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A Parallel Multi-block Method for the Unsteady Vorticity-velocity Equations

A. Grimaldi1 , G. Pascazio2 , M. Napolitano3

Abstract: This paper provides a numerical method
for solving two- and three-dimensional unsteady incom-
pressible flows. The vorticity-velocity formulation of the
Navier–Stokes equations is considered, employing the
vorticity transport equation and a second-order Poisson
equation for the velocity. Second-order-accurate centred
finite differences on a staggered grid are used for the
space discretization. The vorticity equation is discretized
in time using a fully implicit three-level scheme. At each
physical time level, a dual-time stepping technique is
used to solve the coupled system of non linear algebraic
equations by various efficient relaxation schemes. Steady
flows are computed by dropping the physical time deriva-
tive and converging the pseudo-time-dependent problem.
A domain decomposition of the physical space is also
employed: the multi-block algorithm allows one to han-
dle multiply-connected domains and complex configura-
tions and, more importantly, to solve each grid-block on a
single processor of a parallel platform. The accuracy and
efficiency of the proposed methodology is demonstrated
by solving well known two-dimensional flow problems.
Then, the steady and unsteady flows inside a cubic cavity
are considered and the numerical results are compared
with experimental and numerical data.

1 Introduction

Vorticity plays a fundamental role in the physics of
vortex dominated flows, its dynamics being the pri-
mary tool to understand the time evolution of vortical
structures. Therefore, in the numerical solution of the
time-dependent incompressible Navier–Stokes equations
it is convenient to use vorticity as one of the depen-
dent variables. In order to be able to solve two- and
three-dimensional flows, the velocity vector is used in
this work as the second dependent variable, as orig-

1 DIMeG & CEMeC, Politecnico di Bari, via Re David 200, 70125
Bari, Italy, e-mail: an.grimaldi@poliba.it.

2 DIMeG & CEMeC, Politecnico di Bari, via Re David 200, 70125
Bari, Italy, e-mail: pascazio@poliba.it.

3 DIMeG & CEMeC, Politecnico di Bari, via Re David 200, 70125
Bari, Italy, e-mail: napolita@poliba.it.

inally proposed by Fasel (1976). In particular, the
vorticity-velocity formulation has the remarkable prop-
erty that, when using a non-inertial reference frame,
non-inertial effects enter into the solution of the prob-
lem through the implementation of initial and bound-
ary conditions (Speziale, 1987), the governing equa-
tions remaining formally unchanged. In addition to
such an advantage, it has been recently recognized that
the vorticity-velocity formulation can be a viable ap-
proach for large eddy simulations (Winckelmans, Lund,
Carati, and Wray, 1996). Following such a suggestion,
LES have been performed using both particle-based La-
grangian formulations (Mansfield, Knio, and Menevau,
1998) and Eulerian-based formulations (Tenaud, Pel-
lerin, Dulieu, and Phuoc, 2005).

The authors have developed numerical methods for solv-
ing the vorticity-velocity formulation of the Navier–
Stokes equations in two-dimensional general curvilinear
coordinates for both steady (Pascazio and Napolitano,
1996) and unsteady problems (De Palma, Pascazio, and
Napolitano, 2001). The scalar vorticity transport equa-
tion is coupled with a second-order equation for the ve-
locity vector, obtained by combining the vorticity def-
inition and the incompressibility condition. The equa-
tions are discretized in space by a staggered-grid second-
order-accurate finite-volume method and the problem is
closed by computing the vorticity at the boundary by
means of its definition. For steady flows, the three
equations are solved by an alternating direction line-
Gauss–Seidel relaxation scheme, using a false-transient
approach (Pascazio and Napolitano, 1996). For unsteady
flows, the vorticity transport equation is discretized in
time by means of an implicit three-level scheme and
the solution at each time level is obtained through a
dual time-stepping technique (Pascazio, Grimaldi, and
Napolitano, 2003): a multigrid line-Gauss–Seidel relax-
ation scheme is applied to solve the nonlinear coupled
vorticity-velocity system at each physical time level, the
vorticity time-derivative being a source term in the vor-
ticity transport equation.
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The aim of the present paper is to reduce the CPU
time required by such a methodology either to reach the
steady-state solution or to converge at each time level in
unsteady computations, as well as to extend it to the solu-
tion of three-dimensional steady and unsteady problems.
Therefore, more efficient relaxation schemes have been
considered and a domain decomposition of the physical
space has been employed in conjunction with a parallel
multi-block algorithm.

In the following, the governing equations are presented
and the numerical method is described; then, two- and
three-dimensional steady and unsteady flows are com-
puted to validate the numerical method and its multi-
block implementation.

2 Governing equations

The non-dimensional incompressible Navier–Stokes
equations read:

∂�u
∂t

+�∇
(u

2

)
−�u×�ω = −�∇p− 1

Re
�∇×�ω, (1)

�∇ ·�u = 0, (2)

where ∂ is the partial derivative operator, t is the time,�u is
the velocity vector, p is the pressure, Re is the Reynolds
number, and �ω is the vorticity vector,

�ω =�∇×�u. (3)

The vorticity transport equation is obtained by taking the
curl of equation (1), to give

∂�ω
∂t

−�∇× (�u×�ω) = − 1
Re

�∇×�∇×�ω. (4)

In equation (4), the right hand side is simplified using the
following vector identity,

�∇×�∇×�ω =�∇(�∇ ·�ω)−∇2�ω, (5)

together with the divergence-free condition for the vor-
ticity vector,

�∇ ·�ω = 0, (6)

to give:

∂�ω
∂t

−�∇× (�u×�ω) =
1
Re

∇2�ω. (7)

Furthermore, in the numerical method, it is convenient to
use also the non conservative form of the nonlinear ad-
vection term, which is obtained from the following vec-
tor identity

�∇× (�u×�ω) =�u(�∇ ·�ω)+(�ω ·�∇)�u

−�ω(�∇ ·�u)− (�u ·�∇)�ω (8)

together with equations (2) and (6). The resulting non
conservative vorticity transport equation reads:

∂�ω
∂t

+(�u ·�∇)�ω− (�ω ·�∇)�u =
1

Re
∇2�ω. (9)

In order to solve the kinematic problem, it is convenient
to obtain a second-order elliptic PDE for the velocity vec-
tor in place of the two first-order equations, (2) and (3),
so as to use standard relaxation methods. Taking the curl
of the vorticity definition, equation (3), and using the vec-
tor identity,

�∇×�∇×�u =�∇(�∇ ·�u)−∇2�u,

together with the incompressibility condition, one ob-
tains:

∇2�u = −�∇×�ω. (10)

As far as the solid-wall boundary conditions are con-
cerned, the usual no-slip condition is prescribed for the
velocity vector; since the vorticity conditions are of in-
tegral type (Quartapelle, 1993), the vorticity definition
is used to evaluate its boundary values, for simplicity,
as done by most researchers, see, e.g., Guj and Stella
(1988); Orlandi (1987); Napolitano and Pascazio (1991);
Guj and Stella (1993); Pascazio and Napolitano (1996);
Lo, Murugesan, and Young (2005).

3 Numerical method

The vorticity transport equation and the velocity Pois-
son equation are written in Cartesian coordinates since
only Cartesian grids are employed in this work. Indicat-
ing with u(1), u(2), u(3) (u, v, w) and ω(1) ω(2), ω(3) the
Cartesian components of �u and �ω in the x(1), x(2), x(3)
directions, respectively, the i-th component of the con-
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servative vorticity transport equation (7) reads:

∂ω(i)

∂t
− ∂

[
u(i)ω( j) −u( j)ω(i)

]
∂x( j)

− ∂
[
u(i)ω(k)−u(k)ω(i)

]
∂x(k)

=
1

Re

(
∂2ω(i)

∂x2
(i)

+
∂2ω(i)

∂x2
( j)

+
∂2ω(i)

∂x2
(k)

)
, (11)

where

j = (i+1) mod 3, k = (i+2) mod 3.

Using the non conservative equation (9), the left hand
side of equation (11) reads:

∂ω(i)

∂t
+u(i)

∂ω(i)

∂x(i)
+u( j)

∂ω(i)

∂x( j)
+u(k)

∂ω(i)

∂x(k)

−ω(i)
∂u(i)

∂x(i)
−ω( j)

∂u(i)

∂x( j)
−ω(k)

∂u(i)

∂x(k)
. (12)

Finally, the i-th Cartesian component of the velocity-
vector Poisson-equation (10) reads:

∂2u(i)

∂x2
(i)

+
∂2u(i)

∂x2
( j)

+
∂2u(i)

∂x2
(k)

=
∂ω( j)

∂x(k)
− ∂ω(k)

∂x( j)
. (13)

An implicit formulation is employed and the time deriva-
tive in the vorticity transport equation is discretized by
a second-order-accurate three-level backward formula.
Using a dual-time-stepping technique (Jameson, 1991),
a pseudo-time derivative is introduced into the vortic-
ity and velocity equations. Discretizing such derivatives
with a two-level implicit Euler scheme and using the
delta form of Beam and Warming (1978), the following
semidiscrete equations for the incremental unknowns are
obtained:

Δω(i)

Δτω
+u(i)

∂Δω(i)

∂x(i)
+u( j)

∂Δω(i)

∂x( j)

+u(k)
∂Δω(i)

∂x(k)
− ∂u(i)

∂x(i)
Δω(i) = R(i), (14)

Δu(i)

Δτu
− ∂2Δu(i)

∂x2
(i)

− ∂2Δu(i)

∂x2
( j)

− ∂2Δu(i)

∂x2
(k)

= S(i). (15)

In the equations above, Δτω, Δτu are the pseudo-time
steps, and Δω(i), Δu(i) are the unknowns, namely, the

variations of the dependent variables at the new physical
time level (n +1) from the old pseudo-time level (r) to
the new one (r +1); moreover, R(i) and S(i) indicate the
right-hand-sides of the vorticity and velocity equations
evaluated at (n+1, r):

R(i) =
3ωn+1,r

(i) −4ωn
(i) +ωn−1

(i)

2Δt

+

[
∂
[
u(i)ω( j)−u( j)ω(i)

]
∂x( j)

+
∂
[
u(i)ω(k)−u(k)ω(i)

]
∂x(k)

+
1

Re

(
∂2ω(i)

∂x2
(i)

+
∂2ω(i)

∂x2
( j)

+
∂2ω(i)

∂x2
(k)

)]n+1,r

, (16)

where Δt is the physical time step, and

S(i) =

[
∂2u(i)

∂x2
(i)

+
∂2u(i)

∂x2
( j)

+
∂2u(i)

∂x2
(k)

− ∂ω( j)

∂x(k)
+

∂ω(k)

∂x( j)

]n+1,r

.

(17)

Note that in equations (14) and (15) only the correspond-
ing variable is treated implicitly, leading to a decoupled
system of equations. More importantly, equation (14)
has been written according to a deferred correction ap-
proach (Khosla and Rubin, 1974), using the right-hand-
side residual in the conservative form and the left-hand-
side implicit operator in the non conservative one. In
such a way, the converged solution at each physical time
level enjoys the accuracy of the conservative second-
order-accurate centred differences (Napolitano and Pas-
cazio, 1991); moreover, employing upwind differences
for the left-hand-side advection terms, the linear system
is diagonally dominant, a favorable feature for any relax-
ation method.

An important feature of the present approach is the
use of a staggered grid, which allows one to easily
satisfy the discrete continuity equation and to obtain
a divergence-free vorticity, see also Orlandi (1987);
Napolitano and Pascazio (1991); Guj and Stella (1993);
Bertagnolio and Daube (1997); Tenaud, Pellerin, Dulieu,
and Phuoc (2005); Lo, Murugesan, and Young (2005).
The staggered-grid arrangement of the variables is shown
in figure 1: ω(1) ω(2), ω(3) are evaluated at the centres of
the edges parallel to the x(1), x(2), x(3) axes, respectively,
whereas u, v, w at the centres of the faces perpendicular
to the same.
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Figure 1 : Three-dimensional staggered grid: � ω(1),
� ω(2), • ω(3), � u, � v, © w.

The six uncoupled equations (14) and (15) are solved
sequentially by a single application of one of the fol-
lowing relaxation schemes: forward-backward line-
Gauss–Seidel combined with a three-level FAS multi-
grid scheme (Brandt, 1982) (LGS); the incomplete LU
decomposition of Stone (1968) accelerated by a three-
level FAS multigrid scheme (SIP); a stabilized conjugate
gradient squared method with incomplete Cholesky pre-
conditioning (CGS), see, e.g., Ferziger and Perić (1997);
a combination of the SIP and CGS methods, obtained by
performing sequentially the SIP and CGS schemes (SIP-
CGS), has finally been introduced to achieve a more ef-
fective preconditioning of the CGS scheme. Concern-
ing the multigrid strategy, full weighting collection and
bilinear prolongation operators have been used (Napoli-
tano and Pascazio, 1991). After driving the right-hand-
side unsteady residuals to zero, the solution is advanced
to the new physical time step. In all of the steady-flow
computations Δτω = Δτu = 1; in unsteady ones, Δτu = 1
whereas Δτω = 0.2Δt, for stability; α = 0.92 for the SIP
solver in all but one computations; the CGS method is
restarted every five iterations (or when convergence is
reached).

In this paper, multi-block grids are used for the space
discretization, which allow to handle multiply-connected
domains and complex configurations and, more impor-
tantly, to solve each grid-block on a single processor of a
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Figure 2 : Mesh-refinement study for the two-
dimensional driven cavity flow: velocity profiles; (- - -
- -) 1282 cells; (– – –) 2562 cells; (———) 5122 cells; �,
� results of Botella and Peyret (1998).

parallel platform. In such an approach, the treatment of
intra-block boundaries greatly affects the rate of conver-
gence of the solution. A Schwarz additive algorithm with
matching overlapping grids (Smith, Bjørstad, and Gropp,
1996) has been used and the influence on the convergence
rate of the number of cells in the overlap region has been
investigated.

All computations have been performed on an IBM eS-
erver 1300 cluster of 16 dual Pentium III, 1.4 GHz,
nodes.

4 Results

4.1 Two-dimensional flows

The steady two-dimensional driven cavity problem at
Re = 1000 has been solved as a test case to compare
the performance of the various relaxation schemes. Nu-
merical solutions have been obtained using three uniform
Cartesian grids containing 1282, 2562 and 5122 cells.
The L1 norm of the largest residual has been reduced to
10−12 in all computations. Figures 2 and 3 provide the
velocity profiles along the cavity centerlines and the vor-



A Parallel Multi-block Method for the Vorticity-Velocity Equations 49

2 X1

V
or

tic
ity

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-100

-80

-60

-40

-20

0

Figure 3 : Mesh-refinement study for the two-
dimensional driven cavity flow: vorticity distributions
along the moving wall; (- - - - -) 1282 cells; (– – –) 2562

cells; (———) 5122 cells; � results of Botella and Peyret
(1998).
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Figure 4 : Mesh-refinement study for the two-
dimensional driven cavity flow: blow-up of the velocity
profiles of figure 2.
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Figure 5 : Mesh-refinement study for the two-
dimensional driven cavity flow: blow-up of the vorticity
distributions of figure 3.

ticity along the moving wall, respectively. The results
obtained with the two finer meshes are very close to each
other, as seen in the blow-ups of figures 2 and 3, given
in figures 4 and 5, and are in very good agreement with
the benchmark results of Botella and Peyret (1998), also
reported in figures 2-5.

The finest grid has been used to test the performance of
the proposed parallel multi-block strategy. Tables 1 and
2 provide the number of iterations, It, and the computa-
tional times obtained with the four relaxation schemes
when using a single block and 2, 4, and 9 equal-size
blocks; for each multi-block computation, three differ-
ent numbers of cells, Nc, in the overlap region have been
considered. The tables provide also the speed-ups, S,
namely, the ratio between the CPU times of the single-
block computation and of the multi-block one. It appears
that the efficiency increases going from the LGS method
to the SIP-CGS one and, more importantly, that the modi-
fication of the preconditioningprocedure by means of the
SIP method is indeed effective. Concerning the perfor-
mance of the multi-block parallel procedure, the number
of cells in the overlap region plays a fundamental role,
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Table 1 : Parallel efficiency: computational time for the
2D driven cavity flow using LGS and SIP.

Blks Nc It CPU [s] S

LGS 1 – 23803 156686 –
2 1 26072 85476 1.83

5 24320 79695 1.97
9 24245 79576 1.97

4 1 29885 51255 3.06
5 27872 42537 3.69
9 26710 41761 3.75

9 1 33408 24750 6.33
9 26898 21371 7.33
17 24623 19733 7.94

SIP 1 – 7349 28775 –
2 1 8423 15492 1.86

5 7382 14464 1.99
9 7352 14417 2.00

4 1 10857 10365 2.78
5 7630 7274 3.96
9 7374 7206 3.99

9 1 11473 4967 5.79
9 8528 3813 7.55
17 7519 3309 8.70

the speed-up increasing with the number of such cells.
In particular, for the nine-block case, the CPU times of
the LGS and SIP methods scale linearly with the num-
ber of processors if one uses 17 cells in the overlap re-
gion. On the other hand, the more implicit CGS and
SIP-CGS methods do not achieve the theoretical linear
scaling, indicating that for such relaxation schemes the
present multi-block strategy associated with the decou-
pled implicit approach is not fully satisfactory. There-
fore, only the LGS and SIP methods have been used in
the three-dimensional flow simulations.

Then, the unsteady flow past a square cylinder at Re =
150 has been computed using the SIP-CGS method; the
mesh with eight blocks and 168× 120 cells employed
by Sohankar, Norberg, and Davidson (1999), see fig-
ure 6, as well as a finer grid with a total of 336× 240
cells have been used, with Δt = 0.025 and Δt = 0.0125,
respectively. The uniform velocity has been imposed at
the far-field left, upper and lower boundaries, whereas
the velocity at the right (outlet) far-field boundary has
been linearly extrapolated from the two neighbouring left
points. Obviously, the (scalar) vorticity at all boundary

Table 2 : Parallel efficiency: computational time for the
2D driven cavity flow using CGS and SIP-CGS.

Blks Nc It CPU [s] S

CGS 1 – 3867 21475 –
2 1 8427 23594 0.91

5 5328 14500 1.48
9 4410 13153 1.63

4 1 13573 21174 1.01
5 6822 10188 2.11
9 4474 6685 3.21

9 1 11812 7263 2.96
9 6969 4321 4.97
17 5735 3602 5.96

SIP-CGS 1 – 1827 11143 –
2 1 4110 11960 0.93

5 2319 7119 1.57
9 2008 6180 1.80

4 1 5245 8441 1.32
5 2782 4322 2.58
9 2699 4275 2.61

9 1 5697 3857 2.89
9 3619 2415 4.61
17 3377 2265 4.92

points has been computed by its definition, namely, the
x(3) component of equation (3). At each time step, the L1

norm of the largest unsteady residual has been reduced
to 10−7, within about 350 iterations (about 40 CPU sec-
onds) on the coarser grid. Figures 7 and 8 provide the
horizontal and vertical velocity components at x(2) = 0
and x(1) = 4 and 7, respectively, the origin of the Carte-
sian axes coinciding with the centre of the square. The
finer-grid results are shown as symbols and clearly in-
dicate grid convergence. On both grids the computed
Strouhal number is equal to 0.165, which corresponds to
the value provided by Sohankar, Norberg, and Davidson
(1999).

4.2 Three-dimensional flows

The parallel performance of the three-dimensional im-
plementation of the proposed approach, using the LGS
and SIP methods, has been tested versus the steady flow
in a cubic cavity at Re = 100; the top wall perpen-
dicular to the x(3) axis moves along the x(1) direction.
A uniform Cartesian grid with 643 cells has been used
and the L1 norm of the largest residual has been re-
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Figure 6 : Flow past a square cylinder: Computational
grid.
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Figure 7 : Flow past a square cylinder: time history of
the velocity components at x(1) = 4 and x(2) = 0.

duced to 10−12. For both methods, a three-level multi-
grid scheme has been employed and for the SIP method
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Figure 8 : Flow past a square cylinder: time history of
the velocity components at x(1) = 7 and x(2) = 0.

Table 3 : Parallel efficiency: computational time for the
3D driven cavity flow.

Blks Nc It CPU [s] S

LGS 1 – 234 4105 –
2 1 476 4162 0.99

5 248 2173 1.89
9 213 1861 2.21

4 1 953 4116 1.00
5 433 1878 2.19
9 294 1271 3.23

8 1 1336 2837 1.45
5 566 1195 3.44
9 350 742 5.53

SIP 1 – 202 1448 –
2 1 442 1601 0.90

5 182 661 2.19
9 167 603 2.40

4 1 933 1701 0.85
5 298 548 2.64
9 203 370 3.91

8 1 1410 1285 1.13
5 380 345 4.19
9 257 241 6.01



52 Copyright c© 2006 Tech Science Press CMES, vol.14, no.1, pp.45-56, 2006

U

W

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 9 : Mesh-refinement study for the three-
dimensional driven cavity flow at Re = 1000: (- - - -) 403

cells; (– – –) 643 cells; (—–) 803 cells; • numerical re-
sults of Lo, Murugesan, and Young (2005).

α was set equal to 0.9. Table 3 provides the number
of iterations and the computational times obtained with
the two relaxation schemes when using a single block
and 2, 4, and 8 equal-size blocks, as well as the corre-
sponding speed-ups; again, for each multi-block com-
putation, three different numbers of cells in the overlap
region have been used. Concerning the performance of
the multi-block parallel procedure, the speed-up of the
more efficient SIP method is almost linear when using
9 cells in the overlap region and, again, is higher than
that provided by the LGS method. With respect to the
two-dimensional case, a slight decrease of the speed-up
is observed, as expected; a greater number of cells in the
overlap region is thus needed to approach the theoreti-
cal linear scaling. Moreover, the parallel performance of
the three-dimensional approach is inferior to that of the
two-dimensional one, mainly for the increased commu-
nication between neighboring processors.

In order to verify the accuracy of the proposed method,
the cubical lid-driven cavity flow problem has been com-
puted for Reynolds number equal to 1000, 2000 and
3200. Stretched grids containing 403, 643, and 803 cells
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Figure 10 : Mesh-refinement study for the three-
dimensional driven cavity flow at Re = 2000: (- - - -) 403

cells; (– – –) 643 cells; (—–) 803 cells; • numerical re-
sults of Lo, Murugesan, and Young (2005).

have been used:

x(1) =
1
2

+
1
2

tanh
[
a i−imid

(imid−1)

]
tanha

, (18)

x(2) =
1
2

+
1
2

tanh
[
a j− jmid

( jmid−1)

]
tanha

, (19)

x(3) =
1
2

+
1
2

tanh
[
a k−kmid

(kmid−1)

]
tanha

, (20)

the constant a being equal to 1.1 and imid = jmid = kmid =
21, 33, and 41 for the three grids.
In the cubical lid-driven cavity, the mid-plane along the
x(2) direction is the plane of symmetry when the flow is
steady, Re = 1000 and 2000. At Re = 3200 the flow be-
comes unsteady and the symmetry is lost for the instan-
taneous quantities.
For Re = 1000 and Re = 2000, figures 9 and 10 show the
u and w profiles along the centerlines (x(1) = x(2) = 1/2)
and (x(2) = x(3) = 1/2) for Re = 1000 and 2000, respec-
tively. Both figures provide the results obtained by the
present approach using the three aforementioned grids,
together with the results of Lo, Murugesan, and Young
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Figure 11 : Blow-up of the velocity profiles of figure 9.
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Figure 12 : Blow-up of the velocity profiles of figure 9.
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Figure 13 : Blow-up of the velocity profiles of fig-
ure 10.
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Figure 14 : Blow-up of the velocity profiles of fig-
ure 10.

(2005), using a uniform Cartesian grid with 803 cells,
the agreement is quite good. More importantly, the
finest-grid present solutions can be considered to be grid-
converged, see figures 11-14, which provide blow-ups of
the velocity profiles of figures 9 and 10. The accuracy of
the solutions is further demonstrated by the perfect sym-

metry of the vertical flow (about x(2)) obtained for both
Re = 1000 and Re = 2000, see figures 15 and 16, which
provide the contour lines of ω(3) in the x(1) − x(2) plane
at x(3) = 1/2.

For Re = 3200, the flow is unsteady and the detailed ex-
perimental data of Prasad and Koseff (1989) as well as
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Figure 15 : Contour lines of the x(3) vorticity compo-
nent at x(3) = 1/2 plane for Re = 1000

Figure 16 : Contour lines of the x(3) vorticity compo-
nent at x(3) = 1/2 plane for Re = 2000
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Figure 17 : Mean velocity profiles for Re = 3200: (—–)
present results, 803 cells; (- - - - -) present results, 643

cells; (– – – –) numerical results of Deshpande and Mil-
ton (1998); • experimental results of Prasad and Koseff
(1989).
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Figure 18 : 10 × rms of the fluctuating velocity at
Re = 3200: (—–) present results, 803 cells; �, � ex-
perimental data of Prasad and Koseff (1989).

the numerical results of Deshpande and Milton (1998)
are used to assess the capability of the proposed unsteady

solver. Numerical results have been obtained using the
above mentioned meshes with 643 and 803 cells and a
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time step equal to Δt = 0.05. At each time step, the
L1 norm of the largest unsteady residual has been re-
duced to 10−7 by about 300 SIP iterations, corresponding
to about 370 CPU seconds on the aforementioned com-
puter, using the finest mesh and 16 blocks. Figures 17
and 18 provide the mean velocity profiles and the cor-
responding rms fluctuations along the cavity centerlines
at x(2) = 1/2. It appears that the present finer-grid solu-
tions are in very good agreement with both the reference
numerical ones and the experimental data.

5 Conclusions

An efficient and accurate numerical method for solv-
ing unsteady incompressible flows has been presented.
The method employs the vorticity-velocity formula-
tion of the Navier–Stokes equations, the vorticity trans-
port equation being coupled with a Poisson equation
for the velocity vector. The equations are discretized
in space by staggered-grid second-order-accurate finite-
differences and the vorticity transport equation is dis-
cretized in time by means of an implicit three-level
scheme. Each equation is supplemented with a pseudo-
time derivative, in order to employ different efficient re-
laxation schemes to converge the solution at each phys-
ical time level. Steady flows are computed by dropping
the physical time derivative and converging the pseudo-
time-dependent problem. A domain decomposition of
the physical space is also employed, which allows one to
handle multiply-connected domains and complex config-
urations and, more importantly, to solve each grid-block
on a single processor of a parallel platform. The Schwarz
additive algorithm with matching overlapping grids, used
for the intra-block boundary treatment in parallel com-
putations, has been effective in conjunction with either a
line-Gauss–Seidel or a strongly implicit procedure, both
accelerated by a multigrid scheme. The accuracy and ef-
ficiency of the proposed methodology has been verified
by solving well known two-dimensional flow problems
as well as the three-dimensional steady and unsteady
flows inside a cubic cavity.
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Ferziger, J. H.; Perić, M. (1997): Computational
methods for fluid dynamics. Springer Verlag, Berlin Hei-
delberg.

Guj, G.; Stella, F. (1988): Numerical solutions of the
high-Re recirculating flows in vorticity-velocity form.
Int. J. Numer. Meth. Fluids, vol. 8, pp. 405–416.

Guj, G.; Stella, F. (1993): A vorticity-velocity method
for the numerical solution of 3D incompressible flows.
J. Comput. Phys., vol. 106, pp. 286–298.

Jameson, A. (1991): Time dependent calculations us-
ing multigrid with applications to unsteady flows past air-
foils and wings. Technical report, AIAA Paper 91–1596,
1991.

Khosla, P. K.; Rubin, S. G. (1974): A diagonally dom-
inant second-order-accurate implicit scheme. Comput.
Fluids, vol. 2, pp. 207–209.



56 Copyright c© 2006 Tech Science Press CMES, vol.14, no.1, pp.45-56, 2006

Lo, D. C.; Murugesan, K.; Young, D. L. (2005): Nu-
merical solution of three-dimensional velocity-vorticity
Navier–Stokes equations by finite difference method.
Int. J. Numer. Meth. Fluids, vol. 47, pp. 1469–1487.

Mansfield, J. R.; Knio, O. M.; Menevau, C. (1998): A
dynamic les scheme for the vorticity transport equation:
formulation and a priori tests. J. Comput. Phys., vol.
145, pp. 693–730.

Napolitano, M.; Pascazio, G. (1991): A numerical
method for the vorticity-velocity navier-stokes equations
in two and three dimensions. Comput. Fluids, vol. 19,
pp. 489–495.

Orlandi, P. (1987): Vorticity-velocity formulation for
high re flows. Comput. Fluids, vol. 15, pp. 137–149.

Pascazio, G.; Grimaldi, A.; Napolitano, M. (2003):
An accurate and efficient technique for unsteady vis-
cous flows in two dimensions. In S. Armfield, P. Mor-
gan, K. S.(Ed): Computational Fluid Dynamics 2002,
pp. 725–730, New York. Springer.

Pascazio, G.; Napolitano, M. (1996): A staggered-grid
finite volume method for the vorticity-velocity equations.
Comput. Fluids, vol. 25, pp. 433–446.

Prasad, A. K.; Koseff, J. R. (1989): Reynolds number
and end-wall effects on a lid-driven cavity flow. Phys.
Fluids, vol. 1, pp. 208–218.

Quartapelle, L. (1993): Numerical solution of incom-
pressible Navier–Stokes equations. Birkhauser, Basel.

Smith, B.; Bjørstad, P.; Gropp, W. (1996): Do-
main decomposition: parallel multilevel methods for el-
liptic partial differential equations. Cambridge Univer-
sity Press, Cambridge.

Sohankar, A.; Norberg, C.; Davidson, L. (1999): Sim-
ulation of three-dimensional flow around a square cylin-
der at moderate reynolds numbers. Phys. Fluids, vol. 11,
pp. 288–306.

Speziale, C. G. (1987): On the advantages of
the vorticity-velocity formulation of the Navier–Stokes
equations of fluid dynamics. J. Comput. Phys., vol. 73,
pp. 476–480.

Stone, H. (1968): Iterative solution of implicit approx-
imations of multidimentional partial differential equa-
tions. SIAM J. Numer. Anal., vol. 5, pp. 530.

Tenaud, C.; Pellerin, S.; Dulieu, A.; Phuoc, L. T.
(2005): Large eddy simulations of a spatially devel-
oping incompressible 3D mixing layer using the v− ω
formulation. Comput. Fluids, vol. 34, pp. 67–96.

Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray,
A. A. (1996): A priori testing of subgrid-scale mod-
els for the velocity-pressure and vorticity-velocity for-
mulations. In Center for Turbulence Research, S. U.(Ed):
Proceedings of the Summer Program,, pp. 309–328.


