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Parallel iterative proceduresfor a computational electromagnetic modeling based
on a nonconforming mixed finite element method

Taeyoung Hal, Sangwon Seo? and Dongwoo Sheen?

Abstract:  We present nonoverlapping domain decom-
position methods for the approximation of both electro-
magnetic fields in a three-dimensiona bounded domain
satisfying absorbing boundary conditions. A Seidel-type
domain decomposition iterative method is introduced
based on a hybridization of a nonconforming mixed finite
element method. Convergence results for the numerical
procedure are proved by introducing a suitable pseudo-
energy. The spectral radius of the iterative procedure is
estimated and a method for choosing an optimal match-
ing parameter is given. A red-black Seidel-type method
whichisreadily parallelizableisa sointroduced and ana-
lyzed. Numerical experiments confirm that the presented
algorithms are faster than the conventional Jacobi-type
ones.

keyword: Nonoverlapping domain decomposition,
Maxwell’s eguations, Transmission condition, Paralel
iterative algorithm

1 Introduction

Computational electromagnetic modeling has many ap-
plicationsin engineering and industry and thusthere have
been increasing attention from both scientists and en-
gineers: see, for instance, Ben Belgacem, Buffa, and
Maday (2001); Boffi, Demkowicz, and Costabel (2003);
Bouillault, Buffa, Maday, and Rapetti (2003); Gopal akr-
ishnan, Pasciak, and Demkowicz (2004); Hiptmair and
Schwab (2002); Hiptmair (2002); Hu and Zou (2003);
Jose, Kanapady, and Tamma (2004); Monk (2003); Re-
itich and Tamma (2004); Toselli and Vasseur (2005);
Volakis, Sertel, Jorgensen, and Kindt (2004), and the ref-
erences therein.

In thiswork we are particularly interested in the numer-
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ical approximation of scattered electromagnetic fields
E = E(x,0) and H = H(X,®) which satisfy the time-
harmonic Maxwell’s equations at a given angular fre-
guency . Absorbing boundary conditions are used to
truncate the infinite, or at least huge, space domains
into domains of reasonably smaller size (see Bendali and
Hapern (1988); Berenger (1994, 1996); Feng (1999);
Hanouzet and Sesgés (1990); Joly and Mercier (1989);
Mur (1981); Sesqueés (1990); Sheen (1997) and the ref-
erences therein). However, the numerical treatment of
three-dimensional time-harmonic Maxwell’s equations
still requires an efficient iterative procedure rather than
a direct Gaussian elimination one for solving resulting
matrix problems. Recently, severa domain decompo-
sition methods have been proposed to solve this prob-
lem; for instance, see Alonso and Valli (1997, 1999); Ben
Belgacem, Buffa, and Maday (2001); Bouillault, Buffa,
Maday, and Rapetti (2003); Collino, Delbue, Joly, and
Piacentini (1997); Després (1991); Després, Joly, and
Roberts (1992); Jr., Santos, and Sheen (2001); Hu and
Zou (2003); Santos (1998); Santos and Sheen (1998);
Toselli and Vasseur (2005).

In particular, following the idea in Lions (1988, 1990),
Després (1991) and Després, Joly, and Roberts (1992)
proposed an iterative method using nonoverlapping do-
main decompositions and a pseudo-energy with which
convergence results were shown. The convergence re-
sults obtained by Després were weak in the sense no
actual convergence rates are given. Later, Douglas Jr,
Paes Leme, Raberts, and Wang (1993) applied thisidea
to second-order dliptic problems, and obtained, using
mixed finite elements, an estimate for the spectra ra-
dius of the iterative operator which guarantees the actual
rate of convergence of the scheme. By utilizing simi-
lar structures to mixed finite element spaces, such esti-
mates for spectral radii have been obtained, based on hy-
bridization of nonconforming finite elements, for eliptic,
Helmholtz, and viscoel astic problems )Douglas Jr., San-
tos, Sheen, and Ye (1999); Ha, Santos, and Sheen (2002);
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Jr., Santos, and Sheen (2001).

Recently a nonconforming mixed finite element method
has been proposed in Douglas Jr., Santos, and Sheen
(2000) to compute E and H simultaneously. Error esti-
mates using the were also given. In that paper, Jacobi-
type domain decomposition iterative procedure based
on hybridization has been analyzed with an actual rate
convergence. The object of our current paper is to
study Seidel-type domain decomposition iterative proce-
dures for calculating both E and H satisfying the full
Maxwell’s equations, based on nonconforming mixed fi-
nite elements proposed in Douglas Jr., Santos, and Sheen
(2000). In the domain decomposition methods the con-
vergence speed depends on a choice of matching param-
eter B between the tangential electric and magnetic fields
that appear in the interface condition on the common
boundaries of domains Q; and Q:

(Vj X Hj +BjkTCrEj) = —Vk X Hk+BjkTCrEk on ijVk.

In this paper we suggest a method of choice of matching
parameter B. Since Seidel-type iterative method is not
parallelizable directly, we employ red-black type itera-
tive algorithm in numerical simulations.

Our approach issimilar to the conforming version of do-
main decomposition scheme introduced in Collino and
Joly (2000); Collino, Delbue, Joly, and Piacentini (1997),
in the sense that the pseudo-energies calculated in our
work are to be calculated on both sides of interfaces
while those in Collino and Joly (2000); Collino, Del-
bue, Joly, and Piacentini (1997) are to be caculated on
single sides of interfaces. We aso give a simple proof
of convergence of the iterative procedure which depends
only on the resulting weak formulation of problems, and
we will show that the speed of Seidel-type procedures
is about twice of that of Jacobi-type ones. However, in
Collino, Delbue, Joly, and Piacentini (1997) only one
field, say E, of thetwofieldsE and H is calculated in the
second-order formulation which requires the calculation
of v x (VxE) at interfaces to update; indeed, in Collino,
Delbue, Joly, and Piacentini (1997) the problem is refor-
mulated in the mixed variational form to compute E and
v x (VxE) in subdomainsand their boundaries. We also
suggest amethod to find iteratively an optimal choice of
the matching parameter between the tangential compo-
nents of E and H on each subdomain interface. The use
of nonlocal boundary conditions, their higher-order ap-
proximations, or perfectly matched layers and relaxation
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as in Berenger (1994, 1996); Collino, Delbue, Joly, and
Piacentini (1997) will be a subject of interest to be devel-
oped.

In the formulation of finite element methods for
Maxwell’'s equations with absorbing boundary condi-
tions, and domain decomposition methodsfor Maxwell’s
equations, the tangential traces of H(curl;Q) are in-
volved in many places. Based on proper understanding
the tangential traces of H(curl;Q), the integration by
parts formula for functions in H(curl; Q) in the sense
of Sobolev spaces has been studied intensively in re-
cent literatures Buffa, Costabel, and Sheen (2002) (see
also Buffaand P. Ciarlet Jr. (2001); Buffa, Costabel, and
Sheen (2002); Buffa (2001).) We will briefly survey
these resultsin Section 2.

The organization of the paper is as follows. In Sec-
tion 2, Maxwell’s equations are described with absorb-
ing boundary conditions, and then aweak formulation is
given. In thenext section the nonconforming mixed finite
element method and its hybridization are given. Thenin
Section 4 a Seidel-typeiterative scheme is proposed, and
a suitable pseudo-energy is defined with which conver-
gence and an estimate for the spectral radius of the iter-
ative procedure are shown. A suggestion is made for an
optimal choice of matching parameter between the tan-
gential components of E and H for the interface con-
dition is given. Also a red-black Seidel type procedure
is introduced which is readily paralelizable. Finally in
Section 5 some results from numerical experiments are
presented to compare the analyses given in the previous
sections.

2 Thetime-harmonic Maxwell’s equations
2.1 The modd problem

Let E and H denote the eectric and magnetic fields
for a given angular frequency . The time-harmonic
Maxwell’s equations are given by

(ilme+06)E—-V xH=F, (1a)

iouH +V xE =G, (1b)

where ¢, 4, and ¢ denote the electric permittivity, mag-
netic permeability, and conductivity, respectively, which
satisfy the following bound, for any & € C3,
<efef,

0<elgf® < (2a)

Y etk
i
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0<o,lE?< i&| < o*lE%, (2b)

0<fgf < < el (20)

> Wik
ik

Thefree space equations are reduced to atruncated com-
pact domain, so that a practical computationa procedure
can be defined, with suitable absorbing boundary con-
ditions imposed on the truncated boundary. Let Q be a
unit cube and T" = Q2 be its boundary, and then we will
consider the following boundary value problem

(ilme+0)E-VxH=F in Q (39)
iopgH +VXE =G in Q, (3b)
omE+vxH=0 on T, (3¢)

where v denote the unit outer norma to T, m (o) =
0—Vv(v-0) = —v x (v x @) isthe projection of the trace
of @ onT". Assume that, for o = ag — iy, there exist
OR,, 0ROy, and oy, WithO < or, < ar and0 < oy, <
o+ such that

0<og 6 <

(48)

0<oy &< WEilk| < ous €% (4b)

Condition (3c) is a general form of absorbing boundary
conditions such that electromagnetic fields arriving at I’
at certain incident angles do not reflect Sheen (1997).
For technical reasons to follow, we assume that o is
a complex-valued scalar function which is Lipschitz-
continuouson T

2.2 Function spacesand preliminaries

For an open set Q and areal numberr, let (H"(Q), |||, o)
indicate the usual complex-valued Sobolev space and its
norm. In paticular, (H%(Q),|lo.q) denotes the usual
L2(Q)-space and its norm, (L%(Q), [|-|lg.o), With the as-
sociated inner product '

V) :/ oy dx
Q

Also, for apart y of the boundary 0Q of Q,

<@nmy—34@WdQ

will mean the inner product on L?(y) with associated
norm ||y .. The following spaces are standard:

{pe LX)
H(div; Q) = {p € [LAQ)]* : V-9 e [L(Q)]},
equipped with the natural norms

H(curl; Q) =  Vxge[LX(Q),

ol (curl;Q2) (”(P”og +|V x (P”og)l/Z,

(”(P”og +|V- (P”o )2

In the following analysis proper meaning of the traces of
H(curl; Q) and integration by parts with functionsin the
space H(curl; Q) are very important. For this, we will
give a brief review of the characterization of the space
of tangential traces and tangential components for vec-
tor fields in H(curl; Q) following Buffa, Costabel, and
Sheen (2002). Set

”(P”H (div;Q)

V= [HY2(1)P%; DR,
H S(T) ={ve H3(T)|(v,1)sr = 0}, s€ [0,1],
LA(T) = {ve [L2D)}lv-v=00nT},

where the space L?(G) is identified with the space of
fieldsbelonging to the tangent bundle TT of T" almost ev-
erywhere. Also, let H¥/2(T") be the trace space of H?(Q)
endowed with the norm

{IVl2a}-

vV =H

A = inf
IAll3/2,0 nf

Vlg=4

Then the space H~3/%(T") is defined as the dual space of
H3/2(T") with the pivot space L2(T).

Definition 2.1. The“ tangential component trace” map-
ping 7. : D(Q)* — LE(T) and the “ tangential trace”
mapping y; : D(Q)2 — LZ(T) are defined as v — —v x
(vxv)andv— —v x v, respectively.

Denoting by y the standard trace operator on the prod-
uct space [H1(Q)]® — V defined by y(v) = v|r and by
v Litsright inverse, we shall abuse the notations 1tr and
v for the composite operators m; oy * and y; 0y~ 1
spectively. Dueto the density of [D(Q)]2 in [L?(T)]3, the
operators mt; and y; can be extended to [L%(T")]® linearly
and continuously. Now set

Vy = 'YI(V); Vg = TCT(V),
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which are Hilbert spaces endowed with the norms

A, = inf {IVIvE IRl = it IV}

(V) =2 (V) =A

Letiy: LZ(T) — L) and iy : LZ(T) — L3(T) be the
adjoint operators of m, and v, respectively. These op-
erators are the identifications of tangent fields with 3D
vector fields. Thanks to the Lipschitz assumption, a lo-
cal system of orthonormal coordinates (t1,12,v) can be
defined at almost every x € T'. Here, 1, and 1, are two
orthonormal vectors belonging to the tangent plane for
amost every x € T, whilev isthe outer normal to Q. Of
course, the vectors t; and T2 can also be considered as
“tangent fields’ (sections of the tangent bundl€). The op-
erators i and i, can be extended as isomorphismsin the
following way:

in: Ve — (Ker(n)NV)°, (58)

iV — (ker(y) NV)°, (5b)
where -° denotes the polar set (or, the annihilator).

Tangential gradient and curl operators are defined as
usual using alocalization argument:

Vi HY) = L3(T); curlp: HYI) — L&),

and the corresponding adjoint operators, which are linear
and continuous, are defined

divr : LA(T) — H74(T);  curlp: LA(T) — H74(D),

respectively. Moreover, the following operators are con-
tinuous:

Ve H¥2(D) = Vo Ve HYHD) =V,

curly: H¥2() =V, curlp : HY2(T) — VL
satisfying

Mlnzzry e <CIVAIve: Mz e < CIVA vy
Therefore their adjoint operators divr : Vy — H, Y 2(1“)
and curlp : Vy — H*_l/z(l“) are continuous and surjec-
tive. Based on these tangential operators, the Laplace-
Beltrami operator Ar : HY(T") — H;(T") is defined by
Arv = divr Vrv for any ve HY(T).
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We are now ready to introduce the traces of H(curl; Q).
Set

H=Y2(divp;T) = {A € V.| divp (L) e HY2(I)},
H™Y2(curlr;T) = {1 € V| curlr(A) € H-Y¥(I)}

with the graph norms

IVll-v2aiver) = / IV, + lAve )12 5

VIl vzqaurtary = £/ IV, + leure ()12 5 -
Then the following theorem holds:

Theorem 2.1. The operators vy, : H(curl;Q) —
H-Y2(divr;T) and &, : H(curl; Q) — H-Y2(curl;T)
are linear, continuous, and surjective.

The proof of the surjectivity, on the other hand, is based
on the proof given by Tartar in Tartar (1997). Let

T:={EcV'| MeH YD) :vp e H¥(Q):
vi(&¥(Vo))v = (M, 0)1/2r} (6)

In Tartar (1997), the tangential trace operator is defined
as“y. i H(eurl; Q) — T,vi—vxVv” anditisproventobe
surjective by alocalization argument. Here, our setting
is different: the ranges of the operators t, and vy, defined
above are Hilbert spaces of tangent fields. It isshown that
the mapping i, defined in (5) isindeed an isomorphism
between T and H~Y/2(divr;T), i.e,

ir(H™Y2(divi; 1)) = T.
Set
H(T) :={pe HYT)/R| Arp e H, VA(D)}.

The trace spaces of H(curl;Q) have the following
Hodge-type decomposition results:

Theorem 2.2.

H~Y2(divr;T) = Vr(H () @ curl - (HY2(T)),
H=Y2(curlp;T) = curl(H () & Vr(HY?(I)).

Based on the above decomposition results, a duality can

be defined between H~Y/2(divr;T') and H=Y?(curlp;T)
with the pivot space LZ(T").
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Theorem 23. Let u € HY%(divi;T) and v €
H-Y/2(curlr;T) be decomposed as. u = Vroy +
curlr By, v=Vrpy +curlroy with By, By € HY3(T') and
o, 0 € H (T). Then, we have

(U, V)r := —(Arow, Bv)1/2,r + (Arow, Bu)1/2r- ()

Given u € H(curl;Q), recall the decompositions u =
@+ Vpwith® c [HY(Q)]3, pc HY(Q). Based on these
decompositions, the integration by parts formula holds:

Theorem 2.4. Given u,v € H(curl;Q), let u =® +
Vp,v="+Vqwith®, ¥ c [H{(Q)]3 p,qgc HY(Q).

/Q{VXU-V—U'VXV} X = — (W), (W) (8)

where the boundary term can be interpreted as

<’Yr Tcr n— / 'Yr

+w<curlrp,nr( )>vn
— [ %(®) T {F) — (divr (@), G2
+ curlrnr(‘l‘) p>1/2r

‘|‘V/ (Vra, v (‘¥ )>

In what followswe will use the notationv x ¢ to denote
—:(9) if @ isintheappropriatespace H(curl; Q). Recall
the classical Green'sformula

(qu)v\lf)_((pvv X\I’) = <V><(Pa\lf>a§z

= <V X @, TCT\II>BQ7

for al ¢ € H(curl;Q),y € [HY(Q)]% If both ¢ and
v belong to H(curl;Q), v x ¢ and m,y belong to
[H=2(0Q)]® and therefore Theorem 2.4 generalizes the
above classical integration by formula.

Remark 2.1. In Sheen (1992) the integration by parts
formula for a Lipschitz domain Q is proved directly by
using a density argument with a different interpretation
of the boundary integral termin (8):

(qu)v\lf)_((pvv X\I’) = <V><(P,\|I>ag

= <V X @, TCT\II>BQ7

(9)

for all @,y € H(curl;Q), where, the boundary integral
term (v X @,y ), is understood as (v x @) - Ty, 1),
the duality pairing between v x ¢ - Ty € Lip(0Q)’

and 1 € Lip(0Q2). Indeed, in Sheen (1992) the inte-
gration by parts formula (8) was proved for a gen-
eral class of linear first order differential operators.
L= Z'j\':lAj(x)aixj, where the A’s are k x k matri-
ces with uniformly Lipschitz—continuous components on
Q and £* be the formal adjoint of £ given by £* =
—3iL 1a?< A%(x), with A%'s being the adjoint matrices
of Aj’s. Then the following Hilbert space H(L;Q) =
{ueL2(Q)]% Lu € [L?(Q)]¥} isendowed with the inner
product and the norm

(uvv)H(L;Q) = (U,V) + (LU, LV),

1
ullk(z) = {llull>+ 1 Lul?}2.

The analoguesfor £* holds. Denoting Ay = ¥ ; vjA ],
the main result of Sheen (1992) is given as follows:
the map {u,v} — Ayu-V from [D(Q)]* x [D(Q)]¥ into
Lip(T")’ can be extended by continuity to a continuous
sesquilinear map fromH (£; Q) x H(L*; Q) intoLip(T")’;
moreover, for allu e H(L; Q) andv € H(L*; Q), thefol-
lowing Green's formula holds:

(LU,V) - (U, L*V) =

{AVU, VT = Lipry (AvU-V, 1) g,

where ipry (-, ) Lipr) denotesthe duality paring between
Lip(I")" and Lip(T).

An immediate result of Theorem 2.3 is useful:

Proposition 21 Let u € H Y%(div;T)N
H-Y2(curlp;T) withv-u =0. Thenu € LZ(T).

Proof. Suppose u € H-Y2(divr;T) N H-Y2(curlp;T).
Then u has the following decomposition: u = Vra +
curlrB and u = Vrp' +curlro’ with o, 0 € H(T) and
B,B’ € HYZ(T"). Moreover, the duality (7) impliesthat

(u,u)or = —y(u,u)x = —(Aro,, B')1/2r + (Arcd, B)1/2r,

which is bounded by the definition of duality. Thus, u €
LZ(T). O
2.3 Existence and uniqueness results

We begin with the following lemma:

Lemma2.1. If {E,H} € [H(curl;Q)]? satisfies (3), the
boundary terms o, E and v x H belong to L2(T).
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Proof. Indeed, let o be an invertible Lipschitz extension
of 0. onto Q such that & = o on . Then, taking theinner
product of the equation (3a) with (&*)~1E and applying
(9) with using the boundary condition (3c), we obtain
0= (F,(a") "E) — ((ioe +0)E, (&) 'E)
+(H,V x (6) ')
(F, (") "E) — ((ioe +0)E
) — (v x H, (o) 'nE)
'E) — ((ive +0)E, () 1E)
o) E) + (mE, mE) .

() ')

o}

) E)
(@) E) -
o) E) —(
S )+

Hence,

\WrE\%,r <y (mE, mE)
<|(F, (@) E)|+|((iwe+0)E, (&) 'E)|
+|(VxH, (o) 1E)|

< C[IEIa+ MR e +IF el

Therefore we seethat 7i.E actually belongsto LZ(T"). The
boundary condition (3c) leadstov x H € LA(T"). O

The existence and uniqueness results for Problem (3)
without the term € are given in Santos and Sheen (2000)
with the use of integration by parts formulain the sense
of Remark 2.1. However, it is straightforward to check
al the arguments given there are till valid with the term
¢ included and the use of integration by parts formulain
the sense of Theorem 2.4:

Theorem 2.1. Assumethat 6, > 0. Let F,G € [L2(Q)]®
and o # 0. Then, there exists a unique electromagnetic
field {E,H} € [H(curl; Q))? satisfying (3) with n.E, v x
H € LA(T). If, in addition, F and G belong to H (div; Q)
and €,0, and p are Lipschitz-continuous on Q, then E
and H belong to [HY/2(Q)]3; more precisely, E and H
belongto [H (curl; Q) NH (div; Q)] with boundary values
in [L2(T)]?

In getting the weak formulation we will see the cross
term (om:E, m:d)r with E, 6 € H(curl; Q). In order to
provide a meaning to this term, the correct test function
space for the weak problem will be

H*(curl; Q) =
for some ¢ € H(curl; Q)}.

{veH(curl;Q): anyv=vx @
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By applying (9), a mixed weak formulation of Problem
(1) follows immediately: find {E,H} € H*(curl; Q) x
[L2(€)]3 such that

((ilwe+0)E,0) — (H,V x @) + (am:E, i) = (F, ),

o € H (curl; Q), (10a)
|(,0(lJ.H,\|I) +(V X Ev‘l’) = (Gv\II)a

yeLA(QP (10b)

It is easy to see that if {E,H} satisfies the above weak
problem, it is then a solution of the differential equa-
tions (3) with the boundary condition (3c) in the sense
of H=Y/2(curlp;T).

3 Thenonconforming method

In this section we summarize some results on non-
conforming mixed finite element space based on three-
dimensional rectangular domain introduced in Dou-
glas Jr., Santos, and Sheen (2000).

3.1 Nonconforming mixed finite element space
Let K be the reference cube [—1,1]% and let Q(K) = Q, x
Qy x Qz, where

o) - @ 22,

QX = Span{lv Y, 2,

5
§X4)}7

QZ—Span{lev y2__y4

Letem,i=1, % .6, be the centroid of the ith face of K.
Then, for ¢ € Q(K), we consider the following local de-
grees of freedom :

Qy = Span{1,z,x,(Z— §24) -

Then, alocal interpolant & : H2(K) — Q(K) is defined
asfollows:

Let SK) =S x S, x S, where
10 10
Sc=Span{Ly— 3y’ .z— 27},



Parallel computational electromagnetic modeling based on a nonconforming mixed FEM

63

0 10X3

§ = Spanf1.2- 27 x- X0,
.= Span{Lx 10x?’y D,

and alocal interpolant P : H(curl;K) — §K) be defined

by thefollowingrules: for | = x,y, z,

/A (Py; — vy )dxdydz = 0, (12a)
R

/AVX(IS\M _ vy )dxdydz =0,
K

for al y = (yyx, Wy, y7), Note that (12) provides the nine
gegrees of freedom needed to determine an element in
S(K) and that

(12b)

VxQ=S

The following lemma is trivial but useful Douglas Jr.,
Santos, and Sheen (2000).

Lemma 3.1. The degrees of Afreedom (11) gnd (12) de-
termine, respectively, ¢ € Q(K) and y € S(K) uniquely.

The following proposition states an immediate but fun-
damental property of Q and Sthat isi mportant in obtain-
ing effective nonconforming methods Douglas Jr., San-
tos, and Sheen (2000); )Douglas Jr., Santos, Sheen, and
Ye (1999).

Proposition 3.1. If an element of 71, Q or mt;Svanishesat
the centroid of a face of K, it is orthogonal to constants
on that face.

For 0 < h < 1, let Q be decomposed into nonoverlap-

ping three-dimensional rectangular hexahedra {Q; : j =
-,J} with their edges bounded by h:

J#k

Then Q(Q) and (Q2;) are defined by scaling and trans-

lating from Q and S. Let

EZUJ‘EJ', QN =0,

T :an NI, Tk :an N0 =TY;.

3.2 The nonconforming mixed finite el ement method
Set
V= {ge[LX(Q):

0j (Mjk) = (M),
mk being the centroid of T ¥{j,k} € I"},

9j = 0lo; € Q(Qj),

io(H", y) + Y (V < E" ),
J

W= {y e [L2(Q)]°: ylo, € S(Q))},

where 1" denotes the index set of all internal interfaces
k.

The nonconforming mixed finite element method is then
defined asfollows: find {E", H"} € V" x WM such that

((ioe+0)E" ) = 3 [(H"V x 0);
j

—|—Z<vj X Ejh,nr(P> } + <0mrEh,nr(p>
” T r

=(F,¢), @V (13q)

=(G,y),yeW". (13

Denoting by || - ||o.n the broken L(€2)-norm, we then have
thefollowing a priori error estimate:

Theorem 3.1. Suppose that 6, > 0. Let {E,H} and
{ENHM}, 0 < h < 1, be the solutions to (10) and (13),
respectively. Then,

|E~E"lo+[IH — HMo-+ [V (E ~EMlan

< ChY2(||E[l2+hY2|H]l1) (14)
The proof of the above theorem is given in Douglas Jr.,
Santos, and Sheen (2000), where ¢* = 0 is assumed, but
including the case €, > 0 does not change any argument
given there.

3.3 Hybridization

Denote by ((-,-))r, the approximation to (-,-). ob-

k
tained by using the mid-point rule on T'j so that J

(U, W)y = | Tjk| (u9) (M),

where mj and |T'jx| denote the centroid and the measure
of T'jk, respectively.

Following Arnold and Brezzi (1985); Fraeijs de Veubeke
(1965); Fraeijs de Veubeke (1975), the hybridization of
the procedure (13) isgiven by introducing the space A" of
Lagrange multipliers associating its elements with v; x
E; (mjk) on k. Thus set

NCy = {o e [LA(Q)F: 9lo, € Q(2))}

A= (A" Wr, = Agce [Po(Ty)]%

Aik+Mj =0 foral jke I},
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and Py(I"jx) the set of constant functions defined on I'.

The global hybridized nonconforming mixed finite ele-
ment method isthen defined asfollows: find {E", A", A"}
€ N.C"; x WM x AN such that

((iwe+0)E" 9) = 3 [(H"V x ¢);
j
+Z ch(p ] <<0mr|§hanrq)>>r
= (F, 0), ¢ NC, (15q)
io(UA" y) + D (VX E" ) = (G,y), yeW", (15b)
]
> (0, mEM)r, =0, 0€A" (15¢)

jkelh

Notice that (15c¢) is equivaent to imposing the condition
. EN(mj) = mEf(mji) at the centroid my of interfaces
I'jk. Also, asin Douglas Jr., Santos, and Sheen (2000),
we immediately have the following theorem on existence
and uniquenessfor Problem (15).

Theorem 3.2. Let o, > 0. Then the problem (15) is
uniquely solvable.

4 A Seidel-type domain decomposition method

4.1 A Seide-type domain decomposition iterative pro-
cedure

Set f; = f\gj for any function f defined on Q. The dif-
ferential domain decomposition problem for solving (1)

istofind {Ej,H;},for j=1,---,J, suchthat
(ime+0)Ej —VxH;=F in Q (16a)
iopH; +V xEj =Gj in Q;, (16b)
onEj+vxH;=0 on Tj, (16c)
with the interface consistency conditions

Vi xHj = v xHcand E; =By onTjvk. (17)

Instead of (17), the Robin-type transmission condition

(Vj X Hj +BjkTCrEj) = —Vg X Hk+BjkTCrEk on ijVk
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(18)

will be imposed. In (18), Bk is a complex function de-
fined on I'jx which will be specified later. The weak for-
mulation of the Problem (16) and (18) isgivenasfollows:
find {Ej,H;} € H*(curl; Q) x [L2(Q))]3, j=1,---,],
such that

((iwe+0)Ej,0)j — (H},V x @)
+Z <Bjk(n‘CE] - TC‘CEk) —|—Vk X Hkvn‘t(p>rjk7
k

+<0€TC~CEJ',TC~C({)>]_J_ = (Fj,9)j, ©€H*(curl;Q)),
io(HH}, ) + (VX Ej,w)j = (Gj,y)j, v € [L2(Q))]>.
Set VI' = A\[CMy|o, and W = WP|g,. Also let A" be

the set of Lagrange multlpllers associated with (v x
H;)(mjk) on Tjk givenin by

A= AN A, = A€ A Vi ke,

where Ajx = [Po(rjk)]z, and set

= {W Wl =M€ Mg vk}
From now on associate (v x Hj)(m;jk) on Tjk with Ajy.
We are now in a position to define a Seidel-type domain
decomposition iterative procedure. Choose an initial
guess {EM HM A0 € VI s Wh < A; for all j. Then,
iteratively for n > 1, find {Ejh’”, Hjh’”,k?’”} e VI W x

AD for j=1,2,---, fulfilling
((iwe+0)E", @)j — (H™, Vmp»

_Z Jk?nf(p Tik <<0mr TCI(P>>

:(Fj,@)j, peVh (19)
io(uH]", w)j+ (V< EP" w)) = (Gj,p);,

yewh, (19b)

M= g+ BB — B (M),

for all k, (19¢)

where n* is defined by

* { n_17
n =

n7

<Kk
j >k
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Remark 4.1. It should be remarked that in the updat-
ing procedure (19c) data in use passed from neighbor-
ing subdomainsare most up-to-date; in thissense (19) is
said to be a Seidel-type scheme. Instead of the above, if
n* were defined as n— 1 for all j,k, the procedure (19)
should be regarded as a Jacobi-type scheme in the sense
that the updating procedure (19¢) would use informa-
tions from the past step; this procedure has been studied
in Douglas Jr., Santos, and Sheen (2000).

4.2 Convergence of the iterative procedure

Thelocalized Problem (16)-(18) isweakly formulated as
follows: find {E, A AN} € VI x Wi x A such that

((iwe+0)ED,0); — (A V x 9); _Z<<7\’?kvnf(p>>rjk
k
+ ({(omED, meo))r, = (Fj,0)j, @V, (209)
(AN, v)j+ (VX E y); = (G}, v)j,y €W,  (20b)
M = A + Bik(mEf — mcEM) (my), foral k. (200)

We will show the convergence of the solution
{EMHM A} of Problem (19) to the solution

{Eh Hjh,kﬁ‘} of Problem (20). We will restrict the con-

vergence proof to the case Bjkx = . for all j,k. Set, for
al j,

__ =hn =h __ghn Th __ahn 3h
P=EM-EN V) =H"-AD =" =0 (21)
Then a subtraction of (20) from (19) gives the iteration

error equations:

((iwe+o)uf,0); — (V,V x @); — (8% 7)),
K
+ (o, 7)), = 0, 9 € VY, (22a)
o], W)+ (Vxul,y); =0, yeW, (22b)

M= —0; +B(meuf — U (i) k. (22¢)

Choose ¢ = U} and y =
tively. Then we have

%«eﬁlkv nTu?>>rjk =
—io(pv, v+

177

v? in (22a) and (22b), respec-

((iwe+o)uf,uf);

+ ((omed, el (23)

R'({u" V", 0"}) =

Taking the real and imaginary parts in the above equa-
tion, we get

Rez

kanruj>>r1k (Gu]7u])

+ <<(X‘RTC‘CUT7TC‘CUT>>FJ' (24)
and
Imz (00 eul))r,, = (euf, uf)
—o( VTvVT) — ({0 nru?anru?>>rj' (25)
We rearrange (22c) so that
= —6k T+ Breug = meu) (),
j <Kk, (26a)
Tk = _eEJ +B(TC‘CUE _Tcru?)(mjk)v J > kv (26b)
= 0" 1 — B(m U™ — mou) (myk)
— Yijk ™ TUk ik
+ Bt — U (M) (26¢)
=~ B — 2meu ) (myk)
- B(TCTU? — 21 Uy) (M) (26d)

Here, (26¢) follows from (26b) by applying (26a) and
(26d) follows from (26c) by applying (26b) for n— 1.
Motivated by (26a) and (26d), we define the pseudo-
energy for theiterative procedure (19):

Z‘e k—i—BTCr m]k |Ol“k
j<k

+Z lekJ—I—BTCTUk mjk ’0]_
i>k

(27)

Denote ||| f[[| = X;((f, f))r, for afunction defined on T".
Then the following recurrence relation for the decay in
pseudo-energy holds.

Theorem 4.2. Wth the pseudo-energy (27), we have the
following general recurrence relation which is indepen-
dent of differential or weak problems:

n__ pn-1__ n 1
R =R 8Re%< nL Bl >rjk (29)
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Proof. Since by (264), we have

22]6,k+ﬁnr yor
j<k
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=23 |oft— Breti) 1| by (268)
j<k 0Tk
=23 [0t~ Breu
igk ik~ P 0.k
:22 - ‘1+B(nru — 21 U; i~ 1)‘ by (264)
i>k 0.I'jk
=2 (9?k_1—[3(1truJ — 2 Uy 1)‘
j<k
- 1
—2B(mu? "t — Ul )‘o,rjk
—R"1_ 8Re) <6?k‘1+[3nru?‘1,
j<k
B(TCTUT 1_TCTUE 1)>ij
+8Y |B(meut —meup~ 1)‘
j<k O}k
=R"1-8ReY <6?k‘1+[3nruﬂ‘1,

j<k
ij

- —8Re%< e ,BnT A 1>ij

since

el <—Bnruﬂ

j<k

+Z< ik LBl 1>

j<k

=Re)’ <Bnruﬂ‘ ,
j<k
=Re)’ <Bnru?_1, B(nruT_l — Ul t) +6Ej_1>
>k
~1 g1
= —ReY, <Bnru? 0% >r_
i>k ik
=—ReY (051 praf )
>k Tk

This proves (28).

_17 B(TC‘CUT 1o TC‘CUE 1)>r_k
i

—B(mou” ol + e?k_1>r-k
]

l“jk

by (26a)
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From Theorem 4.2 and (23) it is immediate to have the
following theorem.

Theorem 4.3. Let p = Br+if). Then, with the pseudo-
energy (27), thefollowing recurrence relation holds:

all

(29)

R = R™1_ 8By [Hcl/zu”—luz N ‘ ‘ ‘ocl/znr

oo [l -ofenrf

oo a2 .

Remark 4.4. In the Jacobi-type iterative procedure
given in Douglas Jr., Santos, and Sheen (2000) the
pseudo-energy is given in the form

RS‘({u”,v”,e”}) :z|('|e k+BTCr m]k |O]“ «
B

instead of (27), the recurrence relation is given in the

a1

=0 o |
o [t -ofeinrf

o]

Thus the energy decays in the Seidel-type procedure is
roughly as twice fast as that in the Jacobi-type one.

According to Theorem 4.3, we have the following con-
vergence result.

Theorem 4.5. Assumethat [ satisfies the following con-
ditions:

Bro. +Proe" > 0, Bror, —Prou, >0,
Br>0,B <0 (30)
Then, the iteration error {u",v",6"} satisfying (22) con-
verges to zero as n tends to -, and R" tends to zero as

O wel.
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Proof. Dueto (29), we have

= R°—8nilz [(BRG—I—BW)S) (GUJ,UJ)

k=1 j
- B|w“(vlj<vvl]<)
+ (Bror — Brou) <<Tcrulj(a Tcrulj(>>rj}

Thus, under Condition (30), we see that R" isanonnega
tive nonincreasing sequence, and therefore,

Z [BRZ{ GUJ’UJ
_B'Z{‘” W, Vi) — oo(eu, uf);

Tulj(>>rj}

Kk
OCRTCTUJ 5 TC

+<<oc|nru,-,nru,k>>r,.}} <o,

Suppose that (30) holds. Then we have that u? —0in
[L?(Q)]® as ntends to e, which implies that V xuf! — 0
in [H=1(Q;)]® as n tends to «. Due to finite dimen-
sionality of V¥, Vxul! — 0 in [L%(Q;)]* as n tends to
. Hence, (22b) leads to that V! — 0 in [L%(Q;)]® as
n tends to «. Next, as n tends to -, (22a) tends to
— 4( (8%, 19))r;, = O for @l ¢ € V", in particular for
¢ = ®jk such that m:§(m;x) = Of, and vanishes at the
other five centroids of d<j. This implies that 67} con-
verges to zero as n tendsto « for al {j,k} € I". The
convergence of R" to zero follows from the formula (27).

The proof is complete. O

4.3 An estimate for the spectral radius of theiterative
procedure

Let Teg = Tea(B,r) =1 AC" x WM x AP —
ACh, x W x AN be the affine map such that,
for any (U,V,0) € AC"y x WM x A", {E.HA} =
Tee{U,V,0} = Tec(B; {U,V,0}) is the solution of the
following problem: for j =1,2,---,

((IOJE—I—G)EJ,(p) (HJ,VX (P) Z<<)\’jk7n‘5(p>>rjk
j
+ ({omEj, 1)), = (Fj @), @€V, (31a)
io(HH;, W)j+ (VX Ej,w); = (Gj,w)j,weW,  (31b)
k-k—{ =0k + Bkt —mEj) (M), | <k,
: —Mj +Bik(meEx — mEj ) (Myk), ] > k.

R(Too{E,H,A}) =

Immediately, the argument given in Douglas Jr., Santos,
and Sheen (2000) gives the following result.

Lemma 4.6. If {E,H,A} is a fixed point of T g, then
Ajk = —A; for all {j,k}. Moreover, thepair {E,H,A} is
asolutionof (20) if and only if itis a fixed point of Tr .

The operator Trg can be decomposed as the sum of
Too{U,V, 0} and T {0,0,0}, and hence {U,V,0} isa
fixed point of Tr g if and only if

TF,G{U ,V, e} = {U ,V, e} = To_’o{U ,V, 6} —I-TF,G{O, 0, 0}.

Observethat solving (19) for j =1,2,--- isequivaent to
applying the operator Tr g to {EMM-1 HM=1 hn-11

{Eh,n’ Hh’n, xh,n} _ TF,G{Eh’n_l, Hh,n—l’ xh,n—l}

= Toof EML HM-1 AhN-11 4 T 5{0,0,0}.  (32)

Also, dueto Lemma4.6, {E", A" A"}, whichisthe solu-
tion of (20), satisfies

{EN AN AN = TeG{EM AN AN

= Too{EM" A" A"} + T 5{0,0,0}. (33)

Then the subtraction of (33) from (32) gives
{Un,Vn, e”} = To,o{u”‘l,v”‘l, e”‘l}.

Thus solving (22) for all j is exactly the application of
the operator Tog to {u"~1,v"~1 8"~11 and therefore the
error reduction at each iterationis dominated by the spec-
tral radius of Tp o, which depends on the choice of . We
wish to find away of optimal choice B.

Let v be an eigenvalue of Tpp and {E,H, A} the associ-
ated eigenvector, so that

TO,O{E? H,)\,} = Y{Ev H,)\,}
Immediately, (27) leadsto
R(Too{E,H,A}) = [Y°R{E,H,A}).

On the other hand, Theorem 4.3, incorporated with (24)
and (25), gives the equality:

R({E,H,A})

—8|BrRe Z <<)\fjk7TC‘CEj>>rjk
j,kelh

(34)

+Bi Im Z <<)\’jk7TCTEj>>rjk :

jkelh

(35)
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Thus, a combination of (34) and (35) gives

=1~ 8 [BRRG D, (ko TeEj))ry,

R({E7H77\’}) j,kElh

+BiIm Z <<)\’jk7nTEj>>rjk] . (36)

j,kelh

Obviously, |y| < 1if B satisfies

BrRe Z <<7Mjka TE; >>rjk
jkelh

+BiIm Z <<)\fjk7TC‘CEj>>rjk > 0.
j,kelh

(37)

Thenext stepistoderiveabound for R({E,H,}), hope-
fully, in certain norms of E, H, and A. For this, we ob-
serve that, since {E,H, A} is an eigenvector of Tgo with
the associate eigenvaluey, (31) withF = G = 0 leadsto

((iw8+G)Ejv(P)j - (Hj,V X (P)j _Z<<)\’jk7n‘5(p>>rjk7
k
+ ((om:Ej, m@))r; =0, @€ V?, (38a)

(38b)
(38¢)
(38d)

io(uHj, W)+ (V xEj,w)j =0, yeW,
YAjk = —Akj + BBk — v Ej) (M),
Mk = =i + BT Ex — e Ej) (M),
Dueto (27) and (38),

>,

j<k
+ Z ’kkj + B Ex( m]k ’0]— «
>k

= D [Ajc+ BrecE;

j<k

27

J>k

j <Kk
j >k

2

R({EvHJ\'}): BnTEk(mjk))

1
(i —
y( Kj

O,FJ'k

(M |or ik

2

Mk—Bnr i (Mjk))

Ol“jk

2{ D [Ajic+BreEj (M |ork

S_
‘ ‘ j<k

+ 27 |Ajic— BrecEj (myi) ’ork}
J>k

<23 i
mz,kzelh Pl

+ B2y (my) o, (39)
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asdesired.
The fina step begins with combining (36) and (39) to
have

1

= 11 aM(B)’ (40)

> <

where

M(B) = [BRRG D, (Ao mE)ry,

jkelh

+Bi Im Z <<)\’jk7nTEj>>rjk]

j,kelh

/[j,kzelh{wkiormm mcE; (i |ork}] (a)

Observe that Rezj,kelh«kjk,anmer
isequivalentto M(B3) > 0.

The maximum M* of M(B) is taken where f is chosen
optimally such that

> 0 and that (37)

Sk Miklor,

B> = (42a)

%) kein | B (M |or &

and

B| Re Z )\’]kan‘CE] er

jkelh

BrIM Z <<7Mjk7 TE; >>rjk'
jkelh
(42b)
In this case,

M — |2 ke (i TE}))ry |

= v
Z[Zj,kelhpwk\g,er [ZJ ket [T} (M |orJJ
and therefore, |y| satisfies

1
— 1+4M*

Iy <

We summarize the above result in the following theorem,
which suggests a method of the choice of the optimal 3.

Theorem 4.7. Let {E,H,A} be an eigenvector of Tgp
with the associate eigenvalue y. Assume that (37) holds.

172



Parallel computational electromagnetic modeling based on a nonconforming mixed FEM

69

Then |y| < 1. Moreover, B, with positive real part, is op-
timal if it satisfies (42); in this case, the following bound
for |y holds:

Iy < 1/{1+2

A

j,kelh ]kElh

D (Ao mE)))ry,

jkelh
-1/2
ka ’0,1““(] } : (43)

Remark 4.8. Notice that Conditions (37) and (42b) are
equivalent to
I}

e e

pef o]+ ok

- fu s

and
b {2+ ek

o]+ o e

) pefoln
|}

Remark 4.9. Weremark that as | kein((Ajk, T<Ej) )1y |
vanishes, so do E and H, and |y| tendsto 1.

respectively.

Remark 4.10. With minor modifications in the above
proof of Theorem 4.7, B's can be chosen such that they
vary according to j and k. Also, practically it sufficesto
update 3 only once after certain number of iterations, in-
stead of updating 3 at every iteration. However, the true
solution {E", A" A"} is not known in the actual compu-
tations, and hence the use of optimal choice of § asin
Theorem 4.7, or its approximation, still needs further in-
vestigations.

Remark 4.11. It should be observed that theoptimal 3 in
Theorem 4.7 depends on the values of n:E and A on the
interfaces T'j’s. Theorem 4.12 establishes the spectral
radius estimate and choice of 3 to guarantee an optimal
order of convergence. In actual computations, however,
Theorem 4.7 suggests a much more efficient choice of 3
than this, although it is heuristic: for this, see the next
section on numerical results.

HZ} >0 [p(Too)| & 1~ Chimin.

Instead of varying 3 asin Theorem 4.7, consider the case
inwhich 3 isindependent of solutions. For the following
theorem, set

Nimax(@))
=MmMaxXy+—— r,
C i { hmin(Qj) }

Pmax = mJaX {hmax(Qj )}7 Pmin = mjin {hmin(Qj)}a
where hmin(€2j) and hmax(€2) arethe minimum and max-
imum edge length of Q;, respectively. Thefollowingthe-
orem gives an asymptotic estimate for the spectral radius
of TO,O-

Theorem 4.12. Let p(To0) bethe spectral radiusof To .
Suppose . > 0. If B ischosen such that Bror, — Broy, >
0 and Bro, + By we* > 0 with Bgr > 0, <O, then

(44)

Proof. We begin with finding a lower bound for M(3)
given by (41), which will give an upper bound for |y
by (40). For this, let Q be an arbitrary element among
Qj’sand T'j aninterior face of Qj common with another
element Q. Choose ¢ in (38) such that

7\,jk

N on T,
Tcr(P(mjk) = { 0 Ik

on an \fjk.
Recall the estimates given in Douglas Jr., Santos, and
Sheen (2000):

1815.0, < Cul{ ik i) e (452)
IV % §113 0, < Cal (R Ak

<<TCTE1 s TE; >>rjk

where

(45b)
< s, (459

hmaX(Qj)2
himin(€Q;) ’

himex (€2})
hmin (€2})?
It followsfrom (38a) and (45) that

(i hj))ry = ((i0e+0)E},8)  — (H;,V x §);
< [Va (‘”HSE' HOQ +||oE; HOQJ)

+ \/62|’HJHOQ (i A >%Jk2’

hmaX(Qj)2

C = Cmax —
T Nimin(€2))3

C=C max (46)

Cngmax
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from which it isimmediate that

(it i)y < Ca (0225 o, + 0B I3, )

2
"’CZHHJ' Ho,Qj'

Assumethat Bro. + Bywe* > 0 and W, > 0. Choose Br >
0 and B; < 0. Then, a combination of (41), (24), (25),

(45¢), (47), and (46) resultsin

M(B) = [BRRe Z <<7ijvnTEj>>ij

jkelh

+BirIm Z <<)\’jk7nTEj>>rjk]

j,kelh

/|2 {’xlk’orkﬂm |<Ej (M ’o,rjk}]
j,kelh

= [Br (IIEI1? + ol ImeE |2
51 (el|E)1Z — op HI — o | mcE )]

/| S (s, + BRI 10”}]

jkelh

= | (Bro -+ we) [E]I* B wH HI

+(Brow -+ By o) meE |

/ kZI {’xlk’ork'i"m |7 (i lo,rjk}]
jkelh

> [(BRG*+B|038*)HE|!2—Blwu*HHHZ

+(BR0€R—B|0€|)C%ZXH H]

/ [Calwe+02) [EI +CallH

+1BCa| €]

= [(BRG* +Bioe” + (Bror — B Oﬂl)m> X

ChZ ..
< [[EJ— Brow|H?]
/[Cu(0Pe? + 672 [E|P +CalH|?
+IBCa|E 2]

> C% [Mmin{Bro. + Proe" + (Bror — Bioy ) x
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hmin 2 2
<o — o | {IE+ 17}

/ [[C1C5 H(wPe*? +62) + CoC3 t + (B7]

{IEIP+1HI7}]

@éﬂ [min{Bro. + Prwe” + (Bror — Brou ) x

Nimin
‘g hon |

/[[C1C3 (0% +6*%) + CoCa ™t + B ]

>

The maximum of the last quantity is taken if we choose
B such that

Bl = \/hmathin(ﬁ)zg*z—l—ﬁ*z) +&, (47)

Pimin . * Nimin
L R G )

With this B, we have that M(B) > ™ and thus |y| ~
This completes the proof.

O

Remark 4.13. Also observe that the results correspond-
ing to Theorem 4.7 and Theorem 4.12 for the Jacobi-type
procedure are immediate. Replacing only (40) by

1

S L)

instead of (43), one has

WE<1/|14+] Y (A E)))ry,
j.kelh
| ~1/2
{Z Miklor, X |mEj(mi !ork} ]
j keIl jkelh

and then the estimate for the spectral radius will be ac-
cordingly affected. Indeed instead of (44),

with the same constant C asin (44).
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4.4 Thered-black Seidel-type procedure

In order to supplement the lack in parallelism of Seidel-
type iterative procedure, a red-black Seidel-type proce-
dure is proposed in what follows. Let the set of subdo-
main indices be divided into the two parts Iz and Ig, SO
that

Q= [Ujerj] U[Vjej], Qjnjau=0,
and each element Q;, j € Ir, is not adjacent to any ele-
ment Q. k € Ir. The red-black Seidel-type iterative pro-

cedure corresponding to Problem (19) is based on the the
following updating scheme for k?l’(” VKYj:

g+ BB — e EP) (M)

vk V] €lr
A = ’ ’ (483)
) M+ BB — B (my)
Vk,V] € lg.
(48b)

Then the red-black Seidel-type iterative procedure con-
sists of the ateration of the two substeps:. the first sub-
step of updating (48a) and solving (19a) and (19b) for
al j € Ig, and the second substep of updating (48b) and
solving (19a) and (19b) for dl j € Ig.

Introduce the pseudo-energy for red-black Seidel-typeit-
erative procedurein the form

R0 = 3 5 |6+ Brecuf (myi) |
JElr

+ 33|08 + Breul(mie) | %

jE|B k

With this pseudo-energy, al the results in the previous
subsections for Seidel-type iterative procedure remain
valid for red-black Seidel-type iterative procedure.

5 Numerical Results

Let the computational domain Q be given as [0, 4 x
10%m)3. For the physical parameters in our numerical
simulation we use the datafollowing Coggon (1971). Let
the frequency ® be 10Hz, and the electric permittivity
and magnetic permeability contrastse /e, W/ o be 10 and
1, where gg isthe electric permittivity of the vacuum and
Mo the magnetic permeability of the free space. Let the

0 T T T

Y ——  Jacobi lteration method
— — = Seidel iteration method 4
+ Red-Black iteration Method

Relative error
!
| N ! = |
w o ~ o -
T T T T T
4
&

&
[
r
i

'
S
T

~
-451 ™

-5 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

iteration number

Figure 1 : The logarithmic relative L2-error with the
fixed B value

conductivity o be 0.01S/m(Siemens/meter ). The coeffi-

cient matrix o in the absorbing boundary condition (3c)
isgiven by the diagonal matrix (1—1i) ﬁ;'- In therest
of the section some numerical results are illustrated to
compare the classical Gauss-Jacobi type algorithmwith
the presented Gauss-Seidel type and red-black type ones

with various updating procedures.

5.1 The case of homogeneous problems

Setting F = G = 0, we investigate in the convergence of
the solutions of (3) to zeros. Denote by {u™", V™", gnnY
the numerical solution at the nth step error equations
(22), and we calculate

14" lo-+ 1"+ [V <" o
[[uHlo-+ [V [0+ [V x UM o

Log;o

as logarithmic relative L2-errors. Here, u™ V™" are the
solutionsat the nth iterative step. For the numerical com-
putationsin this subsection, the domain Q isdivided into
the 80 x 80 x 80 congruent subdomains.

We consider the case of updating procedure with afixed
B satisfying (47). Figure 1 shows the comparison of the
Gauss-Jacobi, Gauss-Seidel, and red-black type iterative
procedures. For al cases the speed of convergence of the
Gauss-Seidel and Red-Black type procedures are faster
(approximately by afactor of two) than that of the Gauss-
Jacobi type one.
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5.2 The case of nonhomogeneous problems

Let us take F and G such that the exact solutions of (3)
are

Eex - ((I)(X,y,Z),0,0)

B 9(x,¥,2)  90(X,Y,2)
Hee = 2000><oc<0, EER 3y
where

032~ (3500 ) (000 ) 2000 (2000 1)

As a synthetic model for nonhomogeneous case, we test
the model in COMMEMI project Zhdanov, Varentsov,
Weaver, Golubev, and Krylov (1997). It consists of
a conductive block of 2 S/m embedded in a homoge-
neous body with conductivity 0.01S/m. The anomaly
sizeis 1km x 1km x 2km in the computational domain
4kmx 4kmx 4km.

-2Km -05Km 05Km 2Km

0.5Km

25Km

4Km

z

Figure 2 : Two-dimensional slice of synthetic anomaly
model aty =0

We define the rel ative L?-error f{;,” by the quotient

|Eex— E™Jlo+ [[Hex—H™"[Jo + |V x (Eex — E™") |0
[[Eexllo+ |Hex|lo + |V X Eexl|on

9
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the n — 1st step to the current nth step is less than 0.001;
thatis,

h,n
Lo
1- h,n—1
el

< 0.001.

Although the theoretical convegence given in Theo-
rem 3.1 is suboptimal, we remark that an optimal con-
vergence rate of O(h) can be observed in Table 1.

Table 1 : Relative L2 errors and reduction ratio r

h (km) | Num. of Grids | Rel. L>-Error | Red. Ratior
1/4 16x 16x16 0.084063

1/8 32x 32x32 0.042073 0.998
1/16 64x 64x64 0.021045 0.999
1/32 128x 128x128 0.010546 0.996

Figures 3 and 4 plot horizontal slices of the rea part of
the electric field E;"N across the source location for the
homogeneous and honhomogeneous cases, respectively.
For these figures the stopping was made when

[”Eh,n-i-l_ Eh,n”0_|_ ”Hh,n-i-l_ Hh,n”O
VX (EM L EP) o

/ [IE o+ IH™llo+ |V < E" s

was 0.00017. From the snapshotsin Figures 3 and 4 one
may observe that the absorbing boundary conditions (3c)
perform well.

5.3 Calculusof the spectral radius

In this subsection we will compute and confirm numeri-
cally theactual rate of convergence of the domain decom-
position iteration that is estimated by the spectral radius
givenin (44) in §4.3. For this, let E, EM and EM bethe
exact, n-th iterative, and the limiting iterative solutions,
respectively. Then-th error € = ||E — EM" 2 o) isthen
estimated by

where we used red-black type procedure with the stop- € < |E —E™||i2(q) + [E™ —E™| 2(q)

ping criterion such that if the relative error change from

< C1/|E[li2(9)h** 4+ Ca(1—C3h™)".
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o

Figure3: Therea part of eQ’N for homogeneous model

Since o is at least 0.5 by Theorem 3.1 but nearly 1 by
the numerical experiment given in §5.2, we will concen-
trate on calculating only Cs and o, which relate with the
iterative procedure. By using the following relations

eh’” — eh’”” ~ C2(1 — Cghmz)anhOL2

P M2 & Cy(1 - C3h™2)MHICsh ™,
we have

eh,n-i-l _ eh,n-|-2

T 1—C3h*

e2h,n-|—1 _ e2h,n-|—2
e2h,n _ e2h,n+1

It seems to be improper to take a fixed number n, and
hence we abtain the vaues by taking averages through
n = 1 to acertain number (=50). In Table 2, we present
numerical calculuswith 3 satisfying (47) for the spectral
radius coefficients C3 and ot,:

~ 1 Cg2%h2,

p(TO,O) S 1-— C3ha2.
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Figure 4 : The rea part of eQ’N for nonhomogeneous
model

Table 2 : Numerical calculus of coefficients in the spec-
tral radius estimation

Jacobi-type Red-Black

Cs 0.537675 1.152814

ol 1.078837 1.156271
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