
Copyright c© 2006 Tech Science Press CMES, vol.14, no.1, pp.57-76, 2006

Parallel iterative procedures for a computational electromagnetic modeling based
on a nonconforming mixed finite element method

Taeyoung Ha1, Sangwon Seo2 and Dongwoo Sheen3

Abstract: We present nonoverlapping domain decom-
position methods for the approximation of both electro-
magnetic fields in a three-dimensional bounded domain
satisfying absorbing boundary conditions. A Seidel-type
domain decomposition iterative method is introduced
based on a hybridization of a nonconforming mixed finite
element method. Convergence results for the numerical
procedure are proved by introducing a suitable pseudo-
energy. The spectral radius of the iterative procedure is
estimated and a method for choosing an optimal match-
ing parameter is given. A red-black Seidel-type method
which is readily parallelizable is also introduced and ana-
lyzed. Numerical experiments confirm that the presented
algorithms are faster than the conventional Jacobi-type
ones.
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1 Introduction

Computational electromagnetic modeling has many ap-
plications in engineering and industry and thus there have
been increasing attention from both scientists and en-
gineers: see, for instance, Ben Belgacem, Buffa, and
Maday (2001); Boffi, Demkowicz, and Costabel (2003);
Bouillault, Buffa, Maday, and Rapetti (2003); Gopalakr-
ishnan, Pasciak, and Demkowicz (2004); Hiptmair and
Schwab (2002); Hiptmair (2002); Hu and Zou (2003);
Jose, Kanapady, and Tamma (2004); Monk (2003); Re-
itich and Tamma (2004); Toselli and Vasseur (2005);
Volakis, Sertel, Jorgensen, and Kindt (2004), and the ref-
erences therein.

In this work we are particularly interested in the numer-
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ical approximation of scattered electromagnetic fields
E = E(x,ω) and H = H(x,ω) which satisfy the time-
harmonic Maxwell’s equations at a given angular fre-
quency ω. Absorbing boundary conditions are used to
truncate the infinite, or at least huge, space domains
into domains of reasonably smaller size (see Bendali and
Halpern (1988); Berenger (1994, 1996); Feng (1999);
Hanouzet and Sesqès (1990); Joly and Mercier (1989);
Mur (1981); Sesquès (1990); Sheen (1997) and the ref-
erences therein). However, the numerical treatment of
three-dimensional time-harmonic Maxwell’s equations
still requires an efficient iterative procedure rather than
a direct Gaussian elimination one for solving resulting
matrix problems. Recently, several domain decompo-
sition methods have been proposed to solve this prob-
lem; for instance, see Alonso and Valli (1997, 1999); Ben
Belgacem, Buffa, and Maday (2001); Bouillault, Buffa,
Maday, and Rapetti (2003); Collino, Delbue, Joly, and
Piacentini (1997); Després (1991); Després, Joly, and
Roberts (1992); Jr., Santos, and Sheen (2001); Hu and
Zou (2003); Santos (1998); Santos and Sheen (1998);
Toselli and Vasseur (2005).

In particular, following the idea in Lions (1988, 1990),
Després (1991) and Després, Joly, and Roberts (1992)
proposed an iterative method using nonoverlapping do-
main decompositions and a pseudo-energy with which
convergence results were shown. The convergence re-
sults obtained by Després were weak in the sense no
actual convergence rates are given. Later, Douglas Jr,
Paes Leme, Roberts, and Wang (1993) applied this idea
to second-order elliptic problems, and obtained, using
mixed finite elements, an estimate for the spectral ra-
dius of the iterative operator which guarantees the actual
rate of convergence of the scheme. By utilizing simi-
lar structures to mixed finite element spaces, such esti-
mates for spectral radii have been obtained, based on hy-
bridization of nonconforming finite elements, for elliptic,
Helmholtz, and viscoelastic problems )Douglas Jr., San-
tos, Sheen, and Ye (1999); Ha, Santos, and Sheen (2002);
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Jr., Santos, and Sheen (2001).

Recently a nonconforming mixed finite element method
has been proposed in Douglas Jr., Santos, and Sheen
(2000) to compute E and H simultaneously. Error esti-
mates using the were also given. In that paper, Jacobi-
type domain decomposition iterative procedure based
on hybridization has been analyzed with an actual rate
convergence. The object of our current paper is to
study Seidel-type domain decomposition iterative proce-
dures for calculating both E and H satisfying the full
Maxwell’s equations, based on nonconforming mixed fi-
nite elements proposed in Douglas Jr., Santos, and Sheen
(2000). In the domain decomposition methods the con-
vergence speed depends on a choice of matching param-
eter β between the tangential electric and magnetic fields
that appear in the interface condition on the common
boundaries of domains Ω j and Ωk:

(ννν j×Hj +β jkπτEj) =−νννk×Hk +β jkπτEk on Γ jk∀k.

In this paper we suggest a method of choice of matching
parameter β. Since Seidel-type iterative method is not
parallelizable directly, we employ red-black type itera-
tive algorithm in numerical simulations.

Our approach is similar to the conforming version of do-
main decomposition scheme introduced in Collino and
Joly (2000); Collino, Delbue, Joly, and Piacentini (1997),
in the sense that the pseudo-energies calculated in our
work are to be calculated on both sides of interfaces
while those in Collino and Joly (2000); Collino, Del-
bue, Joly, and Piacentini (1997) are to be calculated on
single sides of interfaces. We also give a simple proof
of convergence of the iterative procedure which depends
only on the resulting weak formulation of problems, and
we will show that the speed of Seidel-type procedures
is about twice of that of Jacobi-type ones. However, in
Collino, Delbue, Joly, and Piacentini (1997) only one
field, say E, of the two fields E and H is calculated in the
second-order formulation which requires the calculation
of ννν× (∇∇∇×E) at interfaces to update; indeed, in Collino,
Delbue, Joly, and Piacentini (1997) the problem is refor-
mulated in the mixed variational form to compute E and
ννν× (∇∇∇×E) in subdomains and their boundaries. We also
suggest a method to find iteratively an optimal choice of
the matching parameter between the tangential compo-
nents of E and H on each subdomain interface. The use
of nonlocal boundary conditions, their higher-order ap-
proximations, or perfectly matched layers and relaxation

as in Berenger (1994, 1996); Collino, Delbue, Joly, and
Piacentini (1997) will be a subject of interest to be devel-
oped.

In the formulation of finite element methods for
Maxwell’s equations with absorbing boundary condi-
tions, and domain decomposition methods for Maxwell’s
equations, the tangential traces of H(curl;Ω) are in-
volved in many places. Based on proper understanding
the tangential traces of H(curl;Ω), the integration by
parts formula for functions in H(curl;Ω) in the sense
of Sobolev spaces has been studied intensively in re-
cent literatures Buffa, Costabel, and Sheen (2002) (see
also Buffa and P. Ciarlet Jr. (2001); Buffa, Costabel, and
Sheen (2002); Buffa (2001).) We will briefly survey
these results in Section 2.

The organization of the paper is as follows. In Sec-
tion 2, Maxwell’s equations are described with absorb-
ing boundary conditions, and then a weak formulation is
given. In the next section the nonconforming mixed finite
element method and its hybridization are given. Then in
Section 4 a Seidel-type iterative scheme is proposed, and
a suitable pseudo-energy is defined with which conver-
gence and an estimate for the spectral radius of the iter-
ative procedure are shown. A suggestion is made for an
optimal choice of matching parameter between the tan-
gential components of E and H for the interface con-
dition is given. Also a red-black Seidel type procedure
is introduced which is readily parallelizable. Finally in
Section 5 some results from numerical experiments are
presented to compare the analyses given in the previous
sections.

2 The time-harmonic Maxwell’s equations

2.1 The model problem

Let E and H denote the electric and magnetic fields
for a given angular frequency ω. The time-harmonic
Maxwell’s equations are given by

(iωε+σ)E −∇∇∇×H = F, (1a)

iωµH +∇∇∇×E = G, (1b)

where ε,µ, and σ denote the electric permittivity, mag-
netic permeability, and conductivity, respectively, which
satisfy the following bound, for any ξ ∈ C3,

0 < ε∗|ξ|2 ≤
∣∣∣∣∣∑j,k ε jkξ jξk

∣∣∣∣∣≤ ε∗|ξ|2, (2a)
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0 ≤ σ∗|ξ|2 ≤
∣∣∣∣∣∑j,k σ jkξ jξk

∣∣∣∣∣≤ σ∗|ξ|2, (2b)

0 < µ∗|ξ|2 ≤
∣∣∣∣∣∑j,k µ jkξ jξk

∣∣∣∣∣≤ µ∗|ξ|2. (2c)

The free space equations are reduced to a truncated com-
pact domain, so that a practical computational procedure
can be defined, with suitable absorbing boundary con-
ditions imposed on the truncated boundary. Let Ω be a
unit cube and Γ = ∂Ω be its boundary, and then we will
consider the following boundary value problem

(iωε+σ)E −∇∇∇×H = F in Ω, (3a)

iωµH +∇∇∇×E = G in Ω, (3b)

απτE +ννν×H = 0 on Γ, (3c)

where ννν denote the unit outer normal to Γ, πτ(ϕ) =
ϕ−ννν(ννν ·ϕ) = −ννν× (ννν×ϕ) is the projection of the trace
of ϕ on Γ. Assume that, for α = αR − iαI, there exist
αR∗ ,αR∗,αI∗, and αI∗ , with 0 < αR∗ ≤ αR∗ and 0 ≤ αI∗ ≤
αI∗ such that

0 < αR∗ |ξ|2 ≤
∣∣∣∣∣∑j,k αRjkξ jξk

∣∣∣∣∣≤ αR∗ |ξ|2, (4a)

0 ≤ αI∗ |ξ|2 ≤
∣∣∣∣∣∑j,k αI jkξ jξk

∣∣∣∣∣≤ αI∗|ξ|2. (4b)

Condition (3c) is a general form of absorbing boundary
conditions such that electromagnetic fields arriving at Γ
at certain incident angles do not reflect Sheen (1997).
For technical reasons to follow, we assume that α is
a complex-valued scalar function which is Lipschitz-
continuous on Γ.

2.2 Function spaces and preliminaries

For an open set Ω and a real number r, let (Hr(Ω),‖·‖r,Ω)
indicate the usual complex-valued Sobolev space and its
norm. In particular, (H0(Ω),‖·‖0,Ω) denotes the usual
L2(Ω)-space and its norm, (L2(Ω),‖·‖0,Ω), with the as-
sociated inner product

(ϕ,ψ) =
Z

Ω
ϕψdx

Also, for a part γ of the boundary ∂Ω of Ω,

〈ϕ,ψ〉γ =
Z

γ
ϕψdΩ

will mean the inner product on L2(γ) with associated
norm |·|0,γ. The following spaces are standard:

H(curl;Ω) = {ϕ ∈ [L2(Ω)]3 : ∇∇∇×ϕ ∈ [L2(Ω)]3},

H(div;Ω) = {ϕ ∈ [L2(Ω)]3 : ∇∇∇·ϕ ∈ [L2(Ω)]},
equipped with the natural norms

‖ϕ‖H(curl;Ω) = (‖ϕ‖2
0,Ω +‖∇∇∇×ϕ‖2

0,Ω)1/2,

‖ϕ‖H(div;Ω) = (‖ϕ‖2
0,Ω +‖∇∇∇·ϕ‖2

0,Ω)1/2.

In the following analysis proper meaning of the traces of
H(curl;Ω) and integration by parts with functions in the
space H(curl;Ω) are very important. For this, we will
give a brief review of the characterization of the space
of tangential traces and tangential components for vec-
tor fields in H(curl;Ω) following Buffa, Costabel, and
Sheen (2002). Set

V = [H1/2(Γ)]3; V′ = [H−1/2(Γ)]3,

H−s
∗ (Γ) = {v ∈ H−s(Γ)| 〈v,1〉s,Γ = 0}, s ∈ [0,1],

L2
t (Γ) = {v ∈ [L2(Γ)]3|ννν ·v = 0 on Γ},

where the space L2
t (G) is identified with the space of

fields belonging to the tangent bundle TΓ of Γ almost ev-
erywhere. Also, let H3/2(Γ) be the trace space of H2(Ω)
endowed with the norm

‖λ‖3/2,Γ = inf
v ∈ H2(Ω)

v|G = λ

{‖v‖2,Ω}.

Then the space H−3/2(Γ) is defined as the dual space of
H3/2(Γ) with the pivot space L2(Γ).

Definition 2.1. The “tangential component trace” map-
ping πτ : D(Ω)3 → L2

t (Γ) and the “tangential trace”
mapping γτ : D(Ω)3 → L2

t (Γ) are defined as v �→ −ννν×
(ννν×v) and v �→ −ννν×v, respectively.

Denoting by γ the standard trace operator on the prod-
uct space [H1(Ω)]3 → V defined by γ(v) = v|Γ and by
γ−1 its right inverse, we shall abuse the notations πτ and
γτ for the composite operators πτ ◦ γ−1 and γτ ◦ γ−1, re-
spectively. Due to the density of [D(Ω)]3 in [L2(Γ)]3, the
operators πτ and γτ can be extended to [L2(Γ)]3 linearly
and continuously. Now set

Vγ = γτ(V); Vπ = πτ(V),
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which are Hilbert spaces endowed with the norms

‖λ‖Vγ = inf
v ∈ V

γτ(v) = λ

{‖v‖V}; ‖λ‖Vπ = inf
v ∈ V

πτ(v) = λ

{‖v‖V}.

Let iπ : L2
t (Γ) → L2(Γ) and iγ : L2

t (Γ) → L2(Γ) be the
adjoint operators of πτ and γτ respectively. These op-
erators are the identifications of tangent fields with 3D
vector fields. Thanks to the Lipschitz assumption, a lo-
cal system of orthonormal coordinates (τ1,τ2,ννν) can be
defined at almost every x ∈ Γ. Here, τ1 and τ2 are two
orthonormal vectors belonging to the tangent plane for
almost every x ∈ Γ, while ννν is the outer normal to Ω. Of
course, the vectors τ1 and τ2 can also be considered as
“tangent fields”(sections of the tangent bundle). The op-
erators iπ and iγ can be extended as isomorphisms in the
following way:

iπ : V′
π →

(
ker(πτ)∩V

)0
, (5a)

iγ : V′
γ →

(
ker(γτ)∩V

)0
, (5b)

where ·0 denotes the polar set (or, the annihilator).

Tangential gradient and curl operators are defined as
usual using a localization argument:

∇∇∇Γ : H1(Γ) → L2
t (Γ); curlΓ : H1(Γ) → L2

t (Γ),

and the corresponding adjoint operators, which are linear
and continuous, are defined

divΓ : L2
t (Γ) → H−1

∗ (Γ); curlΓ : L2
t (Γ) → H−1

∗ (Γ),

respectively. Moreover, the following operators are con-
tinuous:

∇∇∇Γ : H3/2(Γ) → Vπ; ∇∇∇Γ : H1/2(Γ) → V′
γ;

curlΓ : H3/2(Γ) → Vγ; curlΓ : H1/2(Γ) → V′
π;

satisfying

‖λ‖H1/2(Γ)/C ≤C‖∇∇∇λ‖V′
γ; ‖λ‖H1/2(Γ)/C ≤C‖∇∇∇λ‖V′

π.

Therefore their adjoint operators divΓ : Vγ → H−1/2
∗ (Γ)

and curlΓ : Vπ → H−1/2
∗ (Γ) are continuous and surjec-

tive. Based on these tangential operators, the Laplace-
Beltrami operator ΔΓ : H1(Γ) → H−1∗ (Γ) is defined by
ΔΓv = divΓ ∇∇∇Γv for any v ∈ H1(Γ).

We are now ready to introduce the traces of H(curl;Ω).
Set

H−1/2(divΓ;Γ) = {λ ∈ V′
π| divΓ(λ) ∈ H−1/2(Γ)},

H−1/2(curlΓ;Γ) = {λ ∈ V′
γ| curlΓ(λ) ∈ H−1/2(Γ)}

with the graph norms

‖v‖H−1/2(divΓ;Γ) =
√
‖v‖2

V′
π
+‖divΓ(v)‖2

−1/2,Γ ,

‖v‖H−1/2(curlΓ;Γ) =
√

‖v‖2
V′

γ
+‖curlΓ(v)‖2

−1/2,Γ .

Then the following theorem holds:

Theorem 2.1. The operators γτ : H(curl;Ω) →
H−1/2(divΓ;Γ) and πτ : H(curl;Ω) → H−1/2(curlΓ;Γ)
are linear, continuous, and surjective.

The proof of the surjectivity, on the other hand, is based
on the proof given by Tartar in Tartar (1997). Let

T := {ξ ∈ V′ | ∃η ∈ H−1/2(Γ) : ∀φ ∈ H2(Ω) :

V′ 〈ξ,γ(∇∇∇φ)〉V = 〈η,φ〉1/2,Γ}. (6)

In Tartar (1997), the tangential trace operator is defined
as “γτ : H(curl;Ω)→ T , v �→ννν×v” and it is proven to be
surjective by a localization argument. Here, our setting
is different: the ranges of the operators πτ and γτ defined
above are Hilbert spaces of tangent fields. It is shown that
the mapping iπ defined in (5) is indeed an isomorphism
between T and H−1/2(divΓ;Γ), i.e.,

iπ
(
H−1/2(divΓ;Γ)

)≡ T.

Set

H (Γ) := {p ∈ H1(Γ)/R | ΔΓp ∈ H−1/2
� (Γ)}.

The trace spaces of H(curl;Ω) have the following
Hodge-type decomposition results:

Theorem 2.2.

H−1/2(divΓ;Γ) = ∇∇∇Γ(H (Γ))⊕curlΓ(H1/2(Γ)),

H−1/2(curlΓ;Γ) = curlΓ(H (Γ))⊕∇∇∇Γ(H1/2(Γ)).

Based on the above decomposition results, a duality can
be defined between H−1/2(divΓ;Γ) and H−1/2(curlΓ;Γ)
with the pivot space L2

t (Γ).
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Theorem 2.3. Let u ∈ H−1/2(divΓ;Γ) and v ∈
H−1/2(curlΓ;Γ) be decomposed as: u = ∇∇∇Γαu +
curlΓ βu, v = ∇∇∇Γβv +curlΓ αv with βu,βv ∈H1/2(Γ) and
αu,αv ∈ H (Γ). Then, we have

γ〈u,v〉π := −〈ΔΓαu,βv〉1/2,Γ + 〈ΔΓαv,βu〉1/2,Γ. (7)

Given u ∈ H(curl;Ω), recall the decompositions u =
ΦΦΦ+∇∇∇p with ΦΦΦ ∈ [H1(Ω)]3, p ∈ H1(Ω). Based on these
decompositions, the integration by parts formula holds:

Theorem 2.4. Given u,v ∈ H(curl;Ω), let u = ΦΦΦ +
∇∇∇p, v = Ψ+∇∇∇q with ΦΦΦ,ΨΨΨ ∈ [H1(Ω)]3, p,q ∈ H1(Ω).
Z

Ω
{∇∇∇×u ·v−u ·∇∇∇×v} dx = −γ〈γτ(u),πτ(v)〉π, (8)

where the boundary term can be interpreted as

γ〈γτ(u),πτ(v)〉π =
Z

Γ
γτ(ΦΦΦ) ·πτ(ΨΨΨ)+V′

γ〈∇∇∇Γq,γτ(ΨΨΨ)〉Vγ

+V′
π〈curlΓ p,πτ(ΨΨΨ)〉Vπ

=
Z

Γ
γτ(ΦΦΦ) ·πτ(ΨΨΨ)−〈divΓ γτ(ΦΦΦ),q〉1/2,Γ

+ 〈curlΓ πτ(ΨΨΨ), p〉1/2,Γ.

In what follows we will use the notation ννν×ϕ to denote
−γτ(ϕ) if ϕ is in the appropriate space H(curl;Ω). Recall
the classical Green’s formula

(∇∇∇×ϕ,ψ)− (ϕ,∇∇∇×ψ) = 〈ννν×ϕ,ψ〉∂Ω

= 〈ννν×ϕ,πτψ〉∂Ω ,

for all ϕ ∈ H(curl;Ω),ψ ∈ [H1(Ω)]3. If both ϕ and
ψ belong to H(curl;Ω), ννν × ϕ and πτψ belong to
[H−1/2(∂Ω)]3 and therefore Theorem 2.4 generalizes the
above classical integration by formula.

Remark 2.1. In Sheen (1992) the integration by parts
formula for a Lipschitz domain Ω is proved directly by
using a density argument with a different interpretation
of the boundary integral term in (8):

(∇∇∇×ϕ,ψ)− (ϕ,∇∇∇×ψ) = 〈ννν×ϕ,ψ〉∂Ω

= 〈ννν×ϕ,πτψ〉∂Ω , (9)

for all ϕ,ψ ∈ H(curl;Ω), where, the boundary integral
term 〈ννν×ϕ,πτψ〉∂Ω is understood as 〈(ννν×ϕ) ·πτψ,1〉,
the duality pairing between ννν × ϕ · πτψ ∈ Lip(∂Ω)′

and 1 ∈ Lip(∂Ω). Indeed, in Sheen (1992) the inte-
gration by parts formula (8) was proved for a gen-
eral class of linear first order differential operators.
L = ∑N

j=1 A j(x) ∂
∂x j

, where the A j’s are k × k matri-
ces with uniformly Lipschitz–continuous components on
Ω and L∗ be the formal adjoint of L given by L∗ =
−∑N

j=1
∂

∂x j
A∗

j(x), with A∗
j ’s being the adjoint matrices

of A j’s. Then the following Hilbert space H(L ;Ω) =
{u∈ [L2(Ω)]k;Lu∈ [L2(Ω)]k} is endowed with the inner
product and the norm

(u,v)H(L ;Ω) = (u,v)+(Lu,Lv),

‖u‖H(L ;Ω) =
{‖u‖2 +‖Lu‖2} 1

2 .

The analogues for L∗ holds. Denoting Aννν = ∑N
j=1 ν jA j,

the main result of Sheen (1992) is given as follows:
the map {u,v} �→ Aνννu · v from [D(Ω)]k × [D(Ω)]k into
Lip(Γ)′ can be extended by continuity to a continuous
sesquilinearmap from H(L ;Ω)×H(L∗;Ω) into Lip(Γ)′;
moreover, for all u ∈H(L ;Ω) and v ∈H(L∗;Ω), the fol-
lowing Green’s formula holds:

(Lu,v)−(u,L∗v) = {Aνννu,v}Γ ≡ Lip(Γ)′〈Aνννu ·v,1〉Lip(Γ),

where Lip(Γ)′ 〈·, ·〉Lip(Γ) denotes the duality paring between
Lip(Γ)′ and Lip(Γ).

An immediate result of Theorem 2.3 is useful:

Proposition 2.1. Let u ∈ H−1/2(divΓ;Γ)∩
H−1/2(curlΓ;Γ) with ννν ·u = 0. Then u ∈ L2

t (Γ).

Proof. Suppose u ∈ H−1/2(divΓ;Γ) ∩ H−1/2(curlΓ;Γ).
Then u has the following decomposition: u = ∇∇∇Γα +
curlΓ β and u = ∇∇∇Γβ′ + curlΓ α′ with α,α′ ∈ H (Γ) and
β,β′ ∈ H1/2(Γ). Moreover, the duality (7) implies that

〈u,u〉0,Γ = −γ〈u,u〉π = −〈ΔΓα,β′〉1/2,Γ + 〈ΔΓα′,β〉1/2,Γ,

which is bounded by the definition of duality. Thus, u ∈
L2

t (Γ).

2.3 Existence and uniqueness results

We begin with the following lemma:

Lemma 2.1. If {E,H} ∈ [H(curl;Ω)]2 satisfies (3), the
boundary terms απτE and ννν×H belong to L2

t (Γ).
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Proof. Indeed, let α̃ be an invertible Lipschitz extension
of α onto Ω such that α̃ = α on Γ. Then, taking the inner
product of the equation (3a) with (α̃∗)−1E and applying
(9) with using the boundary condition (3c), we obtain

0 = (F, (α̃∗)−1E)− ((iωε+σ)E, (α̃∗)−1E)
+(H,∇∇∇× (α̃∗)−1E)
= (F, (α̃∗)−1E)− ((iωε+σ)E, (α̃∗)−1E)
+(∇∇∇×H, (α̃∗)−1E)−〈ννν×H, (α∗)−1πτE

〉
Γ

= (F, (α̃∗)−1E)− ((iωε+σ)E, (α̃∗)−1E)
+(∇∇∇×H, (α̃∗)−1E)+ 〈πτE,πτE〉Γ .

Hence,

|πτE|20,Γ ≤γ 〈πτE,πτE〉π

≤ |(F, (α̃∗)−1E)|+ |((iωε+σ)E, (α̃∗)−1E)|
+ |(∇∇∇×H, (α̃∗)−1E)|
≤C
[
‖E‖2

0,Ω +‖H‖2
H(curl;Ω) +‖F‖2

0,Ω

]
.

Therefore we see that πτE actually belongs to L2
t (Γ). The

boundary condition (3c) leads to ννν×H ∈ L2
t (Γ).

The existence and uniqueness results for Problem (3)
without the term ε are given in Santos and Sheen (2000)
with the use of integration by parts formula in the sense
of Remark 2.1. However, it is straightforward to check
all the arguments given there are still valid with the term
ε included and the use of integration by parts formula in
the sense of Theorem 2.4:

Theorem 2.1. Assume that σ∗ > 0. Let F,G ∈ [L2(Ω)]3

and ω �= 0. Then, there exists a unique electromagnetic
field {E,H} ∈ [H(curl;Ω)]2 satisfying (3) with πτE,ννν×
H ∈ L2

t (Γ). If, in addition, F and G belong to H(div;Ω)
and ε,σ, and µ are Lipschitz-continuous on Ω, then E
and H belong to [H1/2(Ω)]3; more precisely, E and H
belong to [H(curl;Ω)∩H(div;Ω)] with boundary values
in [L2(Γ)]3

In getting the weak formulation we will see the cross
term 〈απτE,πτφ〉Γ with E,φ ∈ H(curl;Ω). In order to
provide a meaning to this term, the correct test function
space for the weak problem will be

H∗(curl;Ω) = {v ∈ H(curl;Ω) : απτv = ννν×ϕ
for some ϕ ∈ H(curl;Ω)}.

By applying (9), a mixed weak formulation of Problem
(1) follows immediately: find {E,H} ∈ H∗(curl;Ω)×
[L2(Ω)]3 such that

((iωε+σ)E,ϕ)− (H,∇∇∇×ϕ)+ 〈απτE,πτϕ〉Γ = (F,ϕ),
ϕ ∈ H∗(curl;Ω), (10a)

iω(µH,ψ)+(∇∇∇×E,ψ) = (G,ψ),
ψ ∈ [L2(Ω)]3. (10b)

It is easy to see that if {E,H} satisfies the above weak
problem, it is then a solution of the differential equa-
tions (3) with the boundary condition (3c) in the sense
of H−1/2(curlΓ;Γ).

3 The nonconforming method

In this section we summarize some results on non-
conforming mixed finite element space based on three-
dimensional rectangular domain introduced in Dou-
glas Jr., Santos, and Sheen (2000).

3.1 Nonconforming mixed finite element space

Let K̂ be the reference cube [−1,1]3 and let Q̂(K̂) = Q̂x×
Q̂y × Q̂z, where

Q̂x = Span{1,y, z, (y2− 5
3

y4)− (z2 − 5
3

z4)},

Q̂y = Span{1, z,x, (z2− 5
3

z4)− (x2 − 5
3

x4)},

Q̂z = Span{1,x,y, (x2− 5
3

x4)− (y2 − 5
3

y4)}.

Let mi, i = 1, · · · ,6, be the centroid of the ith face of K̂.
Then, for ϕ ∈ Q̂(K̂), we consider the following local de-
grees of freedom :

Σ(ϕ) = {(πτϕ)(mi) | i = 1, · · · ,6}.
Then, a local interpolant π̂ : H2(K̂) → Q̂(K̂) is defined
as follows:

πτ(π̂ϕ−ϕ)(mi) = 0, i = 1, · · · ,6. (11)

Let Ŝ(K̂) = Ŝx × Ŝy × Ŝz, where

Ŝx = Span{1,y− 10
3

y3, z− 10
3

z3},
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Ŝy = Span{1, z− 10
3

z3,x− 10
3

x3},

Ŝz = Span{1,x− 10
3

x3,y− 10
3

y3},

and a local interpolant P̂ : H(curl; K̂)→ Ŝ(K̂) be defined
by the following rules: for l = x,y, z,
Z

K̂
(P̂ψl −ψl)dxdydz = 0, (12a)

Z
K̂

∇∇∇×(P̂ψl −ψl)dxdydz = 0, (12b)

for all ψ = (ψx,ψy,ψz), Note that (12) provides the nine
degrees of freedom needed to determine an element in
Ŝ(K̂) and that

∇∇∇×Q̂ = Ŝ.

The following lemma is trivial but useful Douglas Jr.,
Santos, and Sheen (2000).

Lemma 3.1. The degrees of freedom (11) and (12) de-
termine, respectively, ϕ ∈ Q̂(K̂) and ψ ∈ Ŝ(K̂) uniquely.

The following proposition states an immediate but fun-
damental property of Q̂ and Ŝ that is important in obtain-
ing effective nonconforming methods Douglas Jr., San-
tos, and Sheen (2000); )Douglas Jr., Santos, Sheen, and
Ye (1999).

Proposition 3.1. If an element of πτQ̂ or πτŜ vanishes at
the centroid of a face of K̂, it is orthogonal to constants
on that face.

For 0 < h < 1, let Ω be decomposed into nonoverlap-
ping three-dimensional rectangular hexahedra {Ω j : j =
1, · · · ,J} with their edges bounded by h:

Ω = ∪ jΩ j, Ω j ∩Ωk = /0, j �= k.

Then Q(Ω j) and S(Ω j) are defined by scaling and trans-
lating from Q̂ and Ŝ. Let

Γ j = ∂Ω j ∩Γ, Γ jk = ∂Ω j ∩∂Ωk = Γk j.

3.2 The nonconforming mixed finite element method

Set

Vh = {ϕ ∈ [L2(Ω)]3 : ϕ j := ϕ|Ω j ∈ Q(Ω j),
ϕ j(mjk) = ϕk(mjk),
mjk being the centroid of Γ jk ∀{ j,k} ∈ Ih},

Wh = {ψ ∈ [L2(Ω)]3 : ψ|Ω j ∈ S(Ω j)},
where Ih denotes the index set of all internal interfaces
Γ jk.

The nonconforming mixed finite element method is then
defined as follows: find {Eh,Hh} ∈ Vh ×W h such that(
(iωε+σ)Eh,ϕ

)−∑
j

[
(Hh,∇∇∇×ϕ) j

+∑
k

〈
ννν j ×Eh

j ,πτϕ
〉

Γ jk

]
+
〈

απτE
h,πτϕ

〉
Γ

= (F,ϕ), ϕ ∈ Vh, (13a)

iω(µHh,ψ)+∑
j

(∇∇∇×Eh,ψ) j = (G,ψ), ψ ∈W h. (13b)

Denoting by ‖ · ‖0,h the broken L(Ω)-norm, we then have
the following a priori error estimate:

Theorem 3.1. Suppose that σ∗ > 0. Let {E,H} and
{Eh,Hh}, 0 < h < 1, be the solutions to (10) and (13),
respectively. Then,

‖E −Eh‖0 +‖H −Hh‖0 +‖∇∇∇×(E −Eh)‖0,h

≤Ch1/2
(
‖E‖2 +h1/2‖H‖1

)
. (14)

The proof of the above theorem is given in Douglas Jr.,
Santos, and Sheen (2000), where ε∗ = 0 is assumed, but
including the case ε∗ > 0 does not change any argument
given there.

3.3 Hybridization

Denote by 〈〈·, ·〉〉Γ jk the approximation to 〈·, ·〉Γ jk
ob-

tained by using the mid-point rule on Γ jk so that

〈〈u,v〉〉Γ jk =
∣∣Γ jk
∣∣(uv)(mjk),

where mjk and
∣∣Γ jk
∣∣ denote the centroid and the measure

of Γ jk, respectively.

Following Arnold and Brezzi (1985); Fraeijs de Veubeke
(1965); Fraeijs de Veubeke (1975), the hybridization of
the procedure (13) is given by introducing the space Λ̃h of
Lagrange multipliers associating its elements with ννν j ×
Ej(mjk) on Γ jk. Thus set

N C h
−1 = {ϕ ∈ [L2(Ω)]3 : ϕ|Ω j ∈ Q(Ω j)}

Λ̃h = {λ̃h : λ̃h|Γ jk = λ̃ jk ∈ [P0(Γ jk)]2;

λ̃ jk + λ̃k j = 0 for all jk ∈ Ih},
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and P0(Γ jk) the set of constant functions defined on Γ jk.

The global hybridized nonconforming mixed finite ele-
ment method is then defined as follows: find {Ẽh, H̃h, λ̃h}
∈ N C h

−1×W h × Λ̃h such that(
(iωε+σ)Ẽh,ϕ

)−∑
j

[
(H̃h,∇∇∇×ϕ) j

+∑
k

〈〈λ̃h,πτϕ〉〉Γ jk

]
+ 〈〈απτẼ

h,πτϕ〉〉Γ

= (F,ϕ), ϕ ∈ N C h
−1, (15a)

iω(µH̃h,ψ)+∑
j

(∇∇∇× Ẽh,ψ) j = (G,ψ), ψ ∈Wh, (15b)

∑
j,k∈Ih

〈〈θ,πτẼ
h〉〉Γ jk = 0, θ ∈ Λ̃h. (15c)

Notice that (15c) is equivalent to imposing the condition
πτẼh

j (mjk) = πτẼh
j (mjk) at the centroid mjk of interfaces

Γ jk. Also, as in Douglas Jr., Santos, and Sheen (2000),
we immediately have the following theorem on existence
and uniqueness for Problem (15).

Theorem 3.2. Let σ∗ > 0. Then the problem (15) is
uniquely solvable.

4 A Seidel-type domain decomposition method

4.1 A Seidel-type domain decomposition iterative pro-
cedure

Set f j = f |Ω j for any function f defined on Ω. The dif-
ferential domain decomposition problem for solving (1)
is to find {Ej,Hj}, for j = 1, · · · ,J, such that

(iωε+σ)Ej −∇∇∇×Hj = Fj in Ω j, (16a)

iωµHj +∇∇∇×Ej = Gj in Ω j, (16b)

απτEj +ννν×Hj = 0 on Γ j, (16c)

with the interface consistency conditions

ννν j ×Hj = −νννk ×Hk and πτEj = πτEk on Γ jk ∀k. (17)

Instead of (17), the Robin-type transmission condition

(ννν j ×Hj +β jkπτEj) = −νννk ×Hk +β jkπτEk on Γ jk ∀k

(18)

will be imposed. In (18), β jk is a complex function de-
fined on Γ jk which will be specified later. The weak for-
mulation of the Problem (16) and (18) is given as follows:
find {Ej,Hj} ∈ H∗(curl;Ω j)× [L2(Ω j)]3, j = 1, · · · ,J,
such that

((iωε+σ)Ej,ϕ) j − (Hj,∇∇∇×ϕ) j

+∑
k

〈
β jk(πτEj −πτEk)+νννk ×Hk,πτϕ

〉
Γ jk

,

+
〈
απτEj,πτϕ

〉
Γ j

= (Fj,ϕ) j, ϕ ∈ H∗(curl;Ω j),

iω(µHj,ψ) j +(∇∇∇×Ej,ψ) j = (Gj,ψ) j, ψ ∈ [L2(Ω j)]3.

Set Vh
j = N C h

−1|Ω j and W h
j = Wh|Ω j. Also let Λh be

the set of Lagrange multipliers associated with (ννν j ×
Hj)(mjk) on Γ jk given in by

Λh =
{

λh| λh|Γ jk = λh
jk ∈ Λ jk ∀{ j,k} ∈ Ih

}
,

where Λ jk = [P0(Γ jk)]2, and set

Λh
j =
{

λh
j | λh

j |Γ jk = λh
jk ∈ Λ jk ∀k

}
.

From now on associate (ννν j ×Hj)(mjk) on Γ jk with λ jk.

We are now in a position to define a Seidel-type domain
decomposition iterative procedure. Choose an initial
guess {Eh,0

j ,Hh,0
j ,λh,0

j } ∈ Vh
j ×W h

j ×Λ j for all j. Then,

iteratively for n ≥ 1, find {Eh,n
j ,Hh,n

j ,λh,n
j } ∈ Vh

j ×Wh
j ×

Λh
j , for j = 1,2, · · · , fulfilling

((iωε+σ)Eh,n
j ,ϕ) j − (Hh,n

j ,∇∇∇×ϕ) j

−∑
k

〈〈λh,n
jk ,πτϕ〉〉Γ jk + 〈〈απτE

h,n
j ,πτϕ〉〉Γ j

= (Fj,ϕ) j, ϕ ∈ Vh
j, (19a)

iω(µHh,n
j ,ψ) j +(∇∇∇×Eh,n

j ,ψ) j = (Gj,ψ) j,

ψ ∈W h
j , (19b)

λh,n
jk = −λh,n∗

k j +β jk(πτE
h,n∗
k −πτE

h,n
j )(mjk),

for all k, (19c)

where n∗ is defined by

n∗ =
{

n−1, j < k
n, j > k.
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Remark 4.1. It should be remarked that in the updat-
ing procedure (19c) data in use passed from neighbor-
ing subdomains are most up-to-date; in this sense (19) is
said to be a Seidel-type scheme. Instead of the above, if
n∗ were defined as n− 1 for all j,k, the procedure (19)
should be regarded as a Jacobi-type scheme in the sense
that the updating procedure (19c) would use informa-
tions from the past step; this procedure has been studied
in Douglas Jr., Santos, and Sheen (2000).

4.2 Convergence of the iterative procedure

The localized Problem (16)-(18) is weakly formulated as
follows: find {Ẽh

j , H̃
h
j , λ̃h

j} ∈ Vh
j ×W h

j ×Λh
j such that

((iωε+σ)Ẽh
j ,ϕ) j − (H̃h

j ,∇∇∇×ϕ) j −∑
k

〈〈λ̃h
jk,πτϕ〉〉Γ jk

+ 〈〈απτẼ
h
j ,πτϕ〉〉Γ j = (Fj,ϕ) j, ϕ ∈ Vh

j, (20a)

iω(µH̃h
j ,ψ) j +(∇∇∇× Ẽh

j ,ψ) j = (Gj,ψ) j,ψ ∈Wh
j , (20b)

λ̃h
jk = −λ̃h

k j +β jk(πτẼ
h
k −πτẼ

h
j )(mjk), for all k. (20c)

We will show the convergence of the solution
{Eh,n

j ,Hh,n
j ,λh,n

j } of Problem (19) to the solution

{Ẽh
j , H̃

h
j , λ̃h

j} of Problem (20). We will restrict the con-
vergence proof to the case β jk = β. for all j,k. Set, for
all j,

un
j = Eh,n

j − Ẽh
j , vh

j = Hh,n
j − H̃h

j , θn
j = λh,n

j − λ̃h
j . (21)

Then a subtraction of (20) from (19) gives the iteration
error equations:

((iωε+σ)un
j,ϕ) j − (vn

j ,∇∇∇×ϕ) j −∑
k

〈〈θn
jk,πτϕ〉〉Γ jk

+ 〈〈απτun
j,πτϕ〉〉Γ j = 0, ϕ ∈ Vh

j, (22a)

iω(µvn
j,ψ) j +(∇∇∇×un

j ,ψ) j = 0, ψ ∈Wh
j , (22b)

θn
jk = −θn∗

k j +β(πτu
n∗
k −πτu

n
j)(mjk)∀k. (22c)

Choose ϕ = un
j and ψ = vn

j in (22a) and (22b), respec-
tively. Then we have

∑
k

〈〈θn
jk,πτu

n
j〉〉Γ jk = ((iωε+σ)un

j,u
n
j) j

− iω(µvn
j ,v

n
j) j + 〈〈απτu

n
j ,πτu

n
j〉〉Γ j . (23)

Taking the real and imaginary parts in the above equa-
tion, we get

Re∑
k

〈〈θn
jk,πτun

j〉〉Γ jk = (σun
j ,u

n
j) j

+ 〈〈αRπτu
n
j ,πτu

n
j〉〉Γ j (24)

and

Im∑
k

〈〈θn
jk,πτu

n
j〉〉Γ jk = ω(εun

j ,u
n
j) j

−ω(µvn
j ,v

n
j) j −〈〈αIπτun

j ,πτun
j〉〉Γ j . (25)

We rearrange (22c) so that

θn
jk = −θn−1

k j +β(πτu
n−1
k −πτun

j)(mjk),
j < k, (26a)

θn
jk = −θn

k j +β(πτu
n
k −πτu

n
j)(mjk), j > k, (26b)

= θn−1
jk −β(πτun−1

j −πτun
k)(mjk)

+β(πτun
k −πτun

j)(mjk) (26c)

= −θn−1
k j +β(πτun−1

k −2πτun−1
j )(mjk)

−β(πτu
n
j −2πτu

n
k)(mjk). (26d)

Here, (26c) follows from (26b) by applying (26a) and
(26d) follows from (26c) by applying (26b) for n − 1.
Motivated by (26a) and (26d), we define the pseudo-
energy for the iterative procedure (19):

Rn({un,vn,θn}) = ∑
j<k

∣∣θn
jk +βπτu

n
j(mjk)

∣∣2
0,Γ jk

+ ∑
j>k

∣∣θn
k j +βπτu

n
k(mjk)

∣∣2
0,Γ jk

. (27)

Denote ||| f |||= ∑ j〈〈 f , f 〉〉Γ j for a function defined on Γ.
Then the following recurrence relation for the decay in
pseudo-energy holds.

Theorem 4.2. With the pseudo-energy (27), we have the
following general recurrence relation which is indepen-
dent of differential or weak problems:

Rn = Rn−1−8Re∑
j,k

〈
θn−1

jk ,βπτu
n−1
j

〉
Γ jk

(28)



66 Copyright c© 2006 Tech Science Press CMES, vol.14, no.1, pp.57-76, 2006

Proof. Since by (26a), we have

Rn = 2 ∑
j<k

∣∣θn
jk +βπτu

n
j

∣∣
0,Γ jk

= 2 ∑
j<k

∣∣∣θn−1
k j −βπτun−1

k

∣∣∣
0,Γ jk

by (26a)

= 2 ∑
j>k

∣∣∣θn−1
jk −βπτu

n−1
j

∣∣∣
0,Γ jk

= 2 ∑
j>k

∣∣∣−θn−1
k j +β(πτu

n−1
k −2πτu

n−1
j )
∣∣∣
0,Γ jk

by (26a)

= 2 ∑
j<k

∣∣∣θn−1
jk −β(πτu

n−1
j −2πτu

n−1
k )
∣∣∣
0,Γ jk

= 2 ∑
j<k

∣∣∣θn−1
jk +βπτu

n−1
j

−2β(πτu
n−1
j −πτu

n−1
k )
∣∣∣
0,Γ jk

= Rn−1−8Re ∑
j<k

〈
θn−1

jk +βπτu
n−1
j ,

β(πτu
n−1
j −πτu

n−1
k )
〉

Γ jk

+8 ∑
j<k

∣∣∣β(πτun−1
j −πτun−1

k )
∣∣∣
0,Γ jk

= Rn−1−8Re ∑
j<k

〈
θn−1

jk +βπτu
n−1
k ,

β(πτun−1
j −πτun−1

k )
〉

Γ jk

= Rn−1−8Re∑
j,k

〈
θn−1

jk ,βπτu
n−1
j

〉
Γ jk

since

Re

[
∑
j<k

〈
−βπτu

n−1
k ,β(πτu

n−1
j −πτun−1

k )
〉

Γ jk

+ ∑
j<k

〈
θn−1

jk ,βπτun−1
k

〉
Γ jk

]
= Re ∑

j<k

〈
βπτu

n−1
k ,−β(πτu

n−1
j −πτun−1

k )+θn−1
jk

〉
Γ jk

= Re ∑
j>k

〈
βπτun−1

j ,β(πτun−1
j −πτun−1

k )+θn−1
k j

〉
Γ jk

= −Re ∑
j>k

〈
βπτu

n−1
j ,θn−1

jk

〉
Γ jk

by (26a)

= −Re ∑
j>k

〈
θn−1

jk ,βπτu
n−1
j

〉
Γ jk

.

This proves (28).

From Theorem 4.2 and (23) it is immediate to have the
following theorem.

Theorem 4.3. Let β = βR + iβI. Then, with the pseudo-
energy (27), the following recurrence relation holds:

Rn = Rn−1−8βR

[∥∥∥σ1/2un−1
∥∥∥2

+
∣∣∣∣∣∣∣∣∣α1/2

R πτun−1
∣∣∣∣∣∣∣∣∣2]

+8βI

[
ω
∥∥∥µ1/2vn−1

∥∥∥2 −ω
∥∥∥ε1/2un−1

∥∥∥2

+
∣∣∣∣∣∣∣∣∣α1/2

I πτu
n−1
∣∣∣∣∣∣∣∣∣2] . (29)

Remark 4.4. In the Jacobi-type iterative procedure
given in Douglas Jr., Santos, and Sheen (2000) the
pseudo-energy is given in the form

Rn
J({un,vn,θn}) = ∑

j,k

∣∣θn
jk +βπτu

n
j(mjk)

∣∣2
0,Γ jk

instead of (27), the recurrence relation is given in the
form:

Rn
J = Rn−1

J −4βR

[∥∥∥σ1/2un−1
∥∥∥2

+
∣∣∣∣∣∣∣∣∣α1/2

R πτun−1
∣∣∣∣∣∣∣∣∣2]

+4βI

[
ω
∥∥∥µ1/2vn−1

∥∥∥2 −ω
∥∥∥ε1/2un−1

∥∥∥2

+
∣∣∣∣∣∣∣∣∣α1/2

I πτu
n−1
∣∣∣∣∣∣∣∣∣2] .

Thus the energy decays in the Seidel-type procedure is
roughly as twice fast as that in the Jacobi-type one.

According to Theorem 4.3, we have the following con-
vergence result.

Theorem 4.5. Assume that β satisfies the following con-
ditions:

βRσ∗ +βIωε∗ > 0, βRαR∗ −βIαI∗ ≥ 0,

βR > 0, βI ≤ 0; (30)

Then, the iteration error {un,vn,θn} satisfying (22) con-
verges to zero as n tends to ∞, and Rn tends to zero as
well.
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Proof. Due to (29), we have

Rn = R0−8
n−1

∑
k=1

∑
j

[
(βRσ+βIωε)

(
σuk

j,u
k
j) j

−βIωµ(vk
j,v

k
j) j

+(βRαR −βIαI)〈〈πτu
k
j,πτu

k
j〉〉Γ j

]
Thus, under Condition (30), we see that Rn is a nonnega-
tive nonincreasing sequence, and therefore,

∞

∑
k=1

[
βR ∑

j

{
(σuk

j,u
k
j) j + 〈〈αRπτu

k
j,πτu

k
j〉〉Γ j

}
−βI ∑

j

{
ω(µvk

j,v
k
j) j −ω(εuk

j,u
k
j) j

+ 〈〈αIπτuk
j,πτuk

j〉〉Γ j

}]
< ∞.

Suppose that (30) holds. Then we have that un
j → 0 in

[L2(Ω j)]3 as n tends to ∞, which implies that ∇∇∇×un
j → 0

in [H−1(Ω j)]3 as n tends to ∞. Due to finite dimen-
sionality of Vh

j , ∇∇∇×un
j → 0 in [L2(Ω j)]3 as n tends to

∞. Hence, (22b) leads to that vn
j → 0 in [L2(Ω j)]3 as

n tends to ∞. Next, as n tends to ∞, (22a) tends to
−∑k〈〈θn

jk,πτϕ〉〉Γ jk = 0 for all ϕ ∈ Vh
j , in particular for

ϕ = ϕ̃ jk such that πτϕ̃(mjk) = θn
jk and vanishes at the

other five centroids of ∂Ω j. This implies that θn
jk con-

verges to zero as n tends to ∞ for all { j,k} ∈ Ih. The
convergence of Rn to zero follows from the formula (27).

The proof is complete.

4.3 An estimate for the spectral radius of the iterative
procedure

Let TF,G = TF,G(β, ·) =: N C h
−1 × Wh × Λh →

N C h
−1 × Wh × Λh be the affine map such that,

for any (U,V,θ) ∈ N C h
−1 × Wh × Λh, {E,H,λ} =

TF,G{U,V,θ} = TF,G(β;{U,V,θ}) is the solution of the
following problem: for j = 1,2, · · ·,

((iωε+σ)Ej,ϕ) j − (Hj,∇∇∇×ϕ) j −∑
j

〈〈λ jk,πτϕ〉〉Γ jk

+ 〈〈απτEj,πτϕ〉〉Γ j = (Fj,ϕ) j, ϕ ∈ Vh
j, (31a)

iω(µHj,ψ) j +(∇∇∇×Ej,ψ) j = (Gj,ψ) j,ψ ∈W h
j , (31b)

λ jk =
{ −θk j +β jk(πτUk −πτEj)(mjk), j < k,

−λk j +β jk(πτEk −πτEj)(mjk), j > k.

Immediately, the argument given in Douglas Jr., Santos,
and Sheen (2000) gives the following result.

Lemma 4.6. If {E,H,λ} is a fixed point of TF,G, then
λ jk = −λk j for all { j,k}. Moreover, the pair {E,H,λ} is
a solution of (20) if and only if it is a fixed point of TF,G.

The operator TF,G can be decomposed as the sum of
T0,0{U,V,θ} and TF,G{0,0,0}, and hence {U,V,θ} is a
fixed point of TF,G if and only if

TF,G{U,V,θ}= {U,V,θ}= T0,0{U,V,θ}+TF,G{0,0,0}.
Observe that solving (19) for j = 1,2, · · · is equivalent to
applying the operator TF,G to {Eh,n−1, Hh,n−1, λh,n−1} :

{Eh,n,Hh,n,λh,n} = TF,G{Eh,n−1,Hh,n−1,λh,n−1}
= T0,0{Eh,n−1,Hh,n−1,λh,n−1}+TF,G{0,0,0}. (32)

Also, due to Lemma 4.6, {Ẽh, H̃h, λ̃h}, which is the solu-
tion of (20), satisfies

{Ẽh, H̃h, λ̃h} = TF,G{Ẽh, H̃h, λ̃h}
= T0,0{Ẽh, H̃h, λ̃h}+TF,G{0,0,0}. (33)

Then the subtraction of (33) from (32) gives

{un,vn,θn} = T0,0{un−1,vn−1,θn−1}.
Thus solving (22) for all j is exactly the application of
the operator T0,0 to {un−1,vn−1,θn−1}, and therefore the
error reduction at each iteration is dominated by the spec-
tral radius of T0,0, which depends on the choice of β. We
wish to find a way of optimal choice β.

Let γ be an eigenvalue of T0,0 and {E,H,λ} the associ-
ated eigenvector, so that

T0,0{E,H,λ}= γ{E,H,λ}.
Immediately, (27) leads to

R(T0,0{E,H,λ}) = |γ|2R({E,H,λ}). (34)

On the other hand, Theorem 4.3, incorporated with (24)
and (25), gives the equality:

R(T0,0{E,H,λ}) = R({E,H,λ})

−8

[
βR Re ∑

j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

+βI Im ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

]
. (35)
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Thus, a combination of (34) and (35) gives

|γ|2 = 1− 8
R({E,H,λ})

[
βR Re ∑

j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

+βI Im ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

]
. (36)

Obviously, |γ|< 1 if β satisfies

βR Re ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

+βI Im ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk > 0. (37)

The next step is to derive a bound for R({E,H,λ}), hope-
fully, in certain norms of E, H, and λ. For this, we ob-
serve that, since {E,H,λ} is an eigenvector of T0,0 with
the associate eigenvalue γ, (31) with F = G = 0 leads to

((iωε+σ)Ej,ϕ) j − (Hj,∇∇∇×ϕ) j −∑
k

〈〈λ jk,πτϕ〉〉Γ jk ,

+ 〈〈απτEj,πτϕ〉〉Γ j = 0, ϕ ∈ Vh
j, (38a)

iω(µHj,ψ) j +(∇∇∇×Ej,ψ) j = 0, ψ ∈Wh
j , (38b)

γλ jk = −λk j +β(πτEk − γπτEj)(mjk), j < k, (38c)

λ jk = −λk j +β(πτEk −πτEj)(mjk), j > k. (38d)

Due to (27) and (38),

R({E,H,λ})= ∑
j<k

∣∣∣∣1γ (λk j−βπτEk(mjk))
∣∣∣∣2
0,Γ jk

+ ∑
j>k

∣∣λk j +βπτEk(mjk)
∣∣2
0,Γ jk

= ∑
j<k

∣∣λ jk +βπτEj(mjk)
∣∣2
0,Γ jk

+ ∑
j>k

∣∣∣∣1γ (λ jk −βπτEj(mjk))
∣∣∣∣2
0,Γ jk

≤ 1

|γ|2
{

∑
j<k

∣∣λ jk +βπτEj(mjk)
∣∣2
0,Γ jk

+ ∑
j>k

∣∣λ jk −βπτEj(mjk)
∣∣2
0,Γ jk

}
≤ 2

|γ|2 ∑
j,k∈Ih

{∣∣λ jk
∣∣2
0,Γ jk

+ |β|2∣∣πτEj(mjk)
∣∣2
0,Γ jk

}
(39)

as desired.

The final step begins with combining (36) and (39) to
have

|γ|2 ≤ 1
1+4M(β)

, (40)

where

M(β) =

[
βR Re ∑

j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

+βI Im ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

]
/[

∑
j,k∈Ih

{∣∣λ jk

∣∣2
0,Γ jk

+ |β|2∣∣πτEj(mjk)
∣∣2
0,Γ jk

}]
. (41)

Observe that Re ∑ j,k∈Ih〈〈λ jk,πτEj〉〉Γ jk > 0 and that (37)
is equivalent to M(β) > 0.

The maximum M∗ of M(β) is taken where β is chosen
optimally such that

|β|2 =
∑ j,k∈Ih

∣∣λ jk

∣∣2
0,Γ jk

∑ j,k∈Ih

∣∣πτEj(mjk)
∣∣2
0,Γ jk

(42a)

and

βI Re ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk = βR Im ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk.

(42b)

In this case,

M∗ =

∣∣∑ j,k∈Ih〈〈λ jk,πτEj〉〉Γ jk

∣∣
2
[
∑ j,k∈Ih

∣∣λ jk
∣∣2
0,Γ jk

]1/2 [
∑ j,k∈Ih

∣∣πτEj(mjk)
∣∣2
0,Γ jk

]1/2
,

and therefore, |γ| satisfies

|γ|2 ≤ 1
1+4M∗ .

We summarize the above result in the following theorem,
which suggests a method of the choice of the optimal β.

Theorem 4.7. Let {E,H,λ} be an eigenvector of T0,0

with the associate eigenvalue γ. Assume that (37) holds.
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Then |γ| < 1. Moreover, β, with positive real part, is op-
timal if it satisfies (42); in this case, the following bound
for |γ| holds:

|γ|2 ≤ 1

/{
1+2

∣∣∣∣∣ ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

∣∣∣∣∣[
∑

j,k∈Ih

∣∣λ jk

∣∣2
0,Γ jk

∑
j,k∈Ih

∣∣πτEj(mjk)
∣∣2
0,Γ jk

]−1/2
⎫⎬⎭ . (43)

Remark 4.8. Notice that Conditions (37) and (42b) are
equivalent to

βR

{∥∥∥σ1/2E
∥∥∥2

+
∣∣∣∣∣∣∣∣∣α1/2

R πτE
∣∣∣∣∣∣∣∣∣2}

−βI

{
ω
∥∥∥µ1/2H

∥∥∥2 −ω
∥∥∥ε1/2E

∥∥∥2
+
∣∣∣∣∣∣∣∣∣α1/2

I πτE
∣∣∣∣∣∣∣∣∣2}> 0

and

βI

{∥∥∥σ1/2E
∥∥∥2

+
∣∣∣∣∣∣∣∣∣α1/2

R πτE
∣∣∣∣∣∣∣∣∣2}= −βR

{
ω
∥∥∥µ1/2H

∥∥∥2

−ω
∥∥∥ε1/2E

∥∥∥2
+
∣∣∣∣∣∣∣∣∣α1/2

I πτE
∣∣∣∣∣∣∣∣∣2} ,

respectively.

Remark 4.9. We remark that as
∣∣∑ j,k∈Ih〈〈λ jk,πτEj〉〉Γ jk

∣∣
vanishes, so do E and H, and |γ| tends to 1.

Remark 4.10. With minor modifications in the above
proof of Theorem 4.7, β’s can be chosen such that they
vary according to j and k. Also, practically it suffices to
update β only once after certain number of iterations, in-
stead of updating β at every iteration. However, the true
solution {Ẽh, H̃h, λ̃h} is not known in the actual compu-
tations, and hence the use of optimal choice of β as in
Theorem 4.7, or its approximation, still needs further in-
vestigations.

Remark 4.11. It should be observed that the optimal β in
Theorem 4.7 depends on the values of πτE and λ on the
interfaces Γ jk’s. Theorem 4.12 establishes the spectral
radius estimate and choice of β to guarantee an optimal
order of convergence. In actual computations, however,
Theorem 4.7 suggests a much more efficient choice of β
than this, although it is heuristic: for this, see the next
section on numerical results.

Instead of varying β as in Theorem 4.7, consider the case
in which β is independent of solutions. For the following
theorem, set

ζ = max
j

{hmax(Ω j)

hmin(Ω j)

}
,

hmax = max
j

{
hmax(Ω j)

}
, hmin = min

j

{
hmin(Ω j)

}
,

where hmin(Ω j) and hmax(Ω j) are the minimum and max-
imum edge length of Ω j, respectively. The following the-
orem gives an asymptotic estimate for the spectral radius
of T0,0.

Theorem 4.12. Let ρ(T0,0) be the spectral radius of T0,0.
Suppose µ∗ > 0. If β is chosen such that βRαR∗ −βIαI∗ >

0 and βRσ∗ +βIωε∗ > 0 with βR > 0,βI ≤ 0, then

|ρ(T0,0)| ≈ 1−Chmin. (44)

Proof. We begin with finding a lower bound for M(β)
given by (41), which will give an upper bound for |γ|
by (40). For this, let Ω̃ j be an arbitrary element among
Ω j’s and Γ̃ jk an interior face of Ω̃ j common with another
element Ωk. Choose ϕ̃ in (38) such that

πτϕ̃(mjk) =
{

λ̃ jk on Γ̃ jk,
0 on ∂Ω j \ Γ̃ jk.

Recall the estimates given in Douglas Jr., Santos, and
Sheen (2000):

‖ϕ̃‖2
0,Ω j

≤C1〈〈λ̃ jk, λ̃ jk〉〉Γ jk, (45a)

‖∇∇∇× ϕ̃‖2
0,Ω j

≤C2〈〈λ̃ jk, λ̃ jk〉〉Γ jk , (45b)

〈〈πτEj,πτEj〉〉Γ jk ≤C3
∥∥Ej
∥∥2

0,Ω j
, (45c)

where

C1 = Cmax
j

hmax(Ω j)2

hmin(Ω j)
, C2 = Cmax

j

hmax(Ω j)2

hmin(Ω j)3 , (46)

C3 = Cmax
j

hmax(Ω j)
hmin(Ω j)2 .

It follows from (38a) and (45) that

〈〈λ̃ jk, λ̃ jk〉〉Γ jk =
(
(iωε+σ)Ej, ϕ̃

)
j − (Hj,∇∇∇× ϕ̃) j

≤ [√C1

(
ω
∥∥εEj

∥∥
0,Ω j

+
∥∥σEj

∥∥
0,Ω j

)
+
√

C2
∥∥Hj

∥∥
0,Ω j

]〈〈λ̃ jk, λ̃ jk〉〉1/2
Γ jk

,
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from which it is immediate that

〈〈λ jk,λ jk〉〉Γ jk ≤C1

(
ω2
∥∥εEj

∥∥2
0,Ω j

+
∥∥σEj

∥∥2
0,Ω j

)
+C2

∥∥Hj

∥∥2
0,Ω j

.

Assume that βRσ∗ +βIωε∗ > 0 and µ∗ > 0. Choose βR >

0 and βI ≤ 0. Then, a combination of (41), (24), (25),
(45c), (47), and (46) results in

M(β) =

[
βR Re ∑

j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

+βI Im ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

]
/[

∑
j,k∈Ih

{∣∣λ jk

∣∣2
0,Γ jk

+ |β|2∣∣πτEj(mjk)
∣∣2
0,Γ jk

}]
=
[
βR

(
σ‖E‖2 +αR|||πτE|||2

)
+βI

(
ωε‖E‖2 −ωµ‖H‖2 −αI |||πτE|||2

)]
/[

∑
j,k∈Ih

{∣∣λ jk

∣∣2
0,Γ jk

+ |β|2∣∣πτEj(mjk)
∣∣2
0,Γ jk

}]
=
[
(βRσ+βI ωε)‖E‖2 −βIωµ‖H‖2

+(βRαR +βIαI)|||πτE|||2
]

/[
∑

j,k∈Ih

{∣∣λ jk

∣∣2
0,Γ jk

+ |β|2∣∣πτEj(mjk)
∣∣2
0,Γ jk

}]
≥
[
(βRσ∗ +βIωε∗)‖E‖2 −βIωµ∗‖H‖2

+(βRαR−βIαI)
hmin

Ch2
max

‖E‖2
]

/[
C1(ω2ε∗2 +σ∗2)‖E‖2 +C2‖H‖2

+|β|2C3‖E‖2
]

=
[(

βRσ∗ +βIωε∗ +(βRαR −βIαI)
hmin

Ch2
max

)
×

×‖E‖2 −βIωµ∗‖H‖2
]

/[
C1(ω2ε∗2 +σ∗2)‖E‖2 +C2‖H‖2

+|β|2C3‖E‖2
]

≥ 1
C3

[min{βRσ∗ +βIωε∗ +(βRαR−βIαI)×

× hmin

Ch2
max

−βIωµ∗
}{

‖E‖2 +‖H‖2
}]

/[[
C1C

−1
3 (ω2ε∗2 +σ∗2)+C2C

−1
3 + |β|2]{

‖E‖2 +‖H‖2
}]

≥ hmin

Cζ
[min{βRσ∗ +βIωε∗ +(βRαR −βIαI)×

× hmin

Ch2
max

−βIωµ∗
}]

/[[
C1C

−1
3 (ω2ε∗2 +σ∗2)+C2C

−1
3 + |β|2]]

The maximum of the last quantity is taken if we choose
β such that

|β|=
√

hmaxhmin(ω2ε∗2 +σ∗2)+ζ, (47)

βR

(
σ∗ +αR

hmin

Ch2
max

)
= −βI

(
ωε∗ +ωµ∗ −αI

hmin

Ch2
max

)
.

With this β, we have that M(β) ≥ hmin
C , and thus |γ| ≈

1−Chmin.

This completes the proof.

Remark 4.13. Also observe that the results correspond-
ing to Theorem 4.7 and Theorem 4.12 for the Jacobi-type
procedure are immediate. Replacing only (40) by

|γ|2 ≤ 1
1+4M(β)

,

instead of (43), one has

|γ|2 ≤ 1
/[

1+

∣∣∣∣∣ ∑
j,k∈Ih

〈〈λ jk,πτEj〉〉Γ jk

∣∣∣∣∣{
∑

j,k∈Ih

∣∣λ jk

∣∣2
0,Γ jk

∑
j,k∈Ih

∣∣πτEj(mjk)
∣∣2
0,Γ jk

}−1/2
⎤⎦ ,

and then the estimate for the spectral radius will be ac-
cordingly affected. Indeed instead of (44),

|γ| ≈ 1−Chmin

with the same constant C as in (44).
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4.4 The red-black Seidel-type procedure

In order to supplement the lack in parallelism of Seidel-
type iterative procedure, a red-black Seidel-type proce-
dure is proposed in what follows. Let the set of subdo-
main indices be divided into the two parts IR and IB, so
that

Ω =
[∪ j∈IR Ω j

] [[∪ j∈IB Ω j
]
, Ω j ∩ j �=k Ωk = /0,

and each element Ω j, j ∈ IR, is not adjacent to any ele-
ment Ωk,k ∈ IR. The red-black Seidel-type iterative pro-
cedure corresponding to Problem (19) is based on the the
following updating scheme for λh,n

jk ∀k∀ j:

λh,n
jk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−λh,n−1

k j +β jk(πτE
h,n−1
k −πτE

h,n
j )(mjk)

∀k,∀ j ∈ IR,

−λh,n
k j +β jk(πτE

h,n
k −πτE

h,n
j )(mjk)

∀k,∀ j ∈ IB.

(48a)

(48b)

Then the red-black Seidel-type iterative procedure con-
sists of the alteration of the two substeps: the first sub-
step of updating (48a) and solving (19a) and (19b) for
all j ∈ IR, and the second substep of updating (48b) and
solving (19a) and (19b) for all j ∈ IB.

Introduce the pseudo-energy for red-black Seidel-type it-
erative procedure in the form

Rn({un,vn,θn}) = ∑
j∈IR

∑
k

∣∣θn
jk +βπτu

n
j(mjk)

∣∣2
+ ∑

j∈IB
∑
k

∣∣θn
k j +βπτun

k(mjk)
∣∣2.

With this pseudo-energy, all the results in the previous
subsections for Seidel-type iterative procedure remain
valid for red-black Seidel-type iterative procedure.

5 Numerical Results

Let the computational domain Ω be given as [0, 4 ×
103m]3. For the physical parameters in our numerical
simulation we use the data following Coggon (1971). Let
the frequency ω be 10Hz, and the electric permittivity
and magnetic permeability contrasts ε/ε0, µ/µ0 be 10 and
1, where ε0 is the electric permittivity of the vacuum and
µ0 the magnetic permeability of the free space. Let the
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Figure 1 : The logarithmic relative L2-error with the
fixed β value

conductivity σ be 0.01S/m(Siemens/meter). The coeffi-
cient matrix α in the absorbing boundary condition (3c)

is given by the diagonal matrix (1− i)
√

σ
2ωµ I. In the rest

of the section some numerical results are illustrated to
compare the classical Gauss-Jacobi type algorithm with
the presented Gauss-Seidel type and red-black type ones
with various updating procedures.

5.1 The case of homogeneous problems

Setting F = G = 0, we investigate in the convergence of
the solutions of (3) to zeros. Denote by {uh,n,vh,n,θh,n}
the numerical solution at the nth step error equations
(22), and we calculate

Log10

[ ||uh,n||0 + ||vh,n||0 + ||∇∇∇×uh,n||0,h

||uh,1||0 + ||vh,1||0 + ||∇∇∇×uh,1||0,h

]
as logarithmic relative L2-errors. Here, uh,n,vh,n are the
solutions at the nth iterative step. For the numerical com-
putations in this subsection, the domain Ω is divided into
the 80×80×80 congruent subdomains.

We consider the case of updating procedure with a fixed
β satisfying (47). Figure 1 shows the comparison of the
Gauss-Jacobi, Gauss-Seidel, and red-black type iterative
procedures. For all cases the speed of convergence of the
Gauss-Seidel and Red-Black type procedures are faster
(approximately by a factor of two) than that of the Gauss-
Jacobi type one.
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5.2 The case of nonhomogeneous problems

Let us take F and G such that the exact solutions of (3)
are

Eex = (φ(x,y, z),0,0)

Hex = 2000×α
(

0,
∂φ(x,y, z)

∂z
,−∂φ(x,y, z)

∂y

)
where

φ(x,y, z) =
( x

2000
+1
)( x

2000
−1
) y

2000

( z
2000

−1
)

.

As a synthetic model for nonhomogeneous case, we test
the model in COMMEMI project Zhdanov, Varentsov,
Weaver, Golubev, and Krylov (1997). It consists of
a conductive block of 2 S/m embedded in a homoge-
neous body with conductivity 0.01S/m. The anomaly
size is 1km× 1km× 2km in the computational domain
4km×4km×4km.
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Figure 2 : Two-dimensional slice of synthetic anomaly
model at y = 0

We define the relative L2-error E h,n
rel by the quotient

‖Eex −Eh,n‖0 +‖Hex −Hh,n‖0 +‖∇∇∇×(Eex −Eh,n)‖0,h

‖Eex‖0 +‖Hex‖0 +‖∇∇∇×Eex‖0,h
,

where we used red-black type procedure with the stop-
ping criterion such that if the relative error change from

the n−1st step to the current nth step is less than 0.001;
that is,

1− E h,n
rel

E h,n−1
rel

≤ 0.001.

Although the theoretical convegence given in Theo-
rem 3.1 is suboptimal, we remark that an optimal con-
vergence rate of O(h) can be observed in Table 1.

Table 1 : Relative L2 errors and reduction ratio r

h (km) Num. of Grids Rel. L2-Error Red. Ratio r
1/4 16× 16×16 0.084063
1/8 32× 32×32 0.042073 0.998
1/16 64× 64×64 0.021045 0.999
1/32 128× 128×128 0.010546 0.996

Figures 3 and 4 plot horizontal slices of the real part of
the electric field Eh,N

1 across the source location for the
homogeneous and nonhomogeneous cases, respectively.
For these figures the stopping was made when[
‖Eh,n+1−Eh,n‖0 +‖Hh,n+1−Hh,n‖0

+‖∇∇∇×(Eh,n+1−Eh,n)‖0,h

]
/[‖Eh,n‖0 +‖Hh,n‖0 +‖∇∇∇×Eh,n‖0,h

]
was 0.00017. From the snapshots in Figures 3 and 4 one
may observe that the absorbing boundary conditions (3c)
perform well.

5.3 Calculus of the spectral radius

In this subsection we will compute and confirm numeri-
cally the actual rate of convergence of the domain decom-
position iteration that is estimated by the spectral radius
given in (44) in §4.3. For this, let E, Eh,n and Eh,∞ be the
exact, n-th iterative, and the limiting iterative solutions,
respectively. The n-th error eh,n = ‖E−Eh,n‖L2(Ω) is then
estimated by

eh,n ≤ ‖E −Eh,∞‖L2(Ω) +‖Eh,∞ −Eh,n‖L2(Ω)

≤C1‖E‖L2(Ω)h
α1 +C2(1−C3hα2)n.
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Figure 3 : The real part of eh,N
1 for homogeneous model

Since α1 is at least 0.5 by Theorem 3.1 but nearly 1 by
the numerical experiment given in §5.2, we will concen-
trate on calculating only C3 and α2 which relate with the
iterative procedure. By using the following relations

eh,n −eh,n+1 ≈C2(1−C3hα2)nC3hα2

eh,n+1−eh,n+2 ≈C2(1−C3hα2)n+1C3hα2,

we have

eh,n+1−eh,n+2

eh,n −eh,n+1 ≈ 1−C3hα2

e2h,n+1−e2h,n+2

e2h,n −e2h,n+1 ≈ 1−C32α2hα2 .

It seems to be improper to take a fixed number n, and
hence we obtain the values by taking averages through
n = 1 to a certain number (=50). In Table 2, we present
numerical calculus with β satisfying (47) for the spectral
radius coefficients C3 and α2:

ρ(T0,0) ≤ 1−C3hα2 .
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Figure 4 : The real part of eh,N
1 for nonhomogeneous

model

Table 2 : Numerical calculus of coefficients in the spec-
tral radius estimation

Jacobi-type Red-Black
C3 0.537675 1.152814

α2 1.078837 1.156271
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