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Responses of Piezoelectric, Transversely Isotropic, Functionally Graded, and
Multilayered Half Spaces to Uniform Circular Surface Loadings

F. Han1, E. Pan1, A.K. Roy2 and Z.Q. Yue3

Abstract: In this paper, an analytical solution is pre-
sented to study the response of piezoelectric, trans-
versely isotropic, functionally graded, and multilayered
half spaces to uniform circular surface loadings (pressure
or negative electric charge). The inhomogeneous mate-
rial is exponentially graded in the vertical direction and
can have multiple discrete layers. The propagator ma-
trix method and cylindrical system of vector functions
are used to first derive the solution in the transformed
domain. In order to find the responses in the physical-
domain, which are expressed in one-dimensional infinite
integrals of the Bessel function products, we introduced
and adopted an adaptive Gauss quadrature. Two piezo-
electric functionally graded half-space models are ana-
lyzed numerically: One is a functionally graded PZT-
4 half space, and the other a multilayered functionally
graded half space with two different piezoelectric mate-
rials (PZT-4 and PZT-6B). The effect of different expo-
nential factors of the functionally graded material on the
field responses is clearly demonstrated. The difference
of the responses between the two surface loading cases
is also discussed via the numerical examples. The re-
sults should be particularly useful in the characterization
of material properties using indentation tests, and could
indirectly contribute to the design and manufacturing of
piezoelectric functionally graded structures.

keyword: Transverse isotropy, Functionally graded
material (FGM), Piezoelectric material, Circular surface
loading, Multilayered structure, Cylindrical system of
vector functions, Propagator matrix method.

1 Introduction

Functionally graded materials (FGMs) were first pro-
posed for the advanced material study in aerospace en-
gineering in 1980s [e.g., Niino, Hirai, and Watanabe
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(1987)]. Since then FGMs have been applied to vari-
ous disciplines as diverse as tribology, electronics, and
biomechanics [Hirai (1995); Markworth, Ramesh, and
Parks (1995); Suresh and Mortensen (1998); Miyamoto,
Kaysser, Rabin, Kawasaki, and Ford (1999); Rodel
(2003)]. Extending from the purely elastic FGMs, the
elastic and electric coupled FGMs were also investigated
[Xu, Zhu, and Meng (1999); Almajid and Taya (2001);
Almajid, Taya and Hundnut (2001)], and recent prelimi-
nary results on fabrication of piezoelectric FGM (PFGM)
monomorph, bimorph, and related piezodevices [Alma-
jid and Taya (2001); Almajid, Taya and Hundnut (2001);
Chen and Ma (2002); Rodel (2003)] have shown clearly
the benefit of using PFGMs.

For the modeling and simulation of the materials and
structures properties of FGMs, several numerical and
analytical approaches have been proposed. These in-
clude the domain-discretization method with special el-
ements [Kim and Paulino (2003); Santare, Thambu-
raj, and Gazonas (2003); Liew, Yang, and Kitipronchai
(2003)], the boundary element method (BEM) [Sutrad-
har, Paulino, and Gray (2002); Gray, Kaplan, Richard-
son, and Paulino (2003)], the local boundary integral
equation method [Sladek, Sladek, and Atluri (2000)], the
meshless local Petrov-Galerkin method [Atluri and Shen
(2002)], and the analytical solution to the point-force
problem in both 3D and 2D anisotropic elastic FGMs
[Martin, Richardson, Gray, and Berger (2002); Chan,
Gray, Kaplan, and Paulino (2004)]. While Wang, Tzeng,
Pan, and Liao (2003) solved the vertical point-force prob-
lem in a transversely isotropic FGM half space, Pan and
Han (2005) derived the Green’s function of the piezoelec-
tric FGM multilayered half space due to a point source
(point force or electric charge density) at any location.

One of the most interesting boundary value problems
in multilayered half spaces is the circular surface load-
ing case. This problem has important practical appli-
cations in various engineering areas, such as cell biol-
ogy [Balaban, Schwarz, Riveline, Goichberg, Tzur, Sa-
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banay, Mahalu, Safran, Bershadsky, Addadi, and Geiger
(2001)], civil engineering [Graig (1997)], foundation en-
gineering [Gerrard and Wardle (1973)], and earth science
[Becker and Bevis (2004)]. Furthermore, the solution
of the circular loading problem in a layered half space
can be also utilized in the indentation test for the mate-
rial property characterization [e.g., Yu, Sanday, and Rath
(1990); Yu (2001); Giannakopoulos and Suresh (1999)].
While numerous analytical/numerical approaches have
been proposed for the circular loading solution in inho-
mogeneous elastic isotropic structures [e.g., Oner (1990);
Yue, Yin, and Zhang (1999); Selvadurai (1996); Do-
herty and Deeks (2003)] and inhomogeneous elastic non-
isotropic elastic structures [Hooper (1975); Rowe and
Booker (1981); Kumar (1988); Wang, Pan, Tzeng, Han,
and Liao (2005)], to the best of the authors’ knowledge,
however, no solution exists for the corresponding circular
loading in a piezoelectric transversely isotropic multilay-
ered half-space with FGMs.

This paper is therefore to derive the solution for the mul-
tilayered and transversely isotropic PFGM half spaces
subjected to the circular loading applied on the surface.
First, by virtue of the cylindrical systems of vector func-
tions and the propagator matrix method [Gilbert and
Backus (1966); Pan (1989a,b); Pan (1997); Pan and Han,
2004], we obtain the layer solution and propagator ma-
trices in the transformed domain. Then, we utilize the
propagator matrix method to propagate the solution from
one layer to the other directly and efficiently. Finally,
we calculate the physical-domain solution by introduc-
ing and modifying an adaptive Gauss quadrature [Chave
(1983); Lucas (1995)]. This paper is organized as fol-
lows: In Section 2, we state the problem with the corre-
sponding governing equations. In Section 3, the general
layer solution and propagator matrices are derived in the
transformed domain. The boundary conditions for the
surface circular loading case are presented in Section 4,
along with the expansion coefficients in the transformed
domain. While Section 5 presents the solution in the
transformed domain, Section 6 discusses the integration
issue on obtaining the physical-domain solution. Numer-
ical examples are presented in Section 7 and conclusions
are drawn in Section 8.

2 Problem statement

Let us consider a structure made up of N parallel, trans-
versely isotropic PFGM layers lying over a transversely

isotropic PFGM half space. The layers are numbered se-
rially with the layer at the top being layer 1 and the last
layer N, which is just above the half space (Fig. 1). We
assume that in each layer the PFGM has a locally var-
ied microstructure described by an exponential variation
in the vertical direction, i.e., eηζ, with ζ being the local
vertical variable and η the FGM exponential factor (Fig.
1). While η = 0 reduces to the homogeneous material
case, different variations in the vertical direction can be
approximated using different exponential factor η. We
place the global cylindrical coordinates on the surface
with the z-axis pointing into the layered half space. The
k-th layer is bounded by the interfaces z = zk−1, zk. As
such, zk−1 is the vertical coordinate of the upper inter-
face of the k-th layer, and zk that of the lower interface. It
is obvious that z0= 0 and zp = H, where H is the depth of
the last layer interface. In each layer, we also place a lo-
cal vertical coordinate ζ (Fig. 1 for the k-th layer), which
is actually a measure of the distance from the upper in-
terface of the layer.Obviously, for the k-th layer with a
thickness hk, the relation between the local and global co-
ordinates is: ζ = z−zk−1(0≤ ζ ≤ hk). We further assume
that the only load considered in this paper is the surface
load applied within a circle and that all the interfaces are
perfect (i.e., with continuous traction and normal electric
displacement component).

For transversely isotropic PFGMs, we have in each layer,
the following governing equations:

1). Equilibrium equations (without body force or electric
charge density)

σi j, j = 0; (1a)

Di,i = 0 (1b)

where σi j and Di are the stress and electric displacement,
respectively.

2). Constitutive relations

σrr = C11γrr +C12γθθ +C13γzz −e31Ez

σθθ = C12γrr +C11γθθ +C13γzz −e31Ez

σzz = C13γrr +C13γθθ +C33γzz−e33Ez (2a)

σθz = 2C44γθz −e15Eθ

σrz = 2C44γrz −e15Er

σrθ = 2C66γrθ
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Figure 1 : Geometry of a PFGM multilayered half space subject to a uniform surface load within the circle of r = a.
Both vertical global (z) and local (ζ) coordinates are attached to the layered half space.

Dr = 2e15γrz +ε11Er

Dθ = 2e15γθz +ε11Eθ (2b)

Dz = e31(γrr + γθθ)+e33γzz +ε33Ez

where γi j is the elastic strain and Ei the electric field;
Ci j, ei j and εi j are the elastic moduli, piezoelectric co-
efficients, and dielectric coefficients, respectively. We
remark that the solutions derived in this paper include
those for the corresponding elastic FGM media as a spe-
cial case (by setting the piezoelectric coefficients ei j to
zero).

3). Elastic displacement-strain and electric potential-
electric field relations

γi j = 0.5(ui, j +u j,i); (3a)

Ei = −φ,i (3b)

where ui and φ are the elastic displacement and electric
potential, respectively.

For any PFGM layer with an exponential variation in the
z- (or ζ-) direction, the material coefficients in (2a) and
(2b) can be described by

Cik(ζ) = C0
ike

ηζ ; εik(ζ) = ε0
ike

ηζ ; eik(ζ) = e0
ike

ηζ (4)

where η again is the exponential factor characterizing the
degree of material gradient in the z- (or ζ-) direction, and
the superscript 0 is attached to indicate the z-independent
factor in the material coefficient. Again, η = 0 corre-
sponds to the homogeneous material case.

For transversely isotropic PFGMs, the material coeffi-
cients in the constitutive relations (2a) and (2b) can be
expressed as

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C0
11 C0

12 C0
13 0 0 0

C0
22 C0

23 0 0 0
C0

33 0 0 0
C0

44 0 0
Sym C0

44 0
(C0

11−C0
12)/2

⎤
⎥⎥⎥⎥⎥⎥⎦

eηζ

(5a)

[e] =

⎡
⎣ 0 0 0 0 e0

15 0
0 0 0 e0

15 0 0
e0

31 e0
31 e0

33 0 0 0

⎤
⎦eηζ (5b)

[ε] =

⎡
⎣ ε0

11 0 0
0 ε0

11 0
0 0 ε0

33

⎤
⎦eηζ (5c)
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Taking the advantage of the axis-symmetry condition, the
solution can be conveniently expressed in terms of the
cylindrical system of vector functions (Pan, 1989a,b; Pan
and Han, 2005):

L(r,θ;λ,m) = ezS(r,θ;λ,m)

M(r,θ;λ,m)= (er
∂
∂r

+eθ
∂

r∂θ
)S(r,θ;λ,m) (6)

N(r,θ;λ,m)= (er
∂

r∂θ
−eθ

∂
∂r

)S(r,θ;λ,m)

with

S(r,θ;λ,m) =
1√
2π

Jm(λr)eimθ (7)

where er, eθ, and ez are the unit vectors along the r−, θ−,
and z− (or ζ−) axes, respectively; Jm(λr) is the Bessel
function of order m with m = 0 corresponding to the ax-
ial symmetric deformation. This cylindrical system of
vector functions possesses certain special and advanced
features as compared to the direct Hankel transform [Pan
and Han (2005)].

3 General solution and propagator matrix of each
layer

In order to derive the general solution for each layer, say
layer k, we first express the elastic displacement, electric
potential, traction, and electric displacements in terms of
the cylindrical system of vector functions (6) (omitting
the dependence of the integration on the integral vari-
ables λ and m):

u(r,θ, z) = ∑
m

Z +∞

0
[UL(z)L(r,θ)+UM(z)M(r,θ)

+UN(z)N(r,θ)]λdλ (8a)

φ(r,θ, z)= ∑
m

Z +∞

0
Φ(z)S(r,θ)λdλ (8b)

t(r,θ, z)≡ σrzer +σθzeθ +σzzez

= ∑
m

Z +∞

0
[TL(z)L(r,θ)

+TM(z)M(r,θ)+TN(z)N(r,θ)]λdλ (8c)

D(r,θ, z) = ∑
m

Z +∞

0
[DL(z)L(r,θ)+DM(z)M(r,θ)

+DN(z)N(r,θ)]λdλ (8d)

Taking the derivatives of the elastic displacement (8a)
and electric potential (8b), substituting the results into
the constitutive relations (2a,b) and the equilibrium equa-
tions (1a,b), the following sets of first-order differential
equations can be derived [Pan and Han (2005)]:

dTL

dz
−λ2TM = 0 (9a)

(−λ2C0
11UM +C0

13
dUL

dz
+e0

31
dΦ
dz

)eηζ +
dTM

dz
= 0 (9b)

dTN

dz
−λ2C0

66UNeηζ = 0 (9c)

dDL

dz
−λ2e0

15(
dUM

dz
+UL)eηζ +λ2ε0

11Φeηζ = 0 (9d)

In Eq. 9, ζ again is the local vertical coordinate within
the PFGM layer indicating the exponential variation with
depth. It is clear that for axial symmetric circular surface
pressure or electric charge, we only need to consider the
LM-type problem and its corresponding solutions. We
present the key steps below.

First, Eq. 9 can be recast into a compact form of equa-
tions as

[UL,UM,TL,TM,Φ,DL]t,z = [A][UL,UM,TL,TM,Φ,DL]t

(10)

where the nonzero elements of the 6×6 matrix [A] can be
found in Pan and Han (2005). It is remarked that all the
diagonal elements of [A] are zero, a feature that is very
useful in the eigenvalues/eigenvectors analysis.

Secondly, we temporarily introduce the following vector

[E∗] = [UL,λUM,TLe−ηζ/λ,TMe−ηζ,Φ,DLe−ηζ/λ]t (11)

so that Eq. 10 can be rewritten as

[E∗],z = λ[W ][E∗] (12)

Again, the nonzero elements of the 6×6 matrix [W] in
Eq. 12 can be found in Pan and Han (2005). It is noticed
that matrix [W] is independent of the vertical coordinate
z or ζ, and it depends only upon the parameters η and λ
as well as the constant elastic coefficients.

Thirdly, in order to find the homogeneous solution of Eq.
12, we assume that

[E∗(ζ)] = [b]eλvζ (13)
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Substituting Eq. 13 into Eq. 12 and noticing that all the
diagonal elements of [W] are zero gives us the following
eigenequation system of 6×6

{[W ]−v[I]}[b] = 0 (14)

where [I] is the 6×6 identity matrix.

We remark that the eigenvalues and their corresponding
eigenvectors of Eq. 14 depend on the integral variable
λ and the PFGM exponential factor η. Therefore, these
eigenequations need to be solved for different η and for
each integration point λ.

Fourthly, assuming that the 6 eigenvalues vi are distinct,
the general solution of Eq. 12 is found to be

[E∗(z)] = [Z(z)][K] (15)

where [K] is a 6×1 coefficient matrix with its elements
to be determined by the interface and/or boundary condi-
tions, and

[Z(z)] = [B]
〈

eλv∗ζ
〉

(16)

with〈
eλv∗ζ

〉
= diag[eλv1ζ,eλv2ζ,eλv3ζ,eλv4ζ,eλv5ζ,eλv6ζ] (17)

[B] = [b1,b2,b3,b4,b5,b6] (18)

It is noted that the real parts of the first three eigenvalues
are positive and those of the remaining three are negative.

Fifthly, in order to use the propagating relation for the
PFGM multilayered structure, we introduce the follow-
ing new set of coefficients:

[E] = [UL,λUM,TL/λ,TM,Φ,DL/λ]t (19)

which is related to [E∗] as

[E] = 〈P〉 [E∗] (20)

where 〈P〉 is a 6×6 diagonal matrix defined as

〈P〉= diag[1,1,eηζ,eηζ,1,eηζ] (21)

Finally, the propagating relation in terms of the coeffi-
cient vector [E] of k-th layer, which connects the values
at the global coordinate zk−1 (ζ = 0) to those at zk(ζ = hk),
is found to be

[E(zk−1)] = [a][E(zk)] (22)

where

[a] = [B]
〈

e−λv∗hk

〉
[B]−1 〈Q〉 (23)

is the propagator matrix for the LM-type deformation,
and〈
e−λv∗hk

〉
= diag[e−λv1hk ,e−λv2hk ,e−λv3hk ,e−λv4hk ,

e−λv5hk ,e−λv6hk ] (24)

〈Q〉 = diag[1,1,e−ηkhk ,e−ηkhk ,1,e−ηkhk ] (25)

We point out that in solving the eigenequation (14), we
have assumed that all the eigenvalues are distinct. Should
repeated eigenvalues occur, a slight perturbation on the
material properties can be used to make all the eigen-
values distinct with neglected errors so that the solution
developed in this paper can still be used directly.

4 Circular surface loading in the transformed do-
main

We assume that the top surface of the multilayered half
space is subject to a uniform load within the circle of
radius a(Fig. 1). Depending on whether a pressure p
or a negative electric charge −Q is applied, we have the
following two loading cases.

4.1 Loading case 1

A uniform pressure is applied, along with the zero nor-
mal component of the electric displacement Dz=0. Ob-
viously, the traction boundary condition on the surface
(z=0) can be expressed as:

σzz =
{

p r < a
0 r > a

(26)

σrz = σθz = 0 0 ≤ r ≤ ∞

Substituting Eq. 26 to the vector function expansion for
the traction Eq. 8c and taking the inverse Hankel trans-
formation, we obtain the expansion coefficients at the
surface z=0 due to the uniform pressure p, along with
the zero normal electric displacement condition

TL(λ,0) = −2πpaJ1(λa) (27)

TM(λ,0) = DL(λ,0) = 0
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4.2 Loading case 2

A normal electric displacement is applied, along with the
zero traction condition σrz=σθz=σzz=0. For this case, the
normal electric displacement component on the surface
(z=0) can be expressed as:

Dz =
{ −Q r < a

0 r > a
(28)

Similarly, the surface expansion coefficients due to this
uniform electric charge, along with the traction-free
boundary condition, are:

DL(λ,0) = 2πQaJ1(λa) (29)

TL(λ,0) = TM(λ,0) = 0

With these given boundary conditions on the surface z=0,
we can then find the solution of the problem in the trans-
formed domain (i.e., in terms of the expansion coeffi-
cients).

5 Transformed-domain solutions

For the whole PFGM multilayered structure, propagating
the solutions from the half space z = H to the surface z=0,
we obtain

[E(0)] = [G][KN ] (30)

where

[G] = [a1][a2]−−− [aN ][ZN(H)] (31)

and the undetermined coefficients have the structure as

[KN ] = [0,0,0,∗,∗,∗]t (32)

where the symbol ‘*’ represents the coefficient to be de-
termined. The structure of Eq. 32 is chosen to satisfy the
requirement that the solutionvanishes when z approaches
+∞.

Using the boundary condition Eq. 27 or Eq. 29, the
unknown coefficients in [KN] can be determined, since
in either case, we have three conditions to determine
the three unknowns in [KN ]. With the solved coeffi-
cients in [KN ], the expansion coefficients at any depth
z (zk−1 ≤ z ≤ zk) can be obtained exactly as:

[E(z)] = [ak2(z− zk−1)][ak+1]
−−− [aN ][ZN(H)][KN ] (33)

As discussed in Pan (1997) and Yue and Yin (1998),
overflow may occur from multiplication of matrices in
Eq. 31 and Eq. 33. This can be overcome by factoring
out the exponentially growing factor in the elements of
the propagator matrix. Since in the modified propaga-
tor matrices, no element is exponentially growing, there
will be no overflow problem for a multilayered half space
having any number of layers with any thickness for each
layer.

6 Physical-domain solutions

The transformed-domain solutions presented above can
be integrated numerically to find the corresponding
physical-domain solutions. In terms of the cylindrical
system of vector functions, the individual component of
the field quantities will be in the cylindrical coordinates.

Since the given boundary load TL or DL in the trans-
formed domain involves the Bessel function of first or-
der (Eq. 27 and Eq. 29), all the integrands under the 1D
infinite integral will be the product of Bessel functions.
It is further noted that the product of Bessel functions
are oscillatory and goes to zero slowly when its variable
approaches infinity. Thus, the common numerical inte-
gral methods, such as the trapezoidal or Simpson rule,
are not suitable for such integrations. However, numeri-
cal integration of this type of functions via the adaptive
Gauss quadrature [Chave (1983); Lucas (1995)] has been
found to be very accurate and efficient. We therefore
have adopted and modified this algorithm to the evalua-
tion of the field responses in the PFGM multilayered half
space.

Let us express the infinite integral for each field response
as a summation of partial integration terms:

+∞Z

0

f (λ, z)Jm(λr)J1(λa)dλ

=
N

∑
n=1

λn+1Z

λn

f (λ, z)Jm(λr)J1(λa)dλ (34)

In each subinterval, a starting 3-point Gauss rule is ap-
plied to approximate the integral. A combined relative-
absolute error criterion is used to check the results. If
the error criterion is not satisfied, new Gauss points are
added optimally so that only the new integrand values
need to be calculated. This procedure continues until the



Responses of Piezoelectric, Transversely Isotropic, Functionally Graded, and Multilayered Half Spaces 21

Table 1 : Different loading cases and different material models

Loading Cases (circular radius a =1m)
Case 1 Uniform pressure p (=1N/m2)
Case 2 Uniform negative electric charge

−Q (= −1C/m)

Material Models
Model 1 PFGM half space made of PZT-4
Model 2 Multilayered half space with stack-

ing sequence FGM PZT-4/PZT-
6B/PZT-4

FGM PZT-4 

Half-Space 

z ( )

x or r 
0

Uniform Circular Loading 

=-1

=0

=1

z = 2m 

Figure 2 : Geometry of the PFGM PZT-4 half space for
material Model 1. The variation of the proportional fac-
tor eηz in the PFGM half space is shown for η = -1, 0,
1.

selected error criterion is satisfied [Lucas (1995)]. In the
numerical analysis presented below, we have set the rel-
ative and absolute errors, respectively, at 10−4 and 10−5.
Further discussion on this type of oscillatory integration
can also be found in Pan, Bevis, Han, Zhou, and Zhu
(2006).

7 Numerical examples

Before applying our PFGM multilayered solution to
the numerical examples presented below, we have first
checked various reduced cases. For instance, we reduced
our solution to the corresponding purely elastic FGM half
space (i.e., the piezoelectric coefficient ei j=0) and piezo-
electric layered homogeneous (i.e., the exponential factor
η = 0) solutions, and we found that the results from the
present PFGM multilayered half-space solutions due to a
uniform circular pressure are the same as those from pre-
vious solutions [Wang, Fang, and Chen (2002); Wang,

z

x or r 0
FGM PZT-4 

Layer  

PZT-6B Layer 

z0=0

z1=0.1m 

=-10

=-5

=0

=5

=10

PZT-4  

Half-Space

z2=0.3m 

Uniform Circular Loading 

Figure 3 : Geometry of the PFGM multilayered half
space for material Model 2, with stacking sequence of
FGM PZT-4/PZT-6B/PZT-4. The variation of the pro-
portional factor eηz in the FGM PZT-4 layer is shown for
η = -10, -5, 0, 5, 10.

Pan, Tzeng, Han, and Liao (2005)].

In our numerical studies, the PFGM layered half space is
made of two transversely isotropic piezoelectric materi-
als: One is the poled lead-zirconate-titanate (PZT-4) ce-
ramic and the other is PZT-6B, with their material prop-
erties given in the Appendix A. Two different PFGM lay-
ered half-space models are studied in this paper (Tab. 1):
In material Model 1 (Fig. 2), we have a single PFGM half
space made of FGM PZT-4, and the response contour is
in the vertical plane (y = 0) for x and z varying from 0
to 2m. In material Model 2 (Fig. 3), we have a mul-
tilayered half space with stacking sequence FGM PZT-
4/PZT-6B/PZT-4. The first layer is functionally graded
PZT-4 with thickness 0.1m, the second layer is homoge-
neous PZT-6B with thickness 0.2m, and the last layer is a
homogeneous PZT-4 half space. The observation point is
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Figure 4 : Contours of the vertical elastic displacement uz in material Model 1 due to the uniform surface pressure
within the circle of a=1m and magnitude of 1N/m2 (Case 1). Figures (a), (b), (c) show, respectively, the results for
exponential factor η = -1, 0, and 1.
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Figure 5 : Contours of the vertical stress σzz in material Model 1 due to the uniform surface pressure within the
circle of a=1m and magnitude of 1N/m2 (Case 1). Figures (a), (b), (c) show, respectively, the results for exponential
factor η = -1, 0, and 1.
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Figure 6 : Contours of the electric potential φ in material Model 1 due to the uniform surface pressure within the
circle of a=1m and magnitude of 1N/m2 (Case 1). Figures (a), (b), (c) show, respectively, the results for exponential
factor η = -1, 0, and 1.
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Figure 7 : Contours of the vertical electric displacement Dz in material Model 1 due to the uniform surface pressure
within the circle of a=1m and magnitude of 1N/m2 (Case 1). Figures (a), (b), (c) show, respectively, the results for
exponential factor η = -1, 0, and 1.
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Figure 8 : Contours of the vertical elastic displacement uz in material Model 1 due to the uniform negative charge
within the circle of a=1m and magnitude of 1C/m (Case 2). Figures (a), (b), (c) show, respectively, the results for
exponential factor η = -1, 0, and 1.
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Figure 9 : Contours of the vertical stress σzz in material Model 1 due to the uniform negative charge within the circle
of a=1m and magnitude of 1C/m (Case 2). Figures (a), (b), (c) show, respectively, the results for exponential factor
η = -1, 0, and 1.
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Figure 10 : Contours of the electric potential φ in material Model 1 due to the uniform negative charge within the
circle of a=1m and magnitude of 1C/m (Case 2). Figures (a), (b), (c) show, respectively, the results for exponential
factor η = -1, 0, and 1.

along the z-axis from the surface (z=0) to the half space
(z=0.5m). For the two different material Models, two dif-
ferent loading Cases on the surface within radius a (=1m)
are studied (Tab. 1): under uniform pressure p (=1N/m2)
for Case 1 and under uniform negative electric charge
−Q (= −1C/m) for Case 2. We remark that all the results
presented below are dimensionless. In order to find the
corresponding dimensional value from the dimensionless
result, one just needs to multiply the suitable convert con-
stants [Pan (2002); Pan and Han (2005)].

7.1 Response of the PFGM half space to loading
Cases 1 and 2

This PFGM half space corresponds to the material Model
1, which is made of FGM PZT-4 (Fig. 2). Fig. 4 to Fig.
7 show, respectively, contours of the vertical elastic dis-
placement uz, vertical normal stress σzz,electric potential
φ, and vertical electric displacement Dz in the plane y=0
due to a uniform circular pressure of magnitude 1N/m2

applied on the surface (Case 1 loading). Similarly, Fig. 8
to Fig. 11 show the corresponding contours due to a uni-
form circular negative charge of magnitude –1C/m ap-
plied on the surface (Case 2 loading). For each physi-
cal quantity, three figures are presented from left to right
(e.g., 4a, 4b, and 4c) which correspond to the three expo-
nential factors η = -1, 0, and 1.

While a negative exponential factor corresponds to a stiff
surface, a positive factor to a soft surface. It is ob-
served from these figures that, due to different surface
loads, the contour magnitudes of the physical quantity
are completely different. Interestingly, however, the con-

tour shapes of the vertical elastic displacement uz and
electric potential φ are similar in both loading Cases (Fig.
4 vs. 8, Fig. 6 vs. 10). Furthermore, comparing the re-
sults for different η, one can also clearly observe that
the contour shape changes for different η. For instance,
at the same location, the vertical elastic displacement uz

and electric potential φ decrease with increasing η (Figs.
4, 6, 8, 10). The field concentration near the edge of the
loading on the surface is also demonstrated for the elastic
stress and electric displacement components.

7.2 Response of the PFGM multilayered half space to
loading Cases 1 and 2

This half space corresponds to the material Model 2 in
which the multilayered half space is made of layers with
the stacking sequence of PZT-4/PZT-6B/PZT-4. The first
PZT-4 layer is functionally graded with exponential fac-
tor η = –10, -5, 0, 5 and 10 (Fig. 3). Again, two loading
Cases are studied: circular uniform pressure for Case 1
and circular uniform negative charge for Case 2. The ver-
tical elastic displacement uz, vertical stress σzz,electric
potential φ, and vertical electric displacement Dz are cal-
culated along the z-axis from the surface (z=0) to the ho-
mogeneous half space (z=0.5m), and the results are pre-
sented in Figs. 12 to 15, respectively, with (a) and (b)
corresponding to the loading Cases 1 and 2.

In the first FGM layer, comparing the responses due to
different loading Cases (e.g. Fig. 12a vs. 12b), we no-
ticed that, the trend of variation for the vertical elastic
displacement uz with η is the same. In other words, the
vertical elastic displacement increases with decreasing η
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Figure 11 : Contours of the vertical electric displacement Dz in material Model 1 due to the uniform negative charge
within the circle of a=1m and magnitude of 1C/m (Case 2). Figures (a), (b), (c) show, respectively, the results for
exponential factor η = -1, 0, and 1.
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Figure 12 : Variation of the vertical elastic displacement uz (from (0,0,0) to (0,0,0.5m)) in the PFGM multilayered
half space (material Model 2) for the exponential factors η = -10, -5, 0, 5, and 10, respectively. Figures (a) and (b)
show the responses due to the uniform surface pressure (loading Case 1) and negative electric charge (loading Case
2), respectively.

for both loading Cases. However, the trend is opposite
for the other field quantities under the two different load-
ing Cases. Similarly, in the homogeneous layers (second
PZT-6B and PZT-4 half space), the two different loading
Cases induce opposite field responses. It is also clear that
the response in the underlying homogeneous layers can
be greatly affected by the exponential factor η in the first
PFGM layer, except for the vertical elastic displacement
induced by the pressure loading Case 1 (Fig. 12a) where
the influence of the FGM layer is very small in the last
PZT half space.

8 Conclusions

In this paper, we derived the solutions of transversely
isotropic, piezoelectric functionally graded, and multi-
layered half spaces due to the uniform circular loading
(vertical pressure or negative electric charge) applied on
the surface of the half space. The inhomogeneous mate-
rial is exponentially graded in the vertical direction and
can have multiple discrete layers. In the transformed do-
main, we presented the analytical solution in terms of the
propagator matrix method and cylindrical system of vec-
tor functions. In order to find the solution in the physical-
domain, we introduced and adopted an adaptive Gauss
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Figure 13 : Variation of the vertical stress σzz (from (0,0,0) to (0,0,0.5m)) in the PFGM multilayered half space
(material Model 2) for the exponential factors η = -10, -5, 0, 5, and 10, respectively. Figures (a) and (b) show
the responses due to the uniform surface pressure (loading Case 1) and negative electric charge (loading Case 2),
respectively.
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Figure 14 : Variation of the electric potential φ (from (0,0,0) to (0,0,0.5m)) in the PFGM multilayered half space
(material Model 2) for the exponential factors η = -10, -5, 0, 5, and 10, respectively. Figures (a) and (b) show
the responses due to the uniform surface pressure (loading Case 1) and negative electric charge (loading Case 2),
respectively.

quadrature with which the one-dimensional infinite in-
tegrals of the Bessel function productscan be accurately
and efficiently calculated. We finally applied our solu-
tions to two piezoelectric functionally graded half-space
models to demonstrate the effect of different exponential
factors of the functionally graded material on the field
responses. The developed solutions are expected to be
useful in the characterization of material properties us-
ing indentation tests, and could indirectly contribute to
the design and manufacturing of piezoelectric function-

ally graded structures.
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Figure 15 : Variation of the vertical electric displacement Dz along the z-axis (from (0,0,0) to (0,0,0.5m)) in the
PFGM multilayered half space (material Model 2) for the exponential factors η = -10, -5, 0, 5, and 10, respectively.
Figures (a) and (b) show the responses due to the uniform surface pressure (loading Case 1) and negative electric
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Appendix A: Appendix A Material properties of
PZT-4 and PZT-6B

For the PZT-4, the elastic, piezoelectric, and dielectric
coefficient matrices are respectively [Pan, Yang, Cai, and

Yuan (2001)]

[
C0] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.39 0.778 0.743 0 0 0
0.778 1.39 0.743 0 0 0
0.743 0.743 1.15 0 0 0
0 0 0 0.256 0 0
0 0 0 0 0.256 0
0 0 0 0 0 0.306

⎤
⎥⎥⎥⎥⎥⎥⎦

(1011N/m2) (35)

[
e0] =

⎡
⎣ 0 0 0 0 12.7 0

0 0 0 12.7 0 0
−5.2 −5.2 15.1 0 0 0

⎤
⎦(C/m2)

(36)

[
ε0] =

⎡
⎣ 0.64605 0 0

0 0.64605 0
0 0 0.561975

⎤
⎦(10−8CV−1m−1)

(37)

and for PZT-6B, they are [Wang, Fang, and Chen (2002)]

[
C0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1.68 0.6 0.6 0 0 0
0.77 1.68 0.6 0 0 0
0.6 0.6 1.63 0 0 0
0 0 0 0.271 0 0
0 0 0 0 0.271 0
0 0 0 0 0 0.54

⎤
⎥⎥⎥⎥⎥⎥⎦

(1011N/m2) (38)

[
e0] =

⎡
⎣ 0 0 0 0 4.6 0

0 0 0 4.6 0 0
−0.9 −0.9 7.1 0 0 0

⎤
⎦ (C/m2)

(39)

[
ε0] =

⎡
⎣ 0.36 0 0

0 0.36 0
0 0 0.34

⎤
⎦ (10−8CV−1m−1) (40)




