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Optimal Tetrahedralization for Small Polyhedron: A New Local Transformation
Strategy for 3-D Mesh Generation and Mesh Improvement

Liu Jianfei1,2, Sun Shuli1,3, and Wang Dachuan1

Abstract: Local transformation, or topological re-
connection, is one of effective procedures of mesh im-
provement method, especially in three-dimensional sit-
uation. The commonly used local transformations for
tetrahedral mesh involve changing in mesh topology (i.e.
node-element connectivity relationship) within a rela-
tively small region composed of several tetrahedra, such
as 2-3 flip, 3-2 flip, 2-2 flip, 4-4 flip, etc. Although these
local transformations are easy to implement and effec-
tive in removing poorly-shaped tetrahedra, it is still pos-
sible to improve the quality of mesh further by expand-
ing the space of transformation region. In this paper, the
concept of optimal tetrahedralization for small polyhe-
dron and corresponding small polyhedron re-connection
(or SPR for abbreviating) approach are presented. As a
new local transformation scheme and a potential substi-
tute for the existing ones, the presented method seeks for
the optimal tetrahedralization of a polyhedron with a cer-
tain number of vertexes and faces (typically composed of
20 to 40 tetrahedral elements) rather than simply making
a selection from several possible configurations within a
small region that consists of several tetrahedra, and there-
fore will give better results than existing ones. Despite
of quite high time complexity of the optimal searching
algorithm, the presented approach can be significantly
speeded up by some deliberate strategies. Experimen-
tal investigation and results on tetrahedral finite element
mesh show that the SPR approach is quite effective in im-
provement of mesh quality with acceptable time cost, and
more suitable for combining with smoothing approach.
Although further researches are required for a more defi-
nite conclusion, the presented approach can be utilized as
a powerful and effective tool for tetrahedral mesh genera-
tion and mesh improvement. We believe that the superior
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performance of the SPR approach makes it worthy to be
further studied.
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1 Introduction

The quality of mesh has been known to affect both the
efficiency and the accuracy of the numerical solution,
especially for those engineering problems with complex
three-dimensional geometric domain. Although great ef-
forts have been made to ensure a good configuration
of nodes and elements in all of mesh generating meth-
ods, for instance in some recent researches [Li, Teng
and Wan (2001); Liu (2003); Chung, Choi and Kim
(2003); Lo and Wang (2005)], it is still possible and nec-
essary to improve the quality of mesh further. Lots of
works of mesh improvement have been done for three-
dimensional case[Joe (1991a, 1991b, 1995); Dari and
Buscaglia (1994); Zavattieri, Dari and Buscaglia (1996);
Freitag and Ollivier-Gooch (1997); Lo (1997); Freitag
and Plassmann (2000); Sun and Liu (2003)]. Of course,
additional computational efforts are needed for mesh op-
timization or improvement; however, researches have in-
dicated that the cost of mesh improvement is significantly
lower than the cost of solving the problem on a poorer
quality mesh [Freitag and Ollivier-Gooch (2000)]. An al-
ternative approach to avoid the influence of poor quality
meshes may be the meshless method, see for example in
[Zhu, Zhang and Atluri (1998); Atluri and Shen (2002)],
which eliminates the tedious step of mesh generation.

Basically there are two main categories of mesh improve-
ment procedure. The first is topological optimization,
also called local transformation or re-connection [Joe
(1991a, 1995); Zavattieri, Dari and Buscaglia (1996);
Freitag and Ollivier-Gooch (1997); Lo (1997)]. The sec-
ond is geometrical optimization, also called node repo-
sitioning or smoothing [Zavattieri, Dari and Buscaglia
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(1996); Lo (1997); Freitag and Ollivier-Gooch (1997,
2000); Sun and Liu (2003); Chen, Tristano, and Kwok
(2004)]. This paper will focus on the former, local trans-
formation.

Local transformation or re-connection changes the topol-
ogy of a mesh, i.e. node-element connectivity relation-
ship. The most frequently used and most effective op-
erations of re-connection for tetrahedral mesh are so-
called basic or elementary flips [George and Borouchaki
(2003)], e.g. 2-3 flip, 3-2 flip, 2-2 flip, 4-4 flip. These
topological transformations are usually called “local”,
since only a small number of tetrahedra (typically fewer
than 5) are removed or introduced by a single transfor-
mation. Such flips are simple, easy to implement, but
effective in removing poorly-shaped tetrahedra and im-
proving the quality of mesh [Joe (1991a); Freitag and
Ollivier-Gooch (1997); Lo (1997)]. However, since these
basic local transformations only simply make a selection
from several possible configurations within a relatively
small region composed of several tetrahedra, the effect
for quality improvement is limited.

In addition to these elementary flips, some more sophis-
ticated local transformations were also discussed in lit-
erature [Joe (1995); George and Borouchaki (2003)]. In
fact most of these operations are combinations of the el-
ementary flips, and can be implemented as sequences of
2-3 flip, 3-2 flip, 2-2 flip, and 4-4 flip. Although stud-
ies show that the combinations of two or more basic lo-
cal transformations are much more effective [Joe (1995)],
the effect for quality improvement is similarly restricted
duo to the limitation of small transformation region. It
is still possible to improve the quality of mesh further by
expanding the scope of transformation region.

In order to break such a limitation and improve the qual-
ity of mesh further, this paper presents the strategy of
optimal tetrahedralization for small polyhedron and cor-
responding small polyhedron re-connection (SPR) ap-
proach, which seeks for the optimal tetrahedralization of
a polyhedron with a certain number of vertexes and faces
instead of choosing the best configuration from several
possibilities within a small region that consists of a small
number of tetrahedra. For a SPR operation, since the con-
cerned local region which is usually composed of 20 to
40 tetrahedral elements is much larger than that in ex-
isting local transformations, better result in quality im-
provement is expected. Up to now, to the best knowledge
of the authors, no relevant studies have been reported in

the literature before.

The efficiency of optimal searching algorithm is the key
to success of the presented method, and it can be sig-
nificantly enhanced by some deliberate strategies. Ex-
perimental investigation and results on tetrahedral finite
element mesh show that the SPR approach is quite effec-
tive at improvement of mesh quality with acceptable time
cost.

With further enhancement in efficiency of optimal
searching algorithm, the presented SPR approach can be
utilized as a powerful and effective tool for mesh im-
provement and recovery of geometric boundary.

This paper is organized as follows. Measurement of
mesh quality and some commonly used local transforma-
tions are briefly reviewed in section 2, respectively. Sec-
tion 3 introduces the concept of optimal tetrahedraliza-
tion for small polyhedron and corresponding small poly-
hedron re-connection (SPR) operation. In section 4, the
framework of SPR approach and a recursive enumerative
searching algorithm are presented. Some testing results
and discussions are given in section 5. The paper ends
with conclusion and future work in section 6.

2 Measurement of mesh quality and commonly used
local transformations

2.1 Measurement of mesh quality

Local transformations and other techniques are usually
applied in local area of a mesh to expect an improve-
ment of quality. In last 20 years, many measures or cri-
teria have been suggested to evaluate the quality of tetra-
hedron from different points of view, such as minimum
solid angle [Joe (1991b); Lo (1997)], radius ratio ρ [Lo
(1997)], the γ coefficient [Lo (1991, 1997)], the Q coef-
ficient [Zavattieri , Dari and Buscaglia (1996)], the con-
dition number of the Jacobian matrix [Knupp (2000)],
solution-based mesh quality indicator [Berzins (2000)],
just to name a few. Many meaningful researches have
been done for investigating the behavior of the mesh
quality measures [Liu and Joe (1994); Berzins (1999);
Shewchuk (2002)]. Some of the quality measures are
considered to be equivalent in some weak sense, for ex-
ample, in work of Liu and Joe (1994). However, recent
studies [Sun and Liu (2003); Nie, Liu and Sun (2003)]
indicate that using different measures to evaluate change
of element shape will probably lead to inconsistent re-
sult in some circumstances, i.e. according to one qual-
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ity measure, the mesh quality is improved, but according
to another measure, the quality is deteriorated. Further
studies should be carried out on influence of quality mea-
sures on optimization process; however, we do not make
detailed investigation here and choose the γ coefficient
as the quality measure for tetrahedral element in testing
hereinafter which is defined as

γ =
72

√
3v(

∑
1≤i< j≤4

l2
i j

)1.5 , (1)

where v denotes the volume of tetrahedron with vertex
P1,P2,P3,P4, and li j represents the length of the edge join-
ing Pi and Pj. The γ coefficient takes a maximum value of
unity for the equilateral tetrahedron, and approaches zero
for degenerated tetrahedra with volume close to zero.

In authors’ experiences, the “bad” elements (in sense of
quality) produced in mesh generation only accounts for
a small part in the whole mesh. This small part of bad
elements will often greatly deteriorate the accuracy of
solution. Therefore, unlike some studies [Kennon and
Dulikravich (1986); Zhang and Trepanier (1994); Lo
(1997)], in this paper the quality of a mesh is defined as
the quality value of the “worst” element in the mesh and
the quality improvement begins from the worst element
and its adjacent elements.

2.2 Commonly used local transformations

In two-dimensional situation, the well-known “diagonal
swap” is often applied to optimize adjacent triangles. The
desired configuration is the one in which the minimum
angle of triangles is larger (see Figure 1).

Figure 1 : Diagonal swap in two-dimension

The natural extension of diagonal swap to three-
dimension is called 2-2 flip (Figure 2), which can be re-
garded as a special case of 2-3 flip (Figure 3).

Figure 2 : 2-2 flip

2-3 flip 

3-2 flip 

Figure 3 : 2-3 flip and 3-2 flip

As illustrated in Figure 3, 2-3 flip considers 2 tetrahedra
sharing a face and replaces these elements by 3 tetrahedra
sharing the edge whose endpoints are opposite the com-
mon face. 3-2 flip is the inverse of 2-3 flip, and replaces
the 3 tetrahedra sharing an edge by means of 2 tetrahedra
sharing a face [George and Borouchaki (2003)].

4-4 flip is another basic local transformation that consid-
ers a polyhedron in the shape of a rhombus with eight
faces. As shown in Figure 4, there are three configura-
tions to divide the polyhedron into four tetrahedra [Lo
(1997)].

The above so-called basic or elementary flips are most
frequently used and most effective in practice. While ap-
plied to mesh improvement, these local transformations
will be preformed many times, and each transformation
operation only modifies a small local region of a mesh.
The procedure stops when none of the elements can be
improved in quality by the flip operation. However, by
the basic local flips, we can’t gain sufficient amounts
of improvement in mesh quality, since these basic local
transformations only simply make a selection from sev-
eral possible configurations within a relatively small re-
gion. For example, the most frequently used 2-3/3-2 flips
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Figure 4 : Three configurations in 4-4 flip [Lo (1997)]

only choose the best triangulation between two configu-
rations in a very small area composed of 2 or 3 elements.

In addition to these elementary flips, some more sophis-
ticated local transformations were also discussed in liter-
ature, such as composite transformation operations [Joe
(1995)], the general edge flip [George and Borouchaki
(2003)]. In fact most of these operations are combina-
tions of the elementary flips, and can be implemented as
sequences of 2-3 flip, 3-2 flip, 2-2 flip, and 4-4 flip.

Studies report that the combinations of two or more ba-
sic local transformations are much more effective [Joe
(1995)], although they still suffer the restriction of small
transformation region. This is suggested that further im-
provement in quality of mesh may be achieved by ex-
panding the scope of transformation region.

3 Optimal tetrahedralization for small polyhedron

3.1 Description of SPR operations

In order to break the limitation of previous local trans-
formations discussed above, a new local re-connection
strategy, optimal tetrahedralization for small polyhedron,
which is illustrated in form of two-dimensional case in
Figure 5, is proposed in this section. Rather than sim-
ply making a selection from several possible configura-
tions within a small region that consists of a small num-
ber of tetrahedra as previous local transformation usu-
ally does, the new re-connection strategy seeks for the
optimal tetrahedralization of a polyhedron with a certain
number of vertexes and faces. There may be a lot of tetra-
hedralization ways for an enlarged small polyhedron, and
the new strategy will find out the best. Since the con-
cerned local region which is usually composed of 20 to
40 tetrahedral elements is much larger than that in pre-
vious local transformations, better result of quality im-
provement is expected. Up to now, to the best knowledge

of the authors, no relevant studies have been reported in
current literature.

According to the new strategy, two kinds of small polyhe-
dron re-connection (SPR) operations are defined as fol-
lows.

SPR 1: For a given polyhedron with a certain number of
triangles on boundary, seeks its optimal tetrahedraliza-
tion without Steiner nodes added.

SPR 2: For a given polyhedron with a certain number of
triangles on boundary, seeks its optimal tetrahedraliza-
tion without Steiner nodes added under some extra geo-
metric restrictions.

Note that number of triangles on boundary, S, is taken
here to denote the size of the polyhedron instead of num-
ber of tetrahedral elements.

The initial triangulation for a polyhedron is not necessary
for the SPR operation, however, if the initial triangula-
tion for a polyhedron already exists, the optimal search-
ing process can be greatly speeded up. This is the usual
case for mesh improving.

By the way, some more general and sophisticated local
transformations, such as composite transformation op-
erations [Joe (1995)], the general edge flip [George and
Borouchaki (2003)], may be considered as special cases
of the presented SPR operation.

3.2 Consideration for the size of the small polyhedron

Obviously, the larger the size of small polyhedron S is,
the more profit gained for mesh quality will be. However,
the SPR operation involves too much computational ef-
forts in comparison with previous local transformations.
Even the problem of deciding whether or not a triangu-
lation exists for such a polyhedron is known to be N-P
hard. Generally the SPR operation has to deal with hun-
dreds and thousands of possible triangulations. The time
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Figure 5 : Two-dimensional illustration for optimal tetrahedralization for small polyhedron

cost may not be afforded if S is too large, say, greater
than 100. This may be the reason that, we guess, why
no relevant studies have been reported in the literature
before.

The efficiency of optimal searching algorithm is closely
related to success of the SPR method. Thus determina-
tion of a suitable size S of local small polyhedron is a
compromise between profit and efficiency. In our test, we
set S ≤50 without any strictly theoretical support. Even
so, the computational cost still seems too high. Fortu-
nately, most of the possibilities of triangulation in the
SPR operation can be rejected rapidly during recursive
procedure. Some strategies discussed in section 4 can
also speed up the SPR process greatly.

3.3 Application in boundary recovery

In mesh generation, boundary conformity is a basic re-
quirement, but it is not easy to satisfy. If, after a mesh-
ing process for a geometric model, some boundary edges
or faces are not existed in the mesh in a meaningful
form, specific post-process must be performed to recover
them. Several algorithms are designed to fulfill this target
[George, Hecht and Saltel (1991)], which depend heav-
ily on adding extra points namely Steiner nodes that is
prone to produce degenerated elements. A better idea is
to recover missed entities by the SPR operation. It has
the advantages of creating none or fewer Steiner points
and producing better elements in the local region where
boundary recovery takes place. In this situation, the goal
of a SPR operation is to seek the best local triangulation
of a small polyhedron with some extra geometric restric-
tions. This is the reason that we define the second form
of SPR operation.

4 Framework of the SPR approach

4.1 The SPR approach

The SPR approach based on the SPR operation can be ap-
plied to improve the quality of worst element of a mesh

in a step by step manner. First construct a small polyhe-
dron that includes the worst element and its neighbors,
and then do SPR operation to find out the best tetrahe-
dralization of this polyhedron. Each time when a SPR
operation is performed, the mesh quality of local region
adjacent to the worst element can be improved. Next,
find another worst element according to its quality mea-
surement and repeat above procedure. The cycle con-
tinues until the improvement reaches its limit, that is no
better tetrahedralization existed for the small polyhedron
most recently constructed.

Same as the previous local transformations, the presented
SPR approach can also be combined with smoothing pro-
cess. Numerical test in section 5 will show that the SPR
approach is more suitable for combining with smooth-
ing approach, and combination of the SPR approach and
smoothing may achieve substantial improvement in mesh
quality.

By the way, we also notice recent work of Moore and
Saigal (2005) to eliminate sliver shaped elements in 3-
dimensional finite element models, which first merges
the slivers with neighboring elements to create a poly-
hedron, and then subdivides the polyhedron into well-
shaped tetrahedral elements by adding a temporary cen-
troidal node rather than searching for the best triangula-
tion of the polyhedron without extra node added.

4.2 The recursive enumerative searching algorithm

The most important issue for the SPR approach is the
efficiency of searching algorithm for optimal tetrahedral-
ization of the polyhedron. Here a recursive enumerative
searching algorithm is presented as follows.

First choose a triangle F on the boundary of the polyhe-
dron P, and construct an element (denoted by ELE) by F
and one of the other vertexes of the polyhedron. Thus the
original polyhedron is divided into the element ELE and
a new smaller polyhedron (denoted by Q). Next solve
the smaller problem for the new smaller polyhedron Q by
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F

N

polyhedron P polyhedron Q

ELE

ELE

ELE +best triangulation of Q

Figure 6 : Recursive procedure for the SPR approach illustrated in form of two-dimensional case (ELE+ the best
triangulation of Q => a triangulation of P)

  int OptimalTetMeshForSmallPolyhedron (q0, P, T)

   

  input:  q0, quality of the initial mesh; 

P, the small polyhedron. 

  output:  T, the best triangulation. 

If there is no triangulation with quality better than q0, T will be NULL.

  return value: “succeed” or “fail”. 

  temporary variables: Tc, the best triangulation among these already tested; 

qc, quality of Tc;

      rt, return value of the recursive call. 

  1 qc=q0, Tc=NULL

  2 select a triangle F on the polyhedron 

  3  for each vertex N on the polyhedron, do 

      { 

4     if ( F and N can construct a valid tetrahedron ELE

5        and quality of ELE is better than qc)

        { 

  6     remove ELE from polyhedron P, construct a new smaller polyhedron Q

  7  rt= OptimalTetMeshForSmallPolyhedron (qc, Q, TQ)

  8  if ( rt is “succeed”) 

      { 

  9   merge TQ and ELE to create a new triangulation of P

  10   update Tc and qc

      } 

       } 

      } 

  11   if (a better mesh found) { T=Tc, return "succeed"}

  12 else return "fail"

Figure 7 : Pseudocode of the recursive algorithm for the SPR approach
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the same algorithm recursively, and then merge its result
with the element ELE to get a feasible solution for the
original polyhedron P. Here, the so-called feasible solu-
tion is in some sense optimal, since it includes the opti-
mal solution of the smaller polyhedron Q. Such process
is repeated for all rest vertexes. Finally choose the best
tetrahedralization from all feasible solutions, thus the fi-
nal solution is exactly the optimal solution for the poly-
hedron P. The recursive procedure is illustrated in form
of two-dimensional case in Figure 6, and the pseudocode
for the algorithm is listed in Figure 7.

4.3 Consideration of efficiency

Enumerating all possible tetrahedralization will be a very
time-consuming work. The following is a rough estima-
tion. Actually, every sub-polyhedron produced in line 6
of the algorithm (Figure 7) will result in many possibil-
ities. Suppose that the whole problem will be discrete
into N elements. Its first level sub-problems have N-1
elements, the second level sub-problems have N-2 ele-
ments, and so on. So there are an estimation of O(N!)
possible ways to subdivide the problem. The computa-
tional cost of enumerating all possibilities is far beyond
the capability of current personal computer when N is
large, say, greater than 100.

Fortunately, most of triangulation ways will be aborted
and rejected earlier when a bad element (in sense of qual-
ity) is generated, or invalid situations such as overlapping
and gap occur.

The algorithm given here, while appearing plain and
naive, is able to obtain the optimal triangulation of a
small polyhedron with size S less than 15 with accept-
able time cost. A more efficient searching algorithm will
make the SPR approach a more powerful tool to improve
mesh quality.

Additionally, there are a few further strategies to speed
up above searching algorithm, such as avoiding solving
the same sub-polyhedrons repeatedly, choosing smartly
digging face on the small polyhedron where new ele-
ments are to be created, selecting the optimal digging
directions, subdividing the polyhedron into several sub-
polyhedrons as earlier as possible, etc. Among them the
most effective one is being aware of polyhedron subdi-
vision illustrated in Figure 8. If the polyhedron can be
broken into 2 or 3 smaller polyhedrons or blocks after
a dig, then each block will be treated separately and the
result is obtained by merging the result of all separate

A

B

C

D

block 1 

block 2 

block 3 

Figure 8 : Polyhedron subdivision (here the polyhedron
is broken into 3 blocks after a dig of tetrahedron ABCD)

blocks. The details of these strategies will be discussed
in subsequent papers.

5 Examples and discussions

Some artificial small polyhedrons with so-called spheri-
cal structure and nonspherical structure are designed for
testing performance of the SPR operation, and several
examples of finite element mesh are given to demon-
strate the effectiveness of the presented SPR approach.
The finite element meshes in examples are generated by
tetrahedral mesh generation package AutoMesh3D [Liu
(2001)] through the ball-packing method [Liu (1991,
2003)]. The presented SPR procedure is already embed-
ded in AutoMesh3D. The γ coefficient in Equation (1) is
adopted as the quality measurement for tetrahedral ele-
ment. All tests are performed on the following platform:

A Pentium IV PC (2.4 GHz CPU and 256 MB RAM)
with compiler of Visual C++ 6.0.

5.1 Tests for artificial small polyhedrons with differ-
ent structures

Figure 9 and Figure 10 illustrate some artificial small
polyhedrons with different structures which are gener-
ated randomly. The SPR operation is performed to these
polyhedrons respectively. The results listed in Table 1
indicate that the time costs are much different from case
to case and depend more on the structure of the polyhe-
dron than its size. The SPR operation for polyhedrons
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spherical structure 1 spherical structure 2

Figure 9 : Two artificial small polyhedrons with spherical structure

    

     

nonspherical structure 1 nonspherical structure 2

nonspherical structure 3 nonspherical structure 4

Figure 10 : Some artificial small polyhedrons with nonspherical structure

Table 1 : Time costs of the SPR operation for different polyhedrons

Number of nodes Number of triangles
on boundary

Running time
(second)

spherical structure 1 16 28 0.781
spherical structure 2 18 32 5.078
nonspherical structure 1 19 34 0.016
nonspherical structure 2 20 36 0.047
nonspherical structure 3 24 44 0.344
nonspherical structure 4 32 60 0.063



Optimal Tetrahedralization for Small Polyhedron 39

Table 2 : Quality statistics of coefficient γ for the first finite element mesh

Ranges of γ 0.00∼0.03 0.03∼0.12 0.12∼0.30 0.30∼0.66 > 0.66

Number of elements

Initial mesh
(113975 elements,
min. γ 0.00118)

34 423 1763 13526 98229

After SPR only
(111470 elements,
min. γ 0.321)

0 0 0 10495 100975

with spherical structure is much more time-consuming
than that with nonspherical structure; however, it is not
suggested to employ nonspherical structure excessively
when constructing small polyhedron, since the final op-
timal result for the polyhedrons with spherical or near
spherical structure is usually better than those with non-
spherical structure. When the efficiency of the algorithm
is tolerable the polyhedron with spherical or near spheri-
cal structure is recommended.

5.2 Tests for finite element meshes

The SPR approach can be applied to improve the quality
of mesh step by step. First find the worst element ac-
cording to a specific quality measure. Then construct a
small polyhedron that includes the worst element and its
neighbors, and perform SPR operation to find out the best
tetrahedralization of this polyhedron to improve the qual-
ity of local region adjacent to the worst element. Next,
find another worst element and repeat above procedure.
The procedure will stop until the tetrahedralization of the
polyhedron that includes current worst element can not
be improved. The SPR operations are usually performed
in limited times in practice and the payment for time cost
is reasonable.

Three examples of finite element mesh are tested to
demonstrate the effectiveness of the presented SPR pro-
cedure. The size of the small polyhedron, S, defined by
the number of triangles, is set to 25 in following tests.
The first finite element mesh shown in Figure 11 consists
of 22392 nodes and 113975 tetrahedral elements initially.
Its quality is not good. There are 34 elements with the
quality value below 0.03, and the lowest value is 0.00118.
The statistics of initial quality and quality after the pre-
sented SPR approach are listed in Table 2, which shows
remarkable improvement of mesh quality by the SPR ap-
proach. The minimum value of γ increases to 0.321. The

Figure 11 : The first finite element mesh

substantial improvement in quality of large number of el-
ements indicates that, as a new local transformation pro-
cedure, the SPR approach works effectively on optimiz-
ing mesh topology around the worst element, and hence
improves the quality of whole mesh. In this example, the
SPR operations with total number of 5754 are performed,
and the running time (about 260 seconds) is acceptable
considering substantial improvement in mesh quality.

The second finite element mesh includes 2726 nodes and
8359 tetrahedral elements initially (Figure 12). Its qual-
ity is also not good enough. There are 13 elements with
the quality value below 0.03, and the lowest value is
0.0036. The elementary local transformations (or ELT
for abbreviating) and the presented SPR approach are ap-
plied to the initial mesh, respectively. Table 3 shows the



40 Copyright c© 2006 Tech Science Press CMES, vol.14, no.1, pp.31-43, 2006

Table 3 : Quality statistics of coefficient γ for the second finite element mesh
Ranges of γ 0.00∼0.03 0.03∼0.12 0.12∼0.30 0.30∼0.66 > 0.66

Number of elements

Initial mesh
(8359 elements,
min. γ 0.0036)

13 33 188 2500 5625

After ELT only
(8063 elements,
min. γ 0.181)

0 0 33 2304 5726

After SPR only
(7960 elements,
min. γ 0.275)

0 0 4 2358 5598

Figure 12 : The second finite element mesh

statistics of initial quality and quality after optimization.
Both ELT and SPR procedures improve the mesh qual-
ity; however, as expected, the SPR approach gives better
result. The minimum value of γ increases from 0.0036
to 0.275 and there are only 4 elements with quality value
lower than 0.30. The running time for SPR is about 7.5
seconds. We believe that the superiority in effectiveness
makes the SPR approach more useful and become a po-
tential replacement for previous local transformations in
mesh topological optimization.

The results of above examples indicate that the proposed
SPR procedure is able to significantly improve the qual-
ity of tetrahedral mesh. In practice, the topological modi-
fication and node reposition should be combined together
to get more effective results. In next example, it can be
seen that the combination of the proposed SPR procedure
and smoothing will achieve substantial improvement in

Figure 13 : The third finite element mesh

mesh quality.

The third finite element mesh illustrated in Figure 13
consists of 11007 nodes and 53710 tetrahedral elements,
and the minimum value of γ is 0.0110 initially. First,
ELT and SPR procedures are applied to the initial mesh,
respectively. The result listed in Table 4 indicates that the
mesh quality has only limited improvement after ELT or
SPR procedure. Almost same results are obtained for the
two approaches. The minimum value of γ increases from
0.0110 to 0.0195. It is found that, by monitoring the op-
timization procedure, the processes for both approaches
are quickly blocked by the same worst element, since no
further improvement can be made by topological modifi-
cation alone to the local small polyhedron that includes
current worst element.

In order to obtain further improvement in mesh quality,
smoothing or node reposition is applied to combine with
topological optimization. Here, an efficient smoothing
approach based on chaos searching algorithm [Sun and
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Table 4 : Quality statistics of coefficient γ for the third finite element mesh
Ranges of γ 0.00∼0.03 0.03∼0.12 0.12∼0.30 0.30∼0.66 > 0.66

Number of elements

Initial mesh
(53710 elements,
min. γ 0.0110)

26 159 794 7605 45126

After ELT only
(53695 elements,
min. γ 0.0195)

11 159 794 7601 45130

After SPR only
(53695 elements,
min. γ 0.0195)

11 159 794 7600 45131

After ELT +
smoothing + ELT
(53694 elements,
min. γ 0.0990)

0 1 494 11211 41988

After SPR +
smoothing + SPR
(52546 elements,
min. γ 0.332)

0 0 0 9948 42598

Liu (2003)] is adopted. The running time for smooth-
ing procedure is 76 seconds. After smoothing proce-
dure, ELT and SPR procedures are performed respec-
tively again. The direct effect on quality improvement by
smoothing is not very distinct; however, the smoothing
procedure has optimized node distribution or configura-
tion around the worst element, and such an improvement
provides favorable conditions for topological optimiza-
tion and makes topological optimization work more ef-
fectively. It can be seen from Table 4 that both ELT and
SPR procedures do actually take effect after the smooth-
ing procedure. Similarly, the SPR procedure gives much
better result while the running time of 120 seconds is ac-
ceptable. The minimum value of γ increases to 0.332.

Compared with ELT, the presented SPR approach is ob-
viously more suitable for combining with smoothing
approach, and combination of SPR and smoothing ap-
proach is a better choice for mesh improvement. The
time cost of SPR approach is reasonable and worthy to
be paid.

It can also be observed in above examples that the num-
ber of elements generally decreases by several percent-
ages after topological optimization, since most of the
bad elements which usually occupy small volumes are
removed.

By the way, same quality measure should be adopted

in smoothing and topological transformation procedures.
Otherwise the optimization process may probably suffer
“zigzag” problem since some quality measures are found
to induce inconsistent evaluation for quality change of el-
ement in some circumstances [Sun and Liu (2003); Nie,
Liu and Sun (2003)].

6 Conclusion and future work

The small polyhedron re-connection is a new and very
effective way to improve tetrahedral meshes. Although
further speedup is expected for the searching algorithm,
examples show that the presented SPR approach can be
applied to practical mesh improvement with acceptable
payment of time cost and is able to give much better re-
sults than the most commonly used local transformations.
In addition, the presented SPR approach is more suitable
for combining with smoothing approach. We believe that
the superiority in effectiveness makes the SPR approach
more useful with the further speedup of its efficiency and
become a potential replacement for previous local trans-
formations in mesh topological optimization.

While large size of the small polyhedron in the SPR ap-
proach may conduce to better results, the time cost may
not be afforded if the size is too large. However, exper-
imental investigation indicates the time cost of the SPR
operation depends much more on the structure rather than
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the number of vertexes or surface triangles of the small
polyhedron. Therefore one clear direction for further re-
search is how to evaluate and utilize structural charac-
teristics of a polyhedron. We think some geometric es-
sentials should be found first in order to develop more
efficient algorithm. Moreover, the initial mesh, if exists,
also influences heavily on the efficiency of the SPR ap-
proach. The better the initial quality is, the lower the time
cost will be.

The superior performance of the SPR approach makes it
worthy to be further studied. Some works are in progress,
including how to construct more appropriate polyhedron,
development of data structure for supporting searching
algorithm to avoid solving the same sub-polyhedrons re-
peatedly, choosing smartly digging face on the small
polyhedron where new elements are to be created, select-
ing the optimal digging directions, subdividing the poly-
hedron into several sub-polyhedrons as earlier as possi-
ble, etc.
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