Copyright (©) 2006 Tech Science Press

CMES, vol.13, no.3, pp.219-228, 2006

Stability analysis for inverse heat conduction problems

Xianwu Ling', S.N. Atluri!

Abstract: In this paper, two matrix algebraic tools are
provided for studying the solution-stabilities of inverse
heat conduction problems. The propagations of the com-
puted temperature errors, as caused by a noise in tem-
perature measurement, are presented. The spectral norm
analysis reflects the effect of the computational time
steps, the sensor locations and the number of future tem-
peratures on the computed error levels. The Frobenius
norm analysis manifests the dynamic propagations of the
computed errors. As an application of the norm analy-
sis, we propose a method for the best positioning of the
thermocouples.

1 Introduction

The inverse heat conduction problem (IHTP) consists in
the estimation of the surface heat flux history, given one
or more interior measured temperatures. The IHCP is
much more difficult to solve than the direct heat conduc-
tion problem in which the initial and boundary conditions
are given and the temperatures are to be determined. Un-
like the direct problem wherein the high frequency com-
ponents of the heat fluxes are damped out due to the dif-
fusive nature of the heat conduction process, the opposite
takes place in the IHCP. The high frequency components
or noise in the temperature measurements will be ampli-
fied in the projection to the surface and lead to oscilla-
tions in the computed surface fluxes.

There have been varied approaches to the inverse heat
conduction problem. In terms of methodology, these
have included the exact solution technique [Burggraf
(1964)], the inversion of Duhamel’s integral [Stolz
(1960), Beck (1968)], Laplace transformation techniques
[Sparrow (1964), Imber (1972)], the control volume
method [Taler (1996)], the use of Helmholtz equation
[Grysa (1989)], the finite difference method [Beck (1965,
1970, 1981, 1982), Blackwell (1981), Hensel (1984)],
the finite element approaches [Hore (1977), Bass (1980),
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Ling et al. (2003, 2005)], the digital filtering method
[Hills (1986), Hensel (1986)], the eigenvalue reduction
method [Tandy (1986)], the group preserving scheme
[Chang et al. (2005)], Tikhonov regularization method
[Tikhonov (1977)], Alifannov iterative regularization
[Alifannov (1994)], the mollification method [Murio
(1993)], the hyperbolic regularizaiton method [Weber
(1981)], the conjugate gradient method [Ozisik and Or-
lande (2000)] and the dynamic programming technique
[Trujillo and Busby (1997)], among many others.

As the IHCP finds wide applications in quenching and
many other thermal-related industries, it is of great prac-
tical importance to study the various effects on the sta-
bility of the inverse solutions. Surprisingly, despite so
many existing inverse techniques, to the best knowledge
of the authors, a systematic study of the stability of the
inverse solutions has not been pursued. Most of the tech-
niques do not give a quantitative method for determining
the computed errors due to noise in temperature measure-
ments. The reason for a lack of studies on the stability of
the solution of the inverse problem is simple. The IHCP
is already very difficult, its solution instability analysis is
even more. Very limited stability analysis can be found
in Murio (1983), Beck and Blackwell (1985) and Maciag
and Al-Khatib (2000). The fact is that, however, inverse
solutions are extremely sensitive to measurement errors,
measurement locations, and computational step times. A
small temporal noise in the interior measurements tends
to produce large oscillations in the surface boundary con-
dition estimation, which becomes even more significant
as the sensors are placed farther away from the surface
heat fluxes. In addition, contrary to the direct problem,
the use of smaller time steps can introduce instabilities
in the inverse solutions. Therefore, a large computational
time step is often used in the IHCP, which can lead to a
poor resolution of the results.

The present work aims to systematically investigate the
stability of the inverse solutions. Two matrix norm tools
are provided for measuring the instability of the inverse
solutions. The effects of measurement locations, the
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computational time steps, and the number of future tem-
peratures on the error propagation are studied. Also, us-
ing the norm analysis tools, we endeavor to answer a
common question confronting many thermal engineers
when designing heat transfer experiments, i.e., where are
the best locations to put the thermocouple? This poses
a very important issue in inverse heat conduction prob-
lems, as poorly positioned sensors inevitably lead to a
poor inverse solution. The problem becomes even seri-
ous when a complex shaped object, subjected to multiple
surface heat fluxes, has to be considered. Our analysis in
this work, to the best knowledge of the authors, for the
first time provides a unique and systematic answer to the
question.

2 Theoretical development

In this section, a brief overview is first made of the in-
verse algorithm proposed in Ling et al. (2006). Sec-
ond, we derive the propagation equations of the mea-
sured temperature errors. And last, we provide two ma-
trix norm analyses that can be used to monitor the error
propagations.

The inverse problem is stated as follows Ling et al.
(2006): for a region subjected to the first kind (I';) and
the second kind (I';) of boundary conditions, given the
temperature measurements Y, at m = 1,2,...,M inte-
rior sites and 1 = 1,2,..., I experimental times, deter-
mine the unknown surface heat fluxes q; at j=1,2,....J
discretized nodes on I'; for i = 1,2,...,1 computational
times. Note that it is required that J < M in order to en-
sure a solution, and often that / < I in order to ensure a
convergent solution.

The inverse solutions of q“rl are obtained by minimiz-
ing the square error norm sl“ between the measured and

the calculated temperatures summed over r =0,1,--- R
future time steps for each computational time i, i.e.,
2
S Z Z (Ym —Om )
m=1r=
i+1 2
-3 Z W (a4 M
p=l1j=

where the superscript (.) indicates the time index that is
measured with respect to the current time i (not the ini-
tial one). Note that the past heat fluxes qg_p ) are added in
the same sense as the Tikhonov regularization [Tikhonov
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(1977)]. 6
ture vector 6( g at the measurement site m and the future
time (r). 6" is a subset of the global temperature vector
6"), which is a function of the unknown heat fluxes q*l

m ) is the component of the calculated tempera-

In order to solve for 8", we employ the explicit heat
conduction equation

(M +Az<’>K) 00 = Mo + ArIE0) 4 1) 2)

where At(") = (") — 1 = Ar + rAT, and where At is the in-
verse computational time-step and AT is the experimen-
tal time-step. The last term ¢(”) on the righthand side
of equation (2) comes from the condensation of the tem-
peratures on I';. The heat flux force (") can be linearly
related to q'*! via the FEM discretization, i.e.,

) — Dq'*, (3)
where D is a constant matrix.

Inverting equation (2) gives

00 =G +X"g !+, )
where

G = yM, and U") = [M+At(F)K} - (5)
and where

X — 33% — At(r)U(r)D, (6)
is the generalized sensitivity matrix. Now, é(r) can be

obtained by mapping the local index m to the global node
m such that 87 = 8\, which yields

é(r)

— (N}(V)ei_|_)~((r)qi+1 _|_(~1(r)’ @)
where G = GU) and where X,Slrj) = Xr(nr])- is the sensitivity

coefficient at the measurement site m with respect to the
surface flux j at the future time (r).

Minimization of s'*! (with respect to ¢/*!) leads to the
governing equation for the inverse problem, which in the
matrix form is written as
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where é(r) is the temperature at the measurement sites for
zero heat flux g"+', which, from equation (7), is given as

é(r)

= Ge' +d". 9)
As emphasized by Ling et al. (2006), formula (8) repre-
sents a generic system of equations regardless of the un-
derlying numerical methods, although it was developed
based on the finite element method (FEM). Interested
readers are referred to Ling et al. (2006) for detailed
developments of the algorithm. We mention that the
most expensive part in solving equation (8) is the calcu-
lations of the sensitivity coefficient matrix X(). Various
methods can been employed in calculating the sensitiv-
ity coefficients, such as the analytical method [Burggraf
(1964)], the finite different method [Beck (1965, 1970,
1981, 1982)], the finite element method [Ling et al.
(2003, 2005)], the boundary element method [Divo et al.
(2004)], and the meshless method [Sladek et al. (2005)],

to mention only a few.

For many industrial materials, the thermal properties
(namely the conductivity, the capacity and the density)
do not change much with temperatures. Hence, we focus
below on the instability analysis for the linear heat con-
duction problem in which case X(") do not change with
the temperature. The nonlinear problem can be studied
likewise in a step by step manner. Without loss of gener-
ality, we further suppose that there exists only one set of
measurement error Y ! in Y!, and that all the subsequent
temperature measurements are error free, i.e., 8Y' = 0 for
i=2,3,---. Such a supposition is to reveal the charac-
teristics of the error propagation, because multiple errors
in subsequent time add only the complexity but not the
difficulty to the analysis.

For simplicity, the past heat regularization is deactivated
by setting wg_p —o. Hence, equation (8) yields

<§ [X(r)rg(r)> 5qit!
R

:—Z [X(F)}Tﬁém fori=1,2,---.
r=0

(10)

We assume that the temperatures can be measured ac-
curately on Iy, i.e. 8d") = 0. From equation (9), one
obtains

56" = G o0’ (11)
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which, upon plugging into equation (10), gives

[gmrg(r)) R (i

r=0

) R
6q1+1 — _ <Z

r=0

x0)" (”;<r>> 50’
(12)

fori=1,2,---. To see how the calculated temperature
errors propagate, from equation (4), we obtain
861 = G080 + X g, (13)
Upon substituting equation (12) into equation (13), it ren-
ders

S0t = E&0', for i=1,2,--- (14)

where the error propagate matrix E is defined as

E=G®-Xx° (i [gm} ! 5;<r>> R (i [gm} ! (;<r>>
r=0 r=0 )

fori=1,2,---.

The effect of the initial temperature errors on the pre-
dicted heat fluxes is also an important subject, but it can
be studied using the same method as proposed in the cur-
rent work. Hence, we assume here that the initial temper-
atures are error free, i.e., 8° = 0, so that we can focus
on the propagation of 8Y! with time. For the first time
step (i.e., i = 0), the temperature error propagation needs
a separate treatment as follows. With 86° = 0, equation
(4) yields

50! =X08q!. (16)
In order to derive 8q', we use the supposition that Y’ =
0 for i =2,3,---, and that 86° = 0. Then, equation (8)
gives

A7
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Hence, equations (16) and (17) give

50! = AdY!, (18)
where
R 4T . -l AT
A=XO (Y [XW} ) [X(O)} for i=0, (19)
r=0

indicates the initial error propagation matrix.

Equations (14) and (18) provide the mathematical foun-
dation for analyzing the error propagation of §Y'. To see
this, we express the calculated temperature errors at i + 1
step that is due to 8Y! as
30! = (E)'ASY". (20)
Note that E is raised to the power of i for the (i+ 1)™
time step.

To ensure that ||56""!|| remain bounded as i increases, it
is required that the spectral norm of E be less than 1 [c.f.,
Burden (1985)]. The spectral norm of a matrix is defined
as

|Ells = \/Amax (EF -E) Q1)
where EX stands for the conjugate transpose of E, where
Amax denotes extracting the maximum eigenvalue of E7 -

E. Since E is a real number matrix, Ef = ET.

The spectral norm ||E||; provides a useful tool for ana-
lyzing the effect of the various factors such as R, Ar and
measurement sites on the stability of the inverse solution,
but it does not reveal how 8Y! propagate with time. To
this end, we define

i+1 ”SOI—HH _ ”( )1
1Y |

All, (22)
by taking the norm of equation (20). Hence, w*! reflects
the dynamic propagation of a unit measurement error in
Y!. Apparently, the smaller w*! is, the larger the error is
suppressed. Several forms of matrix norms are available,
but it is expected that they perform equally effective in
examining the error propagations. We select for our anal-
ysis the Frobenius norm, which is defined as the square
root of the summation of the matrix element squares, i.e.,

ot =|EA| = (23)

> 3 [,

row=1 col=1
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Like the spectral norm analysis, the inverse solution is
convergent on the condition that m*! < 1. The predicted
surface heat flux error 8q'*! due to 8Y! can be similarly
analyzed using equations (12) and (17), but this analysis
do not provide anything newer than that already embod-
ied in ||E||; and "' (which point is validated by our nu-
merical tests). Hence, in the next section, we only present
results of 3Y! on 607!,

3 Numerical tests

In this section, we study two example problems using the
spectral norm and the Frobenius norm analyses. Also, we
demonstrate that the stability analysis provides a tool for
inversely designing the quenching experiment.

In the first example problem, a flat plate of unit length
is insulated at X = 0 and exposed to a heat flux g at
L =X =1, where X indicates the dimensionless distance
from the insulated end. Only one sensor is supposed to
be located at X = 0,0.5 and 0.9, respectively. The ther-
mal conductivity kK = 1, the thermal capacity ¢ = 1 and
the density p = 1. We choose the experimental time step
as At = 0.01L?/a., where o = pc/k is the thermal dif-
fusion coefficient. Hence, AT is 1% of the characteristic
diffusion time of the plate. The computational time-step
At is an integer multiple of the experimental time-step,
namely, At = nAt, where n represents the sampling rate.

Figure 1 shows the variation of the spectral norms with
the time steps (At), the number of future temperatures (R)
and the measurement locations (X). It is seen that that for
X =0 (i.e. the sensor is placed at the opposite end to the
flux), very large errors are expected, while for X = 0.9
(i.e. the sensor is put very close to the flux), very small
errors are rendered. The error levels for X = 0.5 are be-
tween those of X = 0 and X = 0.9. The effect of using fu-
ture temperatures depends much on the sensor locations.
When the sensor is far from the surface, the number of
future temperatures has a significant role in suppressing
the error propagations. On the contrary, when the sensor
is close to the surface, the effect of using future temper-
ature is diminished. In passing, we also note that there
exists a critical time step for a fixed sensor location X and
a chosen number of future temperatures (R). This is illus-
trated for X = 0 in Figure 1(a), from which it can be read
that At.,; = 0.38 for R =0 and Az,,; = 0.27 for R = 8. For
X =10.9 as shown in Figure 1(c), no such critical time step
exists, because ||E||; is always lower than the unity. We
will show below that the critical time step thus obtained
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10' ¢ can be used to predesign the temperature measurement
% sites for a quenching part of complex shape.

10° g — Now we demonstrate the dynamic propagation of the cal-

- culated temperature errors. Figure 2 shows the variation

10° of w*! for X = 0. Figure 2 illustrates the dramatic ef-
fect of computational time step (represented by n) and
the number of the future temperatures (R). Not surpris-
ingly, ! decreases with increasing n and R. It is worth
mentioning that increasing n is at the cost of a poor res-
olution of the result, hence often undesirable. We ob-
serve from 2(b) that for a large R = 8§, the initial errors
are even smaller for a small » than for a large n, although
the overall error suppression rates are much larger in the
latter case. In Figure 3, the variations of @*! are shown
for x = 0.9. Needless to say, a sensor closer to the sur-
E face greatly reduces the error levels. Again the initial

R errors are smaller for a small n than for a large n when a
— large R is employed. The significance of this interesting
10 observation is that for a large R, a small computational
time step can be used not only to improve the resolution,
but to improve the accuracy. Although this observation
appears at the first glance to violate one’s intuition, it ex-
actly indicates the dramatic effect of using future tem-
peratures. Although we do not show the results here, we
~— would like to mention two additional observations: (1)
os : o ) regarding the number of elements that should be used in

I[Ells
S
A=

IElls
T I el
=

<
T,
7z

10"
At the 1D problem, our simulations indicate that twenty el-
(b) ¥=0.5 ements along the line are sufficient, because further in-

creasing the number of elements changes very slightly
the error levels and their propagation rates; (2) we also
perform the stability analysis for 1D axisymmetric prob-
lem. Under the same parameters, it is found that the ax-
isymmetric problem is less sensitive to the measurement
errors than the 1D planar problem, hence a smaller com-
putational time-step can be used.

Our 2D planar problem follows that in Ling et al. (2006)
and Tandy et al. (1986). A 2D slab, as discretized in
Figure 4, is subjected two fluxes on the top and the left
surfaces. Again, we choose At = 0.01L%/a, where L is
the length of the slab. We first investigate the error prop-

0.8

0.6

0.4

0.2

[Els
B

05 1 L5 2 agation when the temperature measurements are taken at
Ar nodes 11 and 23. Figure 5 shows the variation of the
() x=0.9 spectral norm versus the computational time step Ar. The

number of future temperature (R) is seen to dramatically
affect the error levels; or alternatively speaking, Az.,; is
much smaller for a large R, e.g., At.,; = 0.07 for R =8
while At.,; = 0.14 for R = 0. Figure 6 shows the dy-

Figure 1 : The spectral norm for the 1D planar problem.
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Figure 2 : The dynamic error propagation for 1D planar problem. X = 0.
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Figure 3 : The dynamic error propagation for 1D planar problem. X = 0.9.

namic error propagations when the measurement sites are
at nodes 11 and 23. A comparison of Figure 6 (a) and (b)
indicates that using future temperatures effects via sig-
nificantly reducing the initial error levels, not the overall
error suppression rates. Surprisingly, the error suppres-
sion rates are even smaller for a large R than for a small
R. Again, from Figure 6(b), in order to improve solu-
tion resolution, we suggest that a small sampling rate n
be used for a large R.

As mentioned in the Introduction, a common difficulty
that confronts many thermal engineers in designing heat

transfer experiments is where to best put the thermocou-
ple. For instance, this is a universal issue in the quench-
ing industry. Here, we reinterpret ‘best’ in the sense that
the inverse solution is the least polluted when subjected
to noise in temperature measurements. From Figure 1(a),
we see that the error level is directly related and inversely
proportional to the critical time step At,,;. This is a gen-
eral observation, not limited to the dimensions of the
problem and regardless of the parameters used (e.g., R,
n, etc). Hence, we can turn to the spectral norm for help,
and use A7T.,; as an indicator as the error level. In the
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Table 1 : The first ten smallest AT.,;’s (in the unit of 10~"). At =0.0112/0c.

| R=0 | R=2 | R=4 | R=38 |
pair AT pair AT pair AT pair AT
[6,13] | 0.454060 | [8,14] | 0.125000 | [8,14] | 0.125000 | [8,14] | 0.125000
[9,14] | 0.458443 | [6,13] | 0.125000 | [6,13] | 0.125000 | [6,13] | 0.125000
[6,19] | 0.458968 | [9,14] | 0.142124 | [6,19] | 0.125000 | [7,12] | 0.125000
[7,13] | 0.460591 | [7,13] | 0.149076 | [7,19] | 0.125000 | [7,11] | 0.125000
[6,14] | 0.465702 | [7,14] | 0.159297 | [6,14] | 0.125000 | [7,14] | 0.125000
[8,14] | 0.474371 | [6,14] | 0.166226 | [9,14] | 0.125000 | [7,13] | 0.125000
[7,14] | 0.477972 | [6,19] | 0.183410 | [7,14] | 0.125000 | [6,12] | 0.125000
[7,19] | 0.478605 | [7,19] | 0.225730 | [7,13] | 0.125000 | [6,11] | 0.125000
[8,13] | 0.493062 | [8,13] | 0.326609 | [6,12] | 0.126066 | [8,19] | 0.125000
[6,18] | 0.553461 | [8,19] | 0.349251 | [8,19] | 0.140524 | [6,24] | 0.125000

SRR

L-fd i

Figure 4 : FEA model of the 2D slab with two unknown
fluxes.

following, we illustrate the concept using the 2D planar
problem as shown in Figure 4. Suppose that the top and
the left surfaces are inaccessible, so that we limit our-
selves in the shadow region for selecting a pair of nodes,
such as [11,23], to put the sensor. Now, we ask: which
pair would give the best solution? To address the ques-
tion, we perform a loop search for each possible pair of
nodes in the shadow region and calculate At.,;. Table
1 shows the calculations for the first ten smallest At,.,;’s
for AT =0.012%/0.. Table 1 demonstrates several very
interesting points: (1) the ‘best” measurement locations
is relative to R. For instance, for R = 0, the best locations
are given by [6,13], while for R =2, [6,13] and [8,14] are
equally effective; (2) when many future temperatures are
used, the ‘best’ measurement location become vaguely
defined, since many pairs produce the same At,,;’s. Ac-
tually, for R = 8, the first thirty smallest At.,;’s are all

T FTTTTT

)

10°

T T T TTTTII Ty

10"

Figure 5 : The spectral norm for the 2D planar problem
when the measurement sites are at nodes 11 and 23.

equal (not shown in the Table 1). This means that, with
a large R, the specific measurement locations are not that
important (which is good news indeed). However, we
need to point out that the second observation is not gen-
eral, because in extracting At,,; for a given large R, if the
largest ||E||; for a pair is already smaller than the unity,
we merely set AT.,; to the experimental time-step At. For
instance, when R = 8, At.,; is found to equal At for the
first thirty node pairs. Hence, the definition of the best
‘pair’ is related to the experimental time-step AT.

In Ling et al. (2005, 2006), we suggest that the exper-
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Table 2 : The first ten smallest AT,,;’s (in the unit of 10~"). At = 0.002L? /0.

| R=0 | R=2 | R=4 | R=38 | R=10
pair AT pair AT pair AT pair AT pair AT
[6,13] | 0.436186 | [6,13] | 0.384095 | [6,13] | 0.346718 | [6,13] | 0.223304 | [8,14] | 0.028748
[9,14] | 0.437953 | [9,14] | 0.387741 | [7,13] | 0.354928 | [7,13] | 0.235320 | [6,13] | 0.156123
[7,13] | 0.447697 | [7,13] | 0.388714 | [9,14] | 0.356221 | [9,14] | 0.236814 | [9,14] | 0.163195
[6,19] | 0.450539 | [6,19] | 0.390682 | [6,19] | 0.358988 | [8,14] | 0.248898 | [7,13] | 0.165496
[6,14] | 0.469183 | [6,14] | 0.396105 | [6,14] | 0.366887 | [6,19] | 0.258524 | [6,14] | 0.195470
Wr—————====scc----C- - __ 10°
]00 frmesmmesmme, .\' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 100 [
102 '.\'\.,\ ~~~~~~~~~~~~~~~~~~~~~~~ 102 \.\T\‘:‘-&.—,_ R I:_.:_.:_‘_‘_. ______
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Figure 6 : The dynamic error propagation for 2D planar problem.

imental time-step AT be set to the smallest value of the
reading intervals allowed in the thermal control unit, so
that the maximal information can be used. This sugges-
tion is also valid in determining the best locations for the
thermocouple. In Table 2, we show the first five smallest
AT.i’s for AT = 0.002L?/o.. We see that a small AT not
only sharpens the distinction of the best sensor locations,
but also decreases the smallest At.; that can be used
(thus improving the resolution). Comparing the small-
est At.; for R =8 and R = 10 in Table 2, At.,; is seen
to be dramatically decreased. One point that needs ex-
planation when comparing Table 1 and Table 2 is that
when R = 8, why is the smallest At,,; even larger for
At = 0.002L? /0. than for AT = 0.012%/0.? This is due
to the way that the future temperatures are used, i.e.,
the future temperatures are extracted at each and every
experimental time steps. The period of the future time
is given by RAT. Obviously, much less future tempera-

tures are used in the case of AT = 0.002L?/o. than that of
At =0.011%/o. As less future temperatures are used in
the case of AT = 0.002L?/q,, a larger At,,; is needed.

The smallest experimental reading interval AT may well
be physically limited by the thermal control unit. If one
has to select a pair that gives the ‘best’ measurement lo-
cation among the pairs that generate the equally smallest
At,,;’s, two additional principles are suggested: (1) select
the pair that has the lowest ®"! in magnitudes using the
Frobenius analysis. To illustrate the point, we see that
from Table 1, the smallest At.,;’s are indistinguishable
for R = 2 between the measurement locations [8,14] and
[6,13]. Figure 7 shows the Frobenius norms for the two
pairs. A comparison of the Frobenius norms indicates
that for R = 0, [6,13] obviously outperforms than [8,14],
but for R = 2, [8,14] is slight better a choice than [6,13]
(because the Frobenius norm is slight smaller for [8,14]);
(2) to prevent interference among the sensors, the pair
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[6,13]
r - — — — [8,14]

O)i+1

Figure 7 : A comparison of the Frobenius norms for
[6,13] and [8,14]. AT = 0.011%/o.

sensors should be put as far away as possible. The inter-
ference among the sensors is not considered here, but is
expected to affect to a large degree the accuracy of the
inverse solution. Finally, we mention that a brute-force
loop from node to node is used in the current search of
the best pair of measurement locations. In a small scale
problem, such as the current 2D planar model, the brute-
force search scheme is computationally affordable. But
for a problem of a large scale (say, with thousands of
nodes), a better search scheme is needed. This will be
reported in our forthcoming work.

4 Summary

In summary, the present work provides a method to an-
alyze the error propagations in the inverse heat conduc-
tion problems, and ways to best position the sensors in
heat conduction experiments. To the best knowledge of
the authors, our work appears to be the first one that sys-
tematically looked into stability issues in the IHCP and
the first one that provides a theoretical guidance for the
“best” placement of the thermocouple.

The spectral matrix norm can provide a static analysis of
the effect of the various factors on the error level, such as
the computational time-step, the number of future tem-
peratures, and the locations of the thermocouple, while
the Frobenium matrix norm provides a dynamic propa-
gation of the computed errors. Two example problems
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are given to test the proposed method. The number of
future temperatures is found to dramatically affect the
level of the computed errors and the rate of their propa-
gations. It is suggested that a small sampling rate is used
together with a large number of future temperatures. For
the 1D planar and axisymmetric problems, twenty finite
elements are sufficient for the IHCP. The axisymmetric
1D problem is less sensitive to the measurement errors
than the 1D planar problem, thus a smaller computational
time-step can be used.

Finally, this stability analysis can also be used in the in-
verse design of the quenching experiment. By selecting
the smallest At,,;, it becomes possible to locate the best
thermocouple positions, so that measurement errors have
the least effect on the inverse solutions. Again, a large
number of future temperatures can reduce the sensitiv-
ity of the calculated surface fluxes to the choice of the
measurement locations.
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