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Thermomechanical Analysis of Functionally Graded Composites under Laser
Heating by the MLPG Method
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Abstract: The Meshless Local Petrov-Galerkin
(MLPG) method is a novel numerical approach similar
to finite element methods, but it allows the construction
of the shape function and domain discretization without
defining elements. In this study, the MLPG analysis for
transient thermomechanical response of a functionally
graded composite heated by Gaussian laser beams is
presented. The composite is modeled as a 2-D strip
which consists of metal and ceramic phases with the vol-
ume fraction varying over the thickness. Two sets of the
micromechanical models are employed for evaluating
the effective material properties, respectively. Numerical
results are presented for the thermomechanical responses
in both the transient and steady states. A parametric
study with respect to the spatial distribution and volume
fraction of material constituents, the rising rate of
the laser power, and the radius of the laser beam is
conducted.
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1 Introduction

In many engineering applications, ceramics are widely
used as thermal barrier coating (TBC) in high temper-
ature transient environments. While a ceramic coating
provides corrosion, wear and erosion resistance, pos-
sesses higher compressive strength, and can protect the
structural components from the severe thermal environ-
ment, joining the ceramic to a different material (e.g.
metal substrate) can inevitably result in a large stress
across the interface, thus often causing the delamination
mode of failure in the coated structures. In this regard,
one way to overcome this adverse effect is to use func-
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tionally graded materials (FGMs).

FGMs are advanced composite materials which are com-
posed of two or more constituents. Typically, these mate-
rials are made from a mixture of ceramic(s) and metal(s).
FGMs are microscopically heterogeneous, but the vol-
ume fractions of material constituents can be engineered
to a continuously spatial variation, and in turn possess
smoothly varying material properties. This allows FGMs
to be optimized by grading the volume fractions of the
material constituents for the desirable properties, and
thus they can offer various advantages such as reduction
of thermal stresses, minimization of stress concentra-
tion or intensity factors, and attenuation of stress waves.
Therefore, FGMs have attracted considerable attention in
the field of structural ceramic applications, which include
gas turbines, heat-engine components, packaging encap-
sulants, thermoelectric generators, and human implants,
just to name a few.

In the transient thermomechanical analysis of linearly
elastic FGMs, numerous approaches have been proposed,
either by the analytical form or by the numerical tech-
niques. Noda (1999) solved the governing equations for
thermal stresses in FGMs using a perturbation method,
and delineated the crack propagation paths due to ther-
mal shock. He also provided a literature review about the
thermoelastic response of FGMs. Ueda (2001) utilized
the micromechanical model to study the transient behav-
ior of an FG divertor plate. By assuming an exponentially
spatial variation of the material properties, Ootao and
Tanigawa (2004,2005) analyzed transient thermal trans-
port and deformation for 2-D and 3-D FG plates sub-
jected to nonuniformly convective heat supply. Jin and
Paulino (2001) solved for transient thermal stresses in an
FG strip by using a multi-layered material model. Vel
and Batra (2003) derived a 3-D exact solution of transient
thermal stresses in an FG plate under time-dependent
thermal loads on its top and/or bottom surfaces. Awaji
and Sivakumar (2001) employed both the variable trans-
formation and multi-layered techniques to study the tran-
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sient deformation in an FG cylinder. Praveen, Chin and
Reddy (1999) performed a finite element analysis for an
FG ceramic-metal cylinder with temperature-dependent
material properties and delineated the thermoelastic de-
formation under rapid heating. Wang and Mai (2005) and
Wang and Tian (2005) presented explicit finite element
formulations for analyzing FG solids.

Although analytical approaches provide closed-form so-
lutions, they are limited to simple geometries, certain
types of gradation of material properties (e.g. exponen-
tial or power law distribution), specific types of bound-
ary conditions (e.g. simply support) and special loadings
(e.g. sinusoidal loading). The above constraints can be
relaxed when numerical approaches are employed, for
example, finite element methods (FEMs). However, a
nonhomogeneous FGM needs to be treated as numer-
ous homogeneous elements, and thereby requiring inten-
sive labor to generate the mesh and assign the material
properties to elements. To deal with the complexity and
nonhomogeneity of the properties in FGMs, a meshless
method may be more suited and provides a promising
cost-effective CAE tool for the design of FGM structures.

Since the last decade, the meshless particle methods have
emerged as an effective numerical approach for solving
initial-boundary-value problems. The feature of these
methods is that only a set of scattered nodes that need
not be connected to form closed polygons is required for
modeling the physical domain. In contrast to the FEM,
the meshless methods can save the pre-processing work
of mesh generation, as no element is required in the en-
tire model. Besides, the computed stresses and strains
are smooth so that there is no need for any post-process
smoothing technique. More importantly, the spatial vari-
ation of material properties in FGMs can easily be de-
scribed at the level of the integration points. In the past
years, a variety of meshless methods have been proposed,
such as the Diffuse Element Method (DEM) (Nayroles,
Touzot and Villon, 1992), the Element-Free Galerkin
(EFG) method (Belytschko, Lu and Gu, 1994), the Hp-
Clouds (Duarte and Oden, 1996), the Reproducing Ker-
nel Particle Method (RKPM) (Liu, Jun and Zhang, 1995),
the Partition of Unity Finite Element Method (PUFEM)
(Melenk and Babuska, 1996), the Meshless Local Petrov-
Galerkin (MLPG) method (Atluri and Zhu, 1998), and
the Corrective Smooth Particle Method (CSPM) (Chen,
Beraun and Carney, 1999). The major difference among
these methods lies in the interpolation techniques. The

interested readers are referred to the work by Belytschko,
Krongauz, Organ and Fleming (1996), Atluri and Shen
(2002), and Liu (2002) for the similarities and differences
among those meshless methods.

One unique advantage of the MLPG method is that no
background mesh is used to evaluate various integrals ap-
pearing in the local weak formulation of problem. There-
fore, the MLPG method is a “truly meshfree” approach
in terms of both interpolation of variables and integration
of energy. The latest development of the MLPG method
can be found in Atluri (2005). It has been demonstrated
to be quite successful in solving different branches of
initial-boundary-value problems. In the application of
the MLPG method to FGMs, Qian and Ching (2004)
studied dynamic deformation of an FG beam and found
that the maximum first frequency occurs in the FG beam
rather than in the homogeneous beam. Qian and Batra
(2004,2005) combined the MLPG method with a higher
order plate theory to analyze the transient heat conduc-
tion and thermal stresses in a thick FG plate. Sladek J,
Sladek V and Zhang (2003) and Sladek J, Sladek V, Kri-
vacek and Zhang (2005) utilized local boundary integral
equations to study elastodynamics and transient heat con-
duction in isotropic and anisotropic FG solids, respec-
tively. Ching and Yen (2005) performed a steady-state
thermomechanical analysis for 2-D FG solids in which
the variation of material properties are either described
by analytical functions or computed by micromechanical
models.

Laser irradiation has been applied to examine the thermo-
mechanical behavior of FGMs, specifically for the frac-
ture process in a thermal barrier coating system (Taka-
hasi, Ishikawa, Okugawa and Hashida, 1992). Elperin
and Rudin (2002) developed an analytical procedure for
solving transient 2-D temperature and thermal stress dis-
tribution in an FGM coating composed of tungsten car-
bide (WC) and steel, where the effective material proper-
ties were simply approximated by the “rule of mixture”.
In this paper, we employ the MLPG method to investigate
the transient thermomechanical response of a two-phase
metal/ceramic FG composite subjected to high-density
laser heating. The spatially various effective thermoelas-
tic properties are evaluated by the two different homog-
enization schemes. The paper is organized as follows:
Section 2 gives governing equations for both thermoelas-
tic and heat conduction analyses. In Section 3, the mov-
ing least squares (MLS) approximation, the weak formu-
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lation of the MLPG method as well as the discrete system
of equations are briefly presented. Two homogenization
approaches for the effective material moduli, namely, the
Mori-Tanaka method and the self-consistent method, are
summarized in Section 4. Numerical results for a 2-D FG
strip subjected to Gaussian laser beams are presented and
discussed in Section 5. Conclusions are drawn in Section
6.

2 Governing Equations

For a 2-D isotropic solid occupying the domain Ω
bounded by the boundary Γ and unstressed at a refer-
ence temperature, we use rectangular Cartesian coordi-
nates x = {x1, x2}T to describe its transient thermome-
chanical behaviors. The governing equations of the me-
chanical equilibrium in elastostatics with neglecting iner-
tial and body forces and the transient thermal equilibrium
in the absence of internal heat sources are given by

σi j, j = 0 in Ω× [0, t] (1)

−q j, j = cρθ̇ in Ω× [0, t] (2)

where σi j, q j, c and ρ are the Cauchy stress tensor,
the heat flux vector, the specific heat and the mass den-
sity, respectively; θ is the change in temperature with
respect to the stress-free reference state. A comma fol-
lowed by index j denotes partial differentiation with re-
spect to coordinate x j , a superimposed dot indicates par-
tial derivative with respect to time t, and a repeated index
implies summation over the range of the index. Equa-
tions (1) and (2) are supplemented with the following
boundary conditions:

ui = ui on Γu × [0, t] (3a)

σi jn j = ti on Γt × [0, t] (3b)

and

θ = θ on Γθ × [0, t] (4a)

q jn j = q on Γq × [0, t] (4b)

q jn j = h(θ−θs) on Γh × [0, t] (4c)

where ui are the prescribed displacements on Γu and
ti the given tractions on Γt with Γu and Γt being the
complementary parts of the boundary Γ (i.e., Γu ∩Γt =
φ,Γu ∪Γt = Γ). The body is also subject to the thermal
boundary conditions where the prescribed temperature θ
is specified on Γθ, the given heat flux q is imposed on
Γq, and the convection heat loss to an ambient tempera-
ture θs occurs on Γh. Likewise, Γu, Γq and Γh constitute
another set of complementary parts of the boundary. h
is the coefficient of the convection, and n j are the com-
ponents of the unit outward normal to Γ. Since θ equals
the temperature change, the initial condition is set to be
θ(x,0) = 0.

The constitutive equations for a linearly isotropic ther-
moelastic material are as follows:

σi j = λεkkδi j +2µεi j −βθδi j (5)

q j = −κθ, j (6)

where λ and µ are Lame’constants, β is the stress-
temperature modulus, κ is the thermal conductivity, and
εi j is the infinitesimal strain tensor which is related to the
displacement field ui by

εi j =
1
2
(ui, j +u j, i) (7)

In this work, the interchange between thermal and me-
chanical energy is neglected since the laser heating
considered is not ultrafast (Chen, Tham and Beraun,
2004). Thus, the uncoupled, quasi-static thermomechan-
ical equations are solved in the sequence: the transient
temperature field is first determined by solving Eqs. (2)
and (6) and the relevant boundary and initial conditions,
and then the displacements are computed from Eqs. (1),
(5) and (7) with the predetermined temperature field and
the pertinent boundary conditions.

3 The MLPG Formulation

3.1 Brief Description of the MLS Approximation

In the MLPG method, the moving least squares (MLS)
approximation is adopted for forming the basis func-
tions φi(x) for an unknown trial function; see Lancaster
and Salkauskas (1981) for details. For completeness,
we briefly describe below the MLS approximation. Let
f h(x, t) be an approximation of a scalar function f (x, t)

f h(x, t) = pT (x)a(x, t)=
m

∑
j=1

p j(x)a j(x, t) (8)
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where pT (x,y) = [p1(x), p2(x), ..., pm(x)] is a vector of
the complete monomial basis of order m. Examples of
pT (x) in a 2-D problem are:

pT (x) = {1,x1,x2} for linear basis,m = 3 (9a)

pT (x) =
{

1,x1,x2,x2
1,x1x2,x2

2

}
for quadratic basis,m = 6 (9b)

The m unknown coefficients a j(x, t) are determined by
minimizing a weighted discrete L2 norm defined by

J =
n

∑
i=1

W(x−xi)[pT (xi)a(x, t)− f̂i(t)]2 (10)

where n is the number of points in the neighborhood of
point x for which the weight functions W(x−xi)> 0, and
f̂i(t) refers to the nodal variable at time t of the function
f at point xi. We choose the following Gaussian distribu-
tion to be the weight function:

W(x−xi) =

⎧⎪⎨
⎪⎩

exp[−(di/ci)2k ]−exp[−(ri/ci)2k]
1−exp[−(ri/ci)2k ] 0 ≤ di ≤ ri

0 di ≥ ri

(11)

where di = |x−xi| is the distance between points x and
xi, ci is the distance from node i to its third nearest
neighboring node, and ri is the radius of the circle out-
side of which W(x−xi) vanishes.

Finding the extremum of J in Eq. (10) with respect to
a(x, t) leads to the following system of linear equations
for the determination of a(x, t) :

A(x)a(x, t)= B(x)f̂ (12)

where

A(x) =
n

∑
i=1

W(x−xi)p(xi)pT (xi) (13a)

B(x = [W(x−x1)p(x1),W(x−x2)p(x2), ...,
W(x−xn)p(xn)] (13b)

Solving a(x, t) from Eq. (12) and substituting it into Eq.
(8), we have the following relation for the nodal interpo-
lation

f h(x, t) =
n

∑
i=1

φi(x) f̂i(t) (14)

with

φi(x =
m

∑
j=1

p j(x)[A−1(x)B(x)] ji (15)

φi(x)is usually called the basis function of the MLS ap-
proximation corresponding to node i. Note that φi(x j)
need not equal the Kronecker delta δi j , and thus f̂i(t) �=
f h(xi, t). For the matrix A to be invertible, the number of
n points must at least equal m (e.g. n ≥ m). For m = 3 or
6, Chati and Mukherjee (2004) suggest that 15 ≤ n ≤ 30
give acceptable results for 2-D elastostatic problems. In
this study, we choose m = 6 and k = 1 in Eq. (11) and
take

ri = 4ci (16)

3.2 Weak Formulation and Discretization

In this section, a weak or variational formulation corre-
sponding to the governing equations (1) and (2) and the
boundary conditions (3) and (4) is presented. The system
equations are obtained by discretizing the weak formu-
lation using the moving least squares method. We first
give the weak formulation and its discrete form for the
thermoelastic analysis, and the equations for the transient
heat conduction analysis then can be obtained in a similar
manner.

3.2.1 Thermoelastic analysis

Let ξ(x) = {ξ1, ξ2}T be a set of test functions where
ξ1 and ξ2 are two linearly independent functions defined
in Ω. Taking the inner product of Eq. (1) with ξ and of
Eq. (3a) with χξ, integrating the resulting equations over
Ω and Γu, respectively, and adding them, utilizing the in-
tegration by parts as well as the divergence theorem, and
imposing the natural boundary condition (3b) on Γt , we
obtain
Z

Ω
ε̃T σdΩ−

Z
Γu

ξT NσdΓ−
Z

Γt

ξT tdΓ

+χ
Z

Γu

ξT (u−u)dΓ = 0 (17)

where χ >> 1 is a penalty parameter. The penalty
method is chosen here for imposing essential boundary
condition (3a) due to the lack of the Kronecker delta
property of the basis function φi(x). It has been shown
that the penalty method performs with higher efficiency
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than the method of the Lagrange multipliers (e.g. see
Belytschko, Lu and Gu, 1994) and the orthogonal trans-
formation technique (e.g. see Atluri, Kim and Cho,
1999). However, the selection of the penalty parame-
ter still remains a challenge as the parameter cannot be
taken ‘very large’ in order to avoid ill-conditioned of
the system matrix. A suitable range for the value of the
penalty parameter suggested by Zhu and Atluri (1998) is
χ = (103 ∼ 107) ·E, where E is Young’s modulus of the
material.

The constitutive equation for thermal stresses is written
in the matrix form

σ = {σ11, σ22, σ12}T = Dε−βθ (18)

where D is the matrix of elastic constants and β the ma-
trix of the stress-temperature moduli; both may be func-
tions of x. For a two-dimensional isotropic solid, D be-
comes

D =
E(x)

1−v(x)2

⎡
⎣ 1 v(x) 0

v(x) 1 0
0 0 (1−v(x)/2

⎤
⎦ (19)

E =

⎧⎨
⎩

E

E
1−ν2

v =

⎧⎨
⎩

ν

ν
1−ν

for plane stress

for plane strain

(20)

and β is given by

β = β(x)

⎧⎨
⎩

1
1
0

⎫⎬
⎭ (21)

β =
αE

1−ν
(plane stress), β =

αE
1−2ν

(plane strain) (22)

The strain ε̃ in Eq. (17) can be obtained from the fol-
lowing equation by replacing displacement components
ui with the test functions ξi

ε =

⎧⎨
⎩

ε11

ε22

γ12

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u1(x)
∂x1

∂u2(x)
∂x2

∂u2(x)
∂x1

+ ∂u1(x)
∂x2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(23)

The matrix N in Eq. (17) is

N =
[

n1 0 n2

0 n2 n1

]
(24)

The most distinguished feature of the MLPG method is
that the weak formulation is based on a local sub-domain
rather than a global problem domain. We assume that N
nodes are placed in Ω and S1, S2,... SN are smooth 2-D
closed regions, not necessarily disjoint and of the same
shape and size. Let φ1,φ2, ...φ and ψ1, ψ2, ... ψn be two
sets of linearly independent functions defined over a re-
gion, say Sα. The unknown trial function u and the test
function ξ can be written respectively by

u(x) =
{

u1(x)
u2(x)

}
=

n

∑
J=1

ΦΦΦJ(x)�uJ (25)

ξ(x) =
{

ξ1(x)
ξ2(x)

}
=

n

∑
I=1

ΨΨΨI(x)
�

ξI (26)

where ΦΦΦJ = φJI and ΨΨΨI = ψII; I is a 2×2 identity ma-

trix;
�
uJ and

�

ξI are 2×1 arrays. Various options of the test
function leading to different MLPG formulations have
been discussed by Atluri and Shen (2002). Here, we
equal the test function to the weight function of the mov-
ing least squares approximation. Substitution of Eqs.
(25) and (26) into (23) for ε and ε̃, respectively, results
in

ε =
n

∑
J=1

BJ
�uJ ε̃ =

n

∑
I=1

B̃I

�

ξI (27)

where

BJ =

⎡
⎢⎣

∂φJ
∂x1

0

0 ∂φJ
∂x2

∂φJ
∂x2

∂φJ
∂x1

⎤
⎥⎦ B̃I =

⎡
⎢⎣

∂ψI
∂x1

0

0 ∂ψI
∂x2

∂ψI
∂x2

∂ψI
∂x1

⎤
⎥⎦ (28)

Replacing the domain Ω of integration in Eq. (17) by
Sα, substituting for u, ũ, ε, and ε̃ from Eqs. (25) and
(26), and requiring that the resulting equations hold for

all choices of
�

ξI , we arrive at the following linear alge-
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braic equations for
�uJ :

n

∑
J=1

Z
Sα

B̃T
I DBJ

�uJdΩ−
n

∑
J=1

Z
Γαu

ΨΨΨT
I SNDBJ

�uJdΓ

+
n

∑
J=1

χ
Z

Γαu

ΨΨΨT
I SΦΦΦJ

�
uJdΓ

=
Z

Sα

B̃T
I βθdΩ−

Z
Γαu

ΨΨΨT
I SNβθdΩ

+
Z

Γαt

ΨΨΨT
I tdΓ+χ

Z
Γαu

ΨΨΨT
I udΓ

(I = 1,2, . . .,n) (29)

where

S =
[

S1 0
0 S2

]

Si =

⎧⎨
⎩

1 if ui is prescribed on Γu

0 if ui is not prescribed on Γu

(30)

Symbolically, the simultaneous equations (29) are writ-
ten as

Kα
�uα = Fα (31)

The final system of equations can be obtained by repeat-
ing Eq. (28) for each of all the N nodes.

The weak formulation can also be obtained from the vari-
ational form for linear elastic analysis by using the so-
called Duhamel-Neumann principle (Sokolnikoff, 1956)
in which the body force b is replaced by b−β∇θ and the
prescribed tractions t on Γt replaced by t + θβn. For ex-
ample, Bobaru and Mukherjee (2002) utilized this prin-
ciple and gave the weak formulation of the Element Free
Galerkin method for thermoelastic analysis.

3.2.2 Transient heat conduction analysis

Let η(x) be another test function defined over Ω. Follow-
ing the procedure in the above thermoelastic analysis, the
weak formulation associated with the governing equation
(2) and the boundary conditions (4) can be written as
Z

Ω
∇T ηqdΩ−

Z
Ω

ηcρθ̇dΩ−
Z

Γθ

ηnT qdΓ

−
Z

Γq

ηqdΓ−
Z

Γh

ηh(θ−θs)dΓ

+χ
Z

Γθ

η(θ−θ)dΓ = 0 (32)

Here, q is the vector of heat flux and is related to the
Fourier heat conduction law by

q = {q1, q2}T = −κ∇θ (33)

with

∇θ =
{

θ,1
θ,2

}
=

⎧⎪⎨
⎪⎩

∂θ(x)
∂x1

∂θ(x)
∂x2

⎫⎪⎬
⎪⎭ (34)

The unknown trial function θ and the test function η can
also be expressed in an interpolative form as

θ(x) =
n

∑
J=1

φJ(x)
�

θJ (35a)

η(x) =
n

∑
I=1

ψI(x)
�ηI (35b)

Substitution of Eqs. (35a) and (35b) into (34) gives

∇θ =
n

∑
J=1

CJ
�

θJ (36a)

∇η =
n

∑
I=1

C̃I
�ηI (36b)

with

CJ =

⎡
⎢⎣

∂φJ
∂x1

∂φJ
∂x2

⎤
⎥⎦ (37a)

C̃I =

⎡
⎢⎣

∂ψI
∂x1

∂ψI
∂x2

⎤
⎥⎦ (37b)

Substituting for θ, η, ∇θ, ∇η from Eqs. (35) and (36)
into (32) for the region Sα and requiring that the result-
ing equations hold for all choices of

�ηI , we arrive at the
following system equation:

n

∑
J=1

MIJ
�̇

θJ +LIJ
�

θJ =
n

∑
J=1

GI (I = 1,2, ...,n) (38)

where

MIJ =
Z

Sα

cρψIφJdΩ (39a)
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LIJ =
Z

Sα

C̃T
I κCJdΩ−

Z
Γαθ

ψIκnT CJdΓ

+
Z

Γαh

hψIφJdΓ−χ
Z

Γαθ

ψIφJdΓ (39b)

GI =−
Z

Γαq

ψIqdΓ−χ
Z

Γαθ

ψIθdΓ+
Z

Γαh

hψIθSdΓ (39c)

Repeating Eq. (38) for the nodes in the entire domain
leads to the system of equations.

A numerical integration is required to evaluate the do-
main integral on Sα and the line integral on ∂Sα in
Eqs. (28) and (38). The region Sα, and the bound-
ary Γαu, Γαt ,Γαq,Γαθ and Γαh on ∂Sα are mapped onto
a [−1, 1]× [−1, 1] square domain and a [−1, 1] straight
line, respectively, and the Gauss quadrature rule is uti-
lized to numerically evaluate these integrals. Therefore,
no shadow cells are needed for the purpose of integration.

We use the generalized trapezoidal rule (Cook, Malkus
and Plesha, 1989) to integrate Eq. (38). The recursive
relation for temperature between the time interval Δt is

�

θ
t+Δt

J =
�

θ
t

J +Δt

{
(1−β)

�̇

θ
t

J +β
�̇

θ
t+Δt

J

}
(40)

where
�

θ
t

J and
�̇

θ
t

J denote the temperature, the time deriva-
tive of temperature, respectively, at time t, and β is a pa-
rameter that controls the stability and the accuracy of the
time integration scheme. The algorithm is uncondition-
ally stable if

β ≥ 1
2

(41)

Depending on the value of β , different time integra-
tion schemes can be obtained. In this study, the pop-
ular choice of β = 1

/
2, which is known as the Crank-

Nicolson method, is employed.

4 Estimation of Effective Moduli

Analytical functions such as the exponent and power law
functions are commonly used in describing the continu-
ously varying material properties in FGMs because these
functions facilitate obtaining exact solutions for the anal-
ysis of FGM structures. However, this approach may
not describe the physical variation of material proper-
ties in most FGMs. Another approximation for the ef-
fective material properties of FGMs is the rule of mix-

tures. Again, this method does not account for the inter-
action between phases, and thus it only gives very ap-
proximate values for most of the effective moduli. A
more theoretically sound approach is the micromechani-
cal models, among which the Hashin-Shtrikman bounds
(Hashin and Shtrikman, 1963), the Mori-Tanaka method
(Mori and Tanaka, 1973), the self-consistent method
(Hill, 1965), and the mean field approach (Wakashima
and Tsukamoto, 1991) are the popular ones. The mi-
cromechanical approach takes account of the interactions
and uses a certain representative volume element (RVE)
to solve the average local stress and strain fields of the
constituents of the composite. In the present study, the
effective heat capacity (ρc) is estimated by the “rule of
mixture”. For the effective Young’s modulus, Poisson’s
ratio, thermal conductivity, and the coefficient of thermal
expansion, we implement two homogenization schemes,
the Mori-Tanaka method and the self-consistent method,
to compute the properties. For brevity, these two meth-
ods are summarized below.

4.1 Mori-Tanaka Method

The Mori-Tanaka method assumes that the matrix phase,
denoted by the subscript 1, is reinforced by spherical par-
ticles of a particulate phase, denoted by the subscript 2.
In this notation, K1, µ1, κ1, α1 represent the bulk modu-
lus, shear modulus, thermal conductivity and coefficient
of thermal expansion, respectively, V1 the volume frac-
tion of the matrix phase, and K2, µ2, κ2, α2 and V2 the
corresponding material properties and the volume frac-
tion of the particulate phase.

For a two-phase composite, the effective bulk modulus K
and shear modulus µ derived by Mori-Tanaka (1973) are
given as

K −K1

K2 −K1
=

V2

1+(1−V2)(K2−K1)
/
(K1 +4µ1

/
3)

(42)

µ−µ1

µ2−µ1
=

V2

1+(1−V2)(µ2−µ1)
/
(µ1 + f1)

(43)

where f1 = µ1(9K1 +8µ1)
/

6(K1 +2µ1), and V1+V2 = 1.
The Young’s modulus and Poisson’s ratio are related to
the bulk and shear moduli by E = 9Kµ

/
(3K +µ) and ν =

(3K−2µ)
/

2(3K +µ), respectively.

The effective thermal conductivity κ derived by Hatta
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and Taya (1985) is

κ−κ1

κ2 −κ1
=

V2

1+(1−V2)(κ2−κ1)
/

3κ1
(44)

and the coefficient of thermal expansion α derived by
Rosen and Hashin (1970) is

α−α1

α2 −α1
=

1
/

K −1
/

K1

1
/

K2 −1
/

K1
(45)

4.2 Self-consistent method

The self-consistent method assumes that each reinforce-
ment inclusion is embedded in a continuum material
whose effective properties are those of the composite.
This method does not distinguish between matrix and
reinforcement phases, and the same overall moduli are
predicted in another composite in which the roles of the
phases are interchanged. This makes it particularly suit-
able for determining the effective moduli in those regions
that have an inter-connected skeletal microstructure.

For a two-phase composite, the effective bulk modulus K
and shear modulus µ are obtained by solving the follow-
ing coupled equations (Hill, 1965):

1

K +4µ
/

3
=

V1

K1 +4µ
/

3
+

V2

K2 +4µ
/

3
(46)

V1K1

K1 +4µ
/

3
+

V2K2

K2 +4µ
/

3
+5

(
V1µ2

µ−µ2
+

V2µ1

µ−µ1

)
+2 = 0

(47)

The self-consistent model of the thermal conductivity co-
efficient κ derived by Hashin (1968) is in the implicit
form as

V1(κ1−κ)
κ1 +2κ

+
V2(κ2−κ)

κ2 +2κ
= 0 (48)

Equation (45) is used to evaluate the coefficient of ther-
mal expansion α with K1, K2, α1, α2 and the effective
bulk modulus Kdetermined form Eqs. (46) and (47).

Figure 1 shows the effective properties as functions of
the volume fraction of V2 computed with the two homog-
enization schemes. It can be seen that the Mori-Tanaka
method results in larger values for the effective Pois-
son’s ratio, coefficient of thermal expansion, and thermal
conductivity but smaller values for the effective Young’s
modulus.
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Figure 1 : Variations of the effective material mod-
uli computed by the Mori-Tanaka method and self-
consistent method with the volume fraction of V2; (a)
Young’s modulus, (b) Poisson’s ratio, (c) coefficient of
thermal expansion, and (d) thermal conductivity

5 Results and Discussion

A computer code based on the aforestated MLPG for-
mulation was developed and used to analyze transient
thermoelastic response of 2-D FG solids composing of
Al metal and SiC ceramic phases. Figure 2 depicts a
schematic sketch of the problem studied. The FG strip
with L = 50 mm and H = 10 mm (i.e. length-to-thickness
ratio: L

/
H = 5) is irradiated by a Gaussian laser beam.
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Table 1 : Material properties for Al and SiC

Property Al SiC
Young’s modulus E (GPa) 70 427
Poisson’s ratio ν 0.3 0.17
Coefficient of thermal expansion α (/K) 23.4×10−6 4.3×10−6

Thermal conductivity κ (W/mK) 233 65
Specific Heat c (J/KgK ) 896 670
Density ρ (Kg/m3) 2707 3100

2
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2
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1
( )
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Figure 2 : An FG composite subjected to the Gaussian laser heat flux on the top surface

The intensity distribution qp of the absorbed laser energy
is expressed as

qp = Io f (t)
1

2πa2
e−

(x1−L/2)2

2a2 (49)

where I0 is the laser beam power, a is the beam ra-
dius, and the temporal function is assumed to be f (t) =
(1− e−γt) with γ being a time rise constant. The bottom
surface is thermally insulated (i.e. q = 0), and the two
edges of the strip are simply-supported and held at a ref-
erence temperature at all times

u2(0, x2, t) = u2(L, x2, t) = 0;

θ(0, x2, t) = θ(L, x2, t) = 0 (50)

Material properties of Al and SiC are listed in Table 1.
The volume fraction of the ceramic phase varies over the

thickness by a power law function

Vc = V−
c +(V+

c −V−
c )(x2

/
H)n (51)

where V+
c and V−

c are the volume fractions of SiC on
the top and the bottom surfaces, respectively; n is a
power law index that dictates the volume fraction profile
through the thickness. Effective material properties of
the 2-D FG strips are evaluated by both the Mori-Tanaka
method and the self-consistent method with the ceramic
SiC taken as phase 2. The through-the-thickness effective
properties are plotted in Fig. 3 for different values of n,
computed with the two sets of micromechanical models
respectively.

Due to symmetry of the problem about the vertically cen-
troidal plane, only one half of the domain is analyzed
under the plane stress state. Unless otherwise specified,
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Figure 3 : Through-the-thickness variations of the effective material moduli obtained by the Mori-Tanaka method
and self-consistent method for different values of the power law index n; (a) Young’s modulus, (b) shear modulus,
(c) coefficient of thermal expansion, and (d) thermal conductivity

typical values are given for V+
c = 1.0, V−

c = 0, n = 2,γ
= 10.0 s−1, I0 = 400 W , a = a0= 1 mm, and the Mori-
Tanaka method is a default homogenization scheme in
the analyses. Numerical results are presented in terms of

the nondimensional variables defined by

[
θ, u2, σ11, σ12

]

=
2πa2

0

I0

[
κAlθ

H
,

10κAlu2

αAlL2 ,
100κAlσ11

EAlαAlL
,

1000κAlσ12

EAlαAlL

]

(52)
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Figure 4 : Through-the-thickness variations of the nor-
malized longitudinal stress along the vertically centroidal
surface at t= 2s for (a) four different nodal densities and
(b) three different time steps; results are computed by the
Mori-Tanaka method for the Al/SiC FG strip under the
high heat flux of the laser heating on the top surface with
γ = 10.0s−1, V−

c = 0, V+
c = 1 and n = 2

The convergence study for the nodal density and time
step is first examined. Figure 4(a) compares the varia-
tion of the longitudinal stress σ11 through the vertically
centroidal surface of the FG strip for the four different
nodal densities at t = 2 s. In theses calculations we fix
41 equally spaced nodes along the x1 direction and use
17, 21, 25 and 29 nodes along the x2 direction. Results in

Fig. 4(a) reveal that the simulated longitudinal stresses
are almost identical for the four sets of nodal density,
thus indicating that the convergence regarding the spatial
discretization has been achieved. For the time step size,
three different time steps Δt = 10−2 s, 10−3 s and 10−4 s
are chosen. It is found from Fig. 4(b) that the variations
of the longitudinal stress are also indistinguishable. This
means that a time step of Δt = 10−2s already gives essen-
tially converged results. Therefore, we use a nodal mesh
of 49× 25 nodes and the time step size of 10−3s in the
following calculations.

Figures 5(a-d) show the time histories of temperature
θ,transverse displacement u2, longitudinal stress σ11, and
transverse shear stress σ12 at different points in the FG
strip for γ = 10.0 s−1, 1.0 s−1, and 0.1 s−1. It appears that
for γ =10.0 s−1, all of the physical quantities reach the
steady state rapidly while the change is more gradual for
γ = 0.1 s−1. The steady state is reached at about t = 20 s
for γ = 10.0 s−1, t = 25 s for γ = 1.0 s−1, and t = 50 s for γ
= 0.1 s−1. Regardless of the values of γ, the temperature
at the centroid and the longitudinal stress at the center of
top surface increase monotonically to their steady state
values, while this is not always the case for the trans-
verse displacement and the transverse shear stress. For
example, the transverse displacement moves upward (i.e.
in the positive x2 direction) in the early time, but then
deflects downward and increases in magnitude until the
steady sate establishes.

Through-the-thickness variations of the temperature,
transverse displacement and longitudinal stress at x1 =
L
/

2, and the transverse shear stress at x1 = 0 are plotted
in Figs. 6(a-d) for time t = 0.5 s, 5 s and 50 s. Clearly,
the temperature increases monotonically with its maxi-
mum values always occurring on the top (heated) surface.
In general, the Mori-Tanaka micromechanical approach
computes lower temperature than the self-consistent ap-
proach, especially in the region near the irradiated sur-
face. This is because more heat diffuses away due to
the larger effective thermal conductivity described by the
Mori-Tanaka method (Fig 3(a)). In the early times (e.g. t
= 0.5 s), the transverse displacement calculated with the
Mori-Tanaka approach is positive but changes to nega-
tive as time increases. The change is mainly caused by
bending due to the different thermal expansion (αΔθ) in
the upper (hotter) and lower (colder) regions. From Figs.
3(c) and 6(a), the ratio of αΔθ at the top and bottom sur-
faces is found to be about 3.0 at t = 0.5 s, 1.3 at t = 1.0
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Figure 5 : Time histories of the normalized (a) temperature change, (b) transverse displacement, (c) longitudinal
stress and (d) transverse shear stress, computed by the Mori-Tanaka method for different values of γ with V−

c =
0,V+

c = 1 and n = 2

s, and 0.44 at t = 50 s. A greater expansion in the top
portion would deflect the media upward, and thereby re-
sulting in the positive transverse displacement. This oc-
curs during the early times. An opposite conclusion can
be made for the late times, as the greater thermal expan-
sion occurring in the lower portion evidenced by the ra-
tio of αΔθ at the two surfaces becomes 0.44 at t = 50 s.
The less pronounced bending effect found for the Mori-
Tanaka method in Fig. 6(b) is due to the larger differ-

ence of the effective thermal expansion coefficient in the
top region between the two methods. At these three time
instants, the calculated longitudinal stress is in tension
near the top and bottom surfaces and in compression in
the middle region of the FG strip. The transverse shear
stress consists of two half-sine waves of different ampli-
tudes through the thickness.

Figures 7(a-d) show the dependences of the temperature,
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Figure 6 : Through-the-thickness variations of the normalized (a) temperature change and (b) transverse displace-
ment computed by the Mori-Tanaka method and self-consistent method at t = 0.5s, 1s and 50s, and (c) longitu-
dinal stress and (d) transverse shear stress computed by the Mori-Tanaka method at t = 0.5s, 1s , 5s and 50s;
V−

c = 0, V +
c = 1, γ = 10.0s−1 and n = 2

transverse displacement, longitudinal stress and trans-
verse stress on the power law index n, computed by the
Mori-Tanaka method and the self-consistent method. Al-
though the temperature obtained from the two microme-
chanical approaches are quite close in both the tran-
sient and steady states, the other physical quantities agree
qualitatively but differ quantitatively. As shown in Fig.
7(a), the temperature at the centroid of the FG strip de-

creases as n increases, and is always lower than that in a
pure ceramic strip (i.e. n = 0). This is because the heat
capacity (ρc) of SiC is smaller than that of Al. The lower
temperature predicted by the Mori-Tanaka approach than
that by the self-consistent approach is due to the larger ef-
fective thermal conductivity predicted by the former, as
explained previously. The trend of monotonic decrease
with n for temperature does not apply to the transverse
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Figure 7 : Variations of the normalized (a) temperature change, (b) transverse displacement, (c) longitudinal stress,
and (d) transverse shear stress with the power law index n, computed by both the Mori-Tanaka method and self-
consistent method with γ = 10.0s−1, V−

c = 0, and V+
c = 1 at t = 1s and 50s

displacement. Instead, Fig. 7(b) shows the magnitude
of the transverse displacement is in positive first and de-
creases with n, reaches the maximum negative value, and
then increases. This behavior, again, can be explained by
the different thermal expansion between the upper and
lower regions. When the power index n becomes large
enough, the displacement sign will change back to posi-
tive as that seen for small n. The non-monotonic change
with n is also seen for the stresses in Figs. 7(c) and 7(d).

Figures 8(a) and 8(b) display the time histories of the
temperature and transverse displacement at the centroid
of the strip for four different values of n. Again, the
temperature and deformation in the FGMs differ substan-
tially from those of their homogeneous counterpart (n =
0).

With the significant discrepancy of the thermomechani-
cal results obtained by the Mori-Tanaka method and the
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Figure 8 : Time histories of the normalized (a) temper-
ature change and (b) transverse displacement computed
by the Mori-Tanaka method for different values of the
power law index n with γ = 10.0s−1, V−

c = 0, and V+
c = 1

self-consistent method found in Figs. 7(b-d), it is worth
noting here that a high fidelity micromechanical model
of the effective properties is important in the investiga-
tion of FGMs.

Figures 9(a) and 9(b) delineate the variations of the trans-
verse displacement and longitudinal stress with the value
V+

c when n is fixed to 2. Unlike the influence of the in-

dex n in those quantities (c.f. Figs. 7(b) and 7(c)), the
transverse displacement and the longitudinal stress are
monotonic functions of V+

c . At both t = 1 s and 50 s,
the magnitude of the transverse displacement increases
with the increase of V+

c . The trend also holds for the lon-
gitudinal stress. The corresponding time evolutions for
different values of V +

c are shown in Figs. 9(c) and 9(d),
respectively.

In Figs. 10(a) and 10(b), we compare through-the-
thickness variations of the transverse shear stress along
the left edge for different V+

c at the early time (t = 1 s)
and the steady state, respectively. At the steady state,
the magnitude of the shear stress at a point increases as
V+

c increases. In a transient state, however, the magni-
tude does not necessarily increases with the increase in
V+

c . When V+
c = 0, the FG strip is recovered to a pure

aluminum strip. As seen in Fig. 10(b), no shear stress is
induced in the pure aluminum strip at the steady state.

Figures 11(a) and 11(b) show the effects of the laser
beam radius on the temperature and the longitudinal
stress induced along the vertically centroid surface, re-
spectively. It is evident that under the same laser power,
a smaller laser beam results in greater temperature rise,
thereby causing more severe thermal stresses. At t = 1
s, the temperature at the center of the irradiated surface
rises up to 4107 ◦K(θ = 1.503), 1567 ◦K(θ = 0.574), 874
◦K(θ = 0.320), and 569 ◦K(θ = 0.208) for the beam ra-
dius of a = 0.5 mm, 1.0 mm, 1.5 mm and 2.0 mm, respec-
tively. Hence, for typical values of the parameters stud-
ied here (i.e. a = 1 mm and Io = 400 W ), one can heat the
surface of the FG strip at a rate of 1000 ◦K

/
s, which is

usually required for the thermal reliability of specimens.
Under this operating condition, the induced tensile stress
is found to be 0.93 GPa (σ11 = 4.160). Elperin and Rudin
(2002) also showed that the temperature of an FGM coat-
ing under the laser heating increases as the laser beam
radius decreases. In their study, a similar heating rate of
1000 ◦K

/
sby a laser beam of power 1 KW and radius 1

∼ 2 mm is reported.

6 Conclusions

We have presented the MLPG analysis for thermoelas-
tic response of a 2-D Al/SiC functionallity graded com-
posite subjected to high intensity laser irradiation. The
effective material properties are evaluated from the lo-
cal volume fraction of ceramic and metal phases by us-
ing two homogenization schemes. It is shown that a tai-
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Figure 9 : Variations of the normalized (a) transverse displacement and (b) longitudinal stress with volume fraction
V+

c ; the time histories of the normalized (c) transverse displacement and (d) longitudinal stress for different values
of V +

c ; results are computed by the Mori-Tanaka method for γ = 10.0s−1, V−
c = 0, and n = 2

lored FGC can significantly alter the temperature and de-
formation fields as compared to those for their homo-
geneous counterparts. An increase of the power law
index n in the material composition distribution Vc =
V−

c +(V +
C −V−

c )(x2/H)n can result in a decrease of the
temperature change, but the trend is not always true for
the stresses. For a fixed power index n, both the displace-
ment and stresses induced change monotonically with the
increase of V+

C , the ceramic volume fraction on the top

surface. It is also found that the thermomechanical re-
sults obtained with the effective properties of FGCs com-
puted by the Mori-Tanaka method and the self-consistent
method are significantly different. Therefore, it is impor-
tant to use a high fidelity model of the effective proper-
ties in the investigation of FGCs. In addition, lasers of
the same power that has a smaller beam size not only re-
sults in greater temperature but also causes higher stress
in the FG strip studied.
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Figure 10 : Through-the-thickness variations of the nor-
malized transverse shear stress computed by the Mori-
Tanaka method for different values of volume fraction
V+

c at (a) t = 1s and (b) t = 50s with γ = 10.0s−1, V−
c = 0,

and n = 2

Unlike finite element methods, the MLPG method re-
quires only a set of nodes for both the interpolation of
the trial functions and the integration of the weak forms.
Moreover, this meshfree method dictates the continu-
ous material properties of FGMs directly to a quadrature
point. These prominent features make the MLPG method
well-suited in the analysis of functionally graded com-
posite structures.
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Figure 11 : Through-the-thickness variations of the
normalized (a) temperature change and (b) longitudinal
stress computed by the Mori-Tanaka method for different
values of a at t = 1s with γ = 10.0s−1, V−

c = 0, V+
c = 1

and n = 2
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