1k2

k1
(û0

2− û0
1)− (û0

1 − û0
0),

. . . ,
ynkn+1

kn
(û0

n+1− û0
n)− (û0

n − û0
n−1)

]t
. (70)

Similarly, we can rewrite Eq. (68) as

ki = ki+1

[
û0

i − û0
i−1

û0
i+1 − û0

i

+
(Δx)2(uT

i −u0
i )

η̂byi(û0
i+1 − û0

i )

]−1

. (71)

The procedure to obtain a converged ki is the same as that
given in Section 4.2.1.

Through this modification we estimate the thermophysi-
cal properties of Example 1 again under the large noises
with s = 0.01 and s = 0.025. In these calculations
we have used Δx = 1/5, that is, there are only four
measured data required at time T = 0.005 sec. For
this highly noised estimations we also compared our
results with that calculated by Yang (2000) in Table
1. For the case of s = 0.01 we have NME(y)=0.0256,
NME(k)=0.0234 and NME(c)=0.0059, and for the case
of s = 0.025 we have NME(y)=0.0321, NME(k)=0.0292
and NME(c)=0.0046. Through this modification the
accuracy of this estimations are better than that used the
first-order one-step GPS in Section 4, where we have
considered only small noises cases with s = 0.001 and
s = 0.005. In Fig. 7 we also compared the estimated y, k
and c with the exact ones, which can be seen are rather
good with the normalized maximum errors smaller than
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0.03. From these estimations it can be seen that the
second-order one-step GPS is better than the first-order
one-step GPS; however, the second-order one-step GPS
is slightly complicated than the first-order one-step GPS.

6 Conclusions

In this paper we were concerned with the numerical
solution of an inverse problem for estimating the
temperature-dependent thermal conductivity and heat
capacity of a one-dimensional quasilinear heat conduc-
tion equation. The key point was the construction of a
one-step group preserving scheme. By employing the
one-step GPS we have derived quasilinear algebraic
equations required to determine the temperature-
dependent thermal conductivity and heat capacity under
a given initial temperature and a measured temperature at
time T . Two numerical examples of the inverse problems
were worked out, which show that our estimation method
OSEM is applicable even for the thermal functions in a
large temperature range. Under the noisy measured final
temperature the one-step GPS was also robust enough
to estimate the unknown thermal conductivity and heat
capacity with a minimum measured data. Especially,
when the measured data was highly noised, we may
employ the second-order one-step GPS to estimate
thermal conductivity and heat capacity. Through this
study, it can conclude that the new estimation methods
are accurate and effective.

Appendix A:

In this appendix we give a brief sketch of the Lagrange
interpolation technique [e.g., Rivlin (1969)]. Let (xi,ui),
where xi locates at the i-th grid point and ui is the numer-
ical result at that point, and then the Lagrange interpola-
tion function is given by

F(x) =
n

∑
i=1

uiLi(x), (A.1)

where

Li(x) =
∏n

j=1, j 	=i(x−x j)

∏n
j=1, j 	=i(xi −x j)

. (A.2)
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