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A comparison study on different MLPG(LBIE) formulations

V. Vavourakis1, E. J. Sellountos2 and D. Polyzos3

Abstract: Comparison studies on the accuracy pro-
vided by five different elastostatic Meshless Local
Petrov-Galerkin (MLPG) type formulations, based on
Local Boundary Integral Equation (LBIE) consider-
ations, are made. The main differences of these
MLPG(LBIE) formulations, as they compared to each
other, are concentrated on the treatment of tractions on
the local and global boundaries and the way of impos-
ing the boundary conditions of the elastostatic problem.
Both the Moving Least Square (MLS) approximation
scheme and the Radial Basis Point Interpolation Func-
tions (RBPIF) are exploited for the interpolation of the
interior and boundary variables. Two representative elas-
tostatic problems are solved and the relative error L2

norms of displacements obtained by the aforementioned
MLPG(LBIE)/MLS and MLPG(LBIE)/RBPIF formula-
tions are evaluated for regular and irregular distributions
of nodal points, as well as for different support domain
radii. Useful conclusions on the accuracy and the stabil-
ity of a MLPG(LBIE) method are addressed.

keyword: Meshless Local Petrov-Galerkin method,
MLPG, Local Boundary Integral Equation method,
LBIE, MLS, RBPIF, elasticity.

1 Introduction

Eight years ago, [Zhu, Zhang, and Atluri (1998a)] pro-
posed a meshless Local Boundary Integral Equation
(LBIE) method, which gained considerable attention
since it seems to circumvent some well-known draw-
backs related to a conventional boundary element formu-
lation [Beskos (1987, 1997); Polyzos, Tsinopoulos, and
Beskos (1998)] offering simultaneously the advantages
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of a meshless method where neither domain nor surface
discretization is required. In this LBIE methodology,
properly distributed nodal points without connectivity re-
quirements, covering the domain of interest as well as
the surrounding global boundary are employed instead of
any boundary or finite element discretization. All nodal
points belong in regular sub-domains (e.g. circles for
two-dimensional problems) centered at the correspond-
ing collocation points. At each nodal point, the field is
represented through the conventional integral equation
used in a Boundary Element Method (BEM) contain-
ing, however, integrals defined on the regular boundary
of the aforementioned subdomains. The field at the lo-
cal and global boundaries as well as in the interior of
the sub-domains are approximated by a Moving Least
Square (MLS) scheme. Owing to regular shapes of the
sub-domains, both surface and volume integrals are eas-
ily evaluated. The local nature of the sub-domains leads
to a final linear system of equations the coefficient matrix
of which is sparse and not fully-populated as in the case
of the BEM.

At the same time with the LBIE method, [Atluri and Zhu
(1998)] proposed a new meshless method, called Mesh-
less Local Petrov-Galerkin (MLPG) method, as an al-
ternative to the Finite Element Method. Depending on
the test functions used in the weak formulation of the
MLPG method, Atluri and co-workers developed six dif-
ferent MLPG methodologies numbered from one to six
[Atluri and Shen (2002a,b)]. The MLPG4 method uti-
lizes as test functions, the fundamental solution of the
differential equation (or part of the differential equation)
of the problem, resulting thus to a MLPG approach that is
equivalent to the LBIE method. Adopting this nomencla-
ture, the initials MLPG(LBIE) instead of LBIE are used
in the present work.

After the pioneering work of [Zhu, Zhang, and Atluri
(1998a)], several papers on the MLPG(LBIE) method
have been appeared in the literature. The most repre-
sentative are those of [Zhu, Zhang, and Atluri (1998a,b,
1999); Qian, Han, and Atluri (2004)], for linear and
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non linear acoustic and potential problems, the works of
[Sladek, Sladek, and Keer (2000); Atluri, Sladek, Sladek,
and Zhu (2000); Atluri and Zhu (2000); Sladek, Sladek,
and Keer (2000); Atluri, Han, and Shen (2003); Han
and Atluri (2004)] dealing with non-homogeneous and
linear elastic problems, the papers of [Sladek, Sladek,
and Zhang (2005a,b)] for functionally graded elastic ma-
terials, the works of [Long and Zhang (2002); Sladek,
Sladek, and Mang (2002a,b); Sladek and Sladek (2003)]
for plates, the papers of [Sladek, Sladek, and Atluri
(2001); Sladek, Sladek, Krivacek, and Zhang (2003)]
concerning thermoelastic and transient heat conduction
problems, respectively and the works of [Sladek and
Sladek (2003); Sladek, Sladek, and Bazant (2003)] for
micropolar and non-local elastic problems. Details con-
cerning the numerical implementation of a MLPG(LBIE)
method, integration techniques and the representation of
field variables through meshless interpolation schemes
can be found in the works of [Atluri, Kim, and Cho
(1999); Atluri and Zhu (2000); Sladek, Sladek, and Keer
(2000)]. Finally, a comprehensive presentation on the ap-
plication of the MLPG(LBIE) method to different types
of boundary value problems one can find in the review
paper of [Sladek, Sladek, and Atluri (2002)] and in the
book of [Atluri (2004)].

Very recently, [Sellountos and Polyzos (2003, 2005a,b)]
proposed a new MLPG(LBIE) method for solving static,
harmonic and transient linear elastic problems. The main
advantage of this method, as it is compared to the corre-
sponding ones proposed by Atluri, Sladek brothers and
co-workers, is the treatment of boundary tractions as in-
dependent variables avoiding thus the use of derivatives
of the shape functions involved in the MLS approxima-
tion scheme. Although very accurate, its requirement for
using uniform distribution of nodal points throughout the
analyzed domain confines the robustness of the method.
In order to avoid this drawback, [Sellountos, Vavourakis,
and Polyzos (2005)] proposed a new version of the above
MLPG(LBIE) method, where for the nodal points lying
on the global boundary both the displacement and the
corresponding traction local boundary integral equations
are employed. Thus, for any distribution of points, the
advantage of treating displacements and tractions as in-
dependent variables remains.

The main goal of the present work is first to investi-
gate the influence of the derivatives of both the Moving
Least Square (MLS) shape functions and the Radial Ba-

sis Point Interpolation Functions (RBPIF) on the accu-
racy of a MLPG(LBIE) formulation and second to exam-
ine the MLPG(LBIE) solution accuracy in terms of dis-
placements for uniformly distributed and irregular nodal
points. To this end, the displacement relative error L2

norms of five different elastostatic MLPG(LBIE) formu-
lations are compared for uniform and non-uniform dis-
tribution of nodal points. Their differences, as they com-
pared to each other, are the treatment of tractions on the
local and global boundaries and the way of imposing the
boundary conditions of the elastostatic problem. Both the
MLS and RBPIF collocation schemes are exploited for
the interpolation of the interior and boundary variables
and presented in brief in the next section. The aforemen-
tioned five MLPG(LBIE) formulations are presented in
section three. Two representative elastostatic problems
are solved in section four and the displacement relative
error L2 norms provided by the five MLPG(LBIE)/MLS
and MLPG(LBIE)/RBPIF formulations are evaluated for
different support domain radii.

2 Approximation and Interpolation schemes

In this section the MLS approximation and the RBPIF
used for the approximation and the interpolation, respec-
tively, of the considered fields at any point of domain of
interest, are presented in brief.

Consider a domain Ω surrounded by a boundary Γ, both
covered by arbitrary distributed points x(k), as shown in
Fig. 1. Each point belongs to the interior of a small do-
main Ω(k), called support domain. In the present work the
support domains of all nodes are considered to be circles
with center x(k) and radius r(k)

0 , as it is depicted in Fig. 1.
For an arbitrary point y, the support subdomains Ω( j) of
the adjacent nodal points x( j), j = 1, . . ., n that contain y
define a non-circular subdomain: Ω̂y = Ω(1)∪· · ·∪Ω(n),
called domain of definition of y.

2.1 Moving Least Squares approximation

The MLS scheme approximates the displacement field at
a point y of an elastic body according to the following
expression [Lancaster and Salkauskas (1981)]

ui (y) = p(y) ·a(i) (y) (1)

where a(i) is a vector of unknown coefficients and p is a
vector the components of which form a complete basis of
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Figure 1 : The circular support domains Ω( j) and the
non-circular domain of definition Ω̂y used for the approx-
imation of the field at point y.

monomials of the spatial variables yi. A quadratic basis
is adopted herein, i.e.

p(y) =
{

1 y1 y2 y2
1 y1y2 y2

2

}
(2)

The m unknown coefficients of a(i) are determined by
minimizing the L2-norm:

Ji =
n

∑
j=1

w
(

y,x( j)
)[

p
(

x( j)
)
·a(i) (y)− ûi

(
x( j)

)]2
(3)

where ûi
(
x( j)

)
is the unknown fictitious nodal displace-

ment at node x( j) and w
(
y,x( j)) stands for a weighted

function, which for the present work is chosen to be the
Gaussian weighted one written as

w
(

y,x( j)
)

= 1.0+
e−(d j/c)2k −1.0

1.0−e−(r( j)
0 /c)2k

(4)

with the constants: k = 1 and c = 4.2, d j being the Eu-
clidean distance between the evaluation point y and the
point x( j) the support domain of which is defined by the
radius r( j)

0 .

The minimization of Ji leads to the linear relation:

Ã
(

y,x( j)
)
·a(i) (y) = B̃

(
y,x( j)

)
· û(i) (5)

where

û(i) =
{

ûi
(
x(1)) . . . ûi

(
x(n))}T

(6)

Ã
(

y,x( j)
)

=
n

∑
i=1

w
(

y,x(i)
)

p
(

x(i)
)
⊗p

(
x(i)

)
(7)

B̃
(

y,x( j)
)

=

⎡
⎢⎣

w
(
y,x(1))p

(
x(1))

...
w

(
y,x(n))p

(
x(n))

⎤
⎥⎦

T

(8)

If matrix Ã is non-singular and n ≥ m then

a(i) (y) = Ã−1
(

y,x( j)
)
· B̃

(
y,x( j)

)
· û(i) (9)

Inserting Eq. 9 into Eq. 1 the following MLS displace-
ment scheme is obtained

ui (y) = p(y) · Ã−1
(

y,x( j)
)
· B̃

(
y,x( j)

)
· û(i) (10)

written in vector form as

u(y) =
n

∑
j=1

φ
(

y,x( j)
)

û
(

x( j)
)

(11)

with û
(
x( j)

)
being the unknown fictitious vector field at

node x( j) and

φ
(

y,x( j)
)

=
m

∑
i=1

pi

(
x( j)

)[
Ã−1

(
y,x( j)

)
· B̃

(
y,x( j)

)]
i j

(12)

the so called MLS shape functions.

The approximation of the traction vector t(y) defined at a
boundary point y can be accomplished either by writing
it as a combination of the adjacent nodal fictitious dis-
placement vectors û

(
x( j)

)
or by considering the bound-

ary nodal traction vector as independent variable of the
problem. In the first case tractions are expressed through
displacements û by substituting the MLS approximation
Eq. 11 into the definition of tractions. Specifically, ap-
plying the gradient operator on Eq. 11 yields

∇yu(y) =
n

∑
j=1

∇yφ
(

y,x( j)
)
⊗ û

(
x( j)

)
(13)

where the components of the vector ∇yφ (≡φ,y) are given
by

φ,y

(
y,x( j)

)
=

m

∑
i=1

{
pi

(
x( j)

)[
Ã−1

(
y,x( j)

)
· B̃,y

(
y,x( j)

)

+ Ã−1
,y

(
y,x( j)

)
· B̃

(
y,x( j)

)]
i j

+ pi,y

(
x( j)

)[
Ã−1

(
y,x( j)

)
· B̃

(
y,x( j)

)]
i j

}
(14)
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Applying Hooke’s law on Eq. 11 and taking into account
Eq. 13 and Eq. 14, the MLS approximation of a traction
vector at y is finally written in the form [Sladek, Sladek,
and Mang (2002a)]

t(y) = Ñ(y) · D̃ ·
n

∑
j=1

Ẽ
(

y,x( j)
)
· û

(
x( j)

)
(15)

where

D̃ =

⎡
⎣λ+2µ λ 0

λ λ+2µ 0
0 0 µ

⎤
⎦ (16)

Ñ(y) =
[

n̂1 0 n̂2

0 n̂2 n̂1

]
(17)

Ẽ
(

y,x( j)
)

=

⎡
⎣φ,1

(
y,x( j)) 0
0 φ,2

(
y,x( j))

φ,2
(
y,x( j)

)
φ,1

(
y,x( j)

)
⎤
⎦ (18)

with λ, µ being the Lamé constants and n̂i the unit normal
vector component at y.

In the second case where the boundary tractions are con-
sidered as independent variables of the problem, the MLS
approximation of t can be accomplished directly through
the relation

t(y) =
n

∑
j=1

φ
(

y,x( j)
)

t̂
(

x( j)
)

(19)

where the fictitious nodal tractions t̂ are zero for inter-
nal nodes and unknown vectors for the nodes lying on
the global boundary Γ. In other words, the approxima-
tion Eq. 19 utilizes all the nodal points belonging in the
domain of definition Ω̂y in order to define the shape func-
tions, employs however, only the traction vectors of the
adjacent boundary nodes to approximate the traction vec-
tor at y.

2.2 Radial Basis Point Interpolation Functions

The RBPIF scheme interpolates the displacement field
at a point y of an elastic body using both a polynomial
basis function p and a radial basis function b, as follows
[Wendland (1999); Wang and Liu (2002)]

ui (y) = p(y) ·a(i) (y)+b(y) · c(i) (y) (20)

where a(i) and c(i) are unknown coefficient vectors.

In order to guarantee uniqueness on the achieved inter-
polation, the following equation must be satisfied

p(y) · c(i) (y) = 0 (21)

The coefficients in Eq. 20 are determined by enforcing
the interpolation pass through all n scattered nodal points
within the influence domain. Thus, one can write[

B̃ P̃
P̃T 0̃

]
·
{

c
a

}
=

{
u
0

}
⇐⇒ G̃ ·

{
c
a

}
=

{
u
0

}
(22)

where u =
{

u(1) . . . u(n)}T
is a vector comprising the dis-

placement vectors corresponding to the nodal points be-
longing in the influence domain of point y, while the ma-
trices B̃ and P̃ have the form

B̃ =

⎡
⎢⎢⎢⎣

b1(x(1)) b2(x(1)) . . . bn(x(1))
b1(x(2)) b2(x(2)) . . . bn(x(2))

...
...

...
b1(x(n)) b2(x(n)) . . . bn(x(n))

⎤
⎥⎥⎥⎦ (23)

P̃ =
[
p(x(1)) . . . p(x(n))

]
(24)

In the present work, the following Multiquadrics radial
basis function is chosen

bi(x( j)) =
(
d2

i +R2)q
(25)

where q = 0.5, di is the Euclidean distance between
points x(i) and x( j), and R is a shape parameter equal to
the minimum distance of the pairs of nodes: (y, x(1)), . . . ,
(y, x(n)).

Determining a(i) and c(i) via Eq. 22 and considering the
Multiquadrics radial basis function of Eq. 25, the inter-
polation scheme represented by Eq. 20 is written as

ui (y) =
{

bT (y) pT (y)
} · G̃−1

(
y,x( j)

)
·
{

u(i)

0

}
(26)

or in vector form

u(y) =
n

∑
j=1

φ
(

y,x( j)
)

u
(

x( j)
)

(27)

where the shape functions are defined by

φ
(

y,x( j)
)

=
n

∑
k=1

bk (y)G−1
k j

(
y,x(k)

)
+

n

∑
l=1

pl (y)G−1
(n+l) j

(
y,x(l)

)
(28)
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The derivatives of shape functions are easily obtained as

φ,y

(
y,x( j)

)
=

n

∑
k=1

bk,y (y)G−1
k j

(
y,x(k)

)
+

n

∑
l=1

pl,y (y)G−1
(n+l) j

(
y,x(l)

)
(29)

As soon as the derivatives of shape functions are deter-
mined, the representation of tractions via the RBPIF is
accomplished either by Eq. 15 or by Eq. 19.

3 LBIE formulations

In this section, five different MLPG(LBIE) formulations
are presented. As it is already mentioned, the main differ-
ences of these formulations are concentrated on the treat-
ment of traction vectors on the local and global bound-
aries involved in the LBIEs of a typical MLPG(LBIE)
formulation. Thus, the departure point will be the
presentation of the LBIEs used in the aforementioned
MLPG(LBIE) methods.

Consider a two-dimensional linear elastic continuum do-
main Ω with boundary Γ, where body forces are assumed
to be negligible. The displacement field u at any point of
the domain satisfies the Navier-Cauchy equation of equi-
librium

µ∇2
xu(x)+(λ+µ)∇x∇x ·u(x) = 0 (30)

with ∇x being the gradient operator.

The Boundary Conditions (BCs) are assumed to be

u(x) = U(x) ,x ∈ Γu

t(x) = T(x) ,x ∈ Γt
(31)

where U, T represent the prescribed displacement and
traction vectors on the boundary sections Γu and Γt (Γu ∪
Γt ≡ Γ), respectively.

The integral representation of the above described prob-
lem for an arbitrary chosen nodal point x(k) is [Polyzos,
Tsinopoulos, and Beskos (1998)]

au
(

x(k)
)

+
Z

Γ
t̃∗

(
x(k),y

)
·u(y) dSy

=
Z

Γ
ũ∗

(
x(k),y

)
· t(y) dSy (32)

where ũ∗, t̃∗ are the two-dimensional static fundamental
displacement and traction solution kernels, respectively.

Ω
Γ

x(k)

r(k)0

Ω(k)

∂Ω(k)

x(k)

∂Ω(k)

Γ(k)

Figure 2 : Local domains Ω(k) for arbitrary nodes x(k)

with support domain radius r(k)
0 , inside the domain Ω

with global boundary Γ.

and

a =

⎧⎪⎨
⎪⎩

1/2, x(k) ∈ Γ
1, x(k) ∈ Ω
0, x(k) �∈ Ω∪Γ

(33)

Since both ũ∗ and t̃∗ become singular only when the field
point y approaches the source point x(k), Eq. 32 can also
be written in the form

au
(

x(k)
)

+
Z

∂Ω(k)∪Γ(k)

t̃∗
(

x(k),y
)
·u(y) dSy

=
Z

∂Ω(k)∪Γ(k)

ũ∗
(

x(k),y
)
· t(y) dSy (34)

where ∂Ω(k) is the boundary of the support domain Ω(k)

corresponding to point x(k) and defined in section 2,
while Γ(k) is the part of Γ intersected by Ω(k), as shown
in Fig. 2. In the case where the support domain of the
source point does not intersect the global boundary then
the boundary integrals on Γ(k) vanish.

Eq. 34 can be further simplified into a new form by re-
moving the boundary integral over ∂Ω(k) containing the
unknown traction vectors t. According to [Atluri and Zhu
(2000)] this can be accomplished with the aid of a com-
panion solution ũc, which satisfies the following bound-
ary value problem:

µ∇2
yũc

(
x(k),y

)
+(λ+µ)∇y∇y · ũc

(
x(k),y

)
= 0,

y ∈ Ω(k)

ũc
(

x(k),y
)

= ũ∗
(

x(k),y
)

, y ∈ ∂Ω(k) (35)
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Making use of ũc, Eq. 34 can be transformed to [Selloun-
tos and Polyzos (2005b)]

au
(

x(k)
)

+
Z

∂Ω(k)∪Γ(k)

t̃∗∗
(

x(k),y
)
·u(y) dSy =

Z
Γ(k)

ũ∗∗
(

x(k),y
)
· t(y) dSy (36)

where ũ∗∗ = ũ∗ − ũc and t̃∗∗ = t̃∗ − t̃c.

3.1 MLPG(LBIE) formulation 1

Considering the LBIE of Eq. 36 and expanding both u
and t according to Eq. 11 and Eq. 19, respectively, one
obtains

a∑
j

φ
(

x(k),x( j)
)

u
(

x( j)
)

+∑
j

Z
∂Ω(k)∪Γ(k)

t̃∗∗
(

x(k),y
)

φ
(

y,x( j)
)

dSy ·u
(

x( j)
)

= ∑
j

Z
Γ(k)

ũ∗∗
(

x(k),y
)

φ
(

y,x( j)
)

dSy · t
(

x( j)
)

(37)

with u, t being either the fictitious nodal displacements
and traction values û and t̂, respectively, when the MLS
approximation scheme is used, or the true nodal ones u
and t, when the RBPIF are employed.

Collocating Eq. 37 at all nodes of the discretized model,
a set of linear algebraic equations is derived, written in
matrix form as

H̃ ·u = G̃ · t (38)

where the martices H̃ and G̃ contain non-singular,
weakly singular and strongly singular integrals, the form
and the numerical evaluation of which are explained in
detail in the work of [Sellountos and Polyzos (2003)].

The BCs are applied straighforward on Eq. 38. For
the case of the MLS approximation, this is possible
only when a relatively uniform mesh is met [Li and
Liu (2002); Sellountos and Polyzos (2003)]. How-
ever, for the sake of comparison both uniform and
non-uniform distribution of points are utilized in the
present MLPG(LBIE)/MLS formulation. Separating
known from unknown nodal quantities, one concludes to
a final linear system of equations

Ã ·v = b (39)

where the vectors v and b contain the unknown and
known, respectively, nodal displacements and/or trac-
tions, while matrix Ã is sparse, reflecting thus the local
nature of the MLPG(LBIE) methodology.

3.2 MLPG(LBIE) formulation 2

It is well known that MLS scheme does not interpolate
data. Consequently, in order to satisfy the essential BCs,
for an arbitrary type of node distribution, a very simple
linear transformation has been proposed [Atluri, Kim,
and Cho (1999)]:

u(y) =
n

∑
j=1

ϕ
(

y,x( j)
)

u
(

x( j)
)

(40)

where

ϕ
(

y,x( j)
)

=
n

∑
i=1

φ
(
y,x( j))

φ
(
x( j),x(i)

) (41)

Obviously, this tranformation is not valid if the RBPIF
scheme is used.

Adopting the interpolation scheme of Eq. 40 instead that
of Eq. 11 for both displacements ad tractions, Eq. 36 ob-
tains the form

a∑
j

ϕ
(

x(k),x( j)
)

u
(

x( j)
)

+∑
j

Z
∂Ω(k)∪Γ(k)

t̃∗∗
(

x(k),y
)
·ϕ

(
y,x( j)

)
dSy ·u

(
x( j)

)

= ∑
j

Z
Γ(k)

ũ∗∗
(

x(k),y
)

ϕ
(

y,x( j)
)

dSy · t
(

x( j)
)

(42)

Collocating at all nodes of the discretized model, a sys-
tem similar to that of Eq. 38 is obtained with vectors u, t
representing the exact nodal values and not the fictitious
ones. As a result, the BCs can be inserted directly in
Eq. 38 and the final system of Eq. 39 is easily obtained.

3.3 MLPG(LBIE) formulation 3

Splitting the integrals of Eq. 36, defined on the global
boundary Γ(k) (≡ Γ(k)u∪Γ(k)t), according to the BCs and
inserting the prescribed displacement and traction values
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in the integrals, it is derived that

au
(

x(k)
)

+
Z

∂Ω(k)∪Γ(k)t

t̃∗∗
(

x(k),y
)
·u(y) dSy

+
Z

Γ(k)u

t̃∗∗
(

x(k),y
)
·U(y) dSy

=
Z

Γ(k)u

ũ∗∗
(

x(k),y
)
· t(y) dSy

+
Z

Γ(k)t

ũ∗∗
(

x(k),y
)
·T(y) dSy (43)

Making use of Eq. 11 and Eq. 15, wherever there are un-
known displacement and traction vectors, Eq. 43 yields

a〈
∑ j φ

(
x(k),x( j))u

(
x( j))

or
U

(
x(k)) 〉

+∑
j

Z
∂Ω(k)∪Γ(k)t

t̃∗∗
(

x(k),y
)

φ
(

y,x( j)
)

dSy ·u
(

x( j)
)

+
Z

Γ(k)u

t̃∗∗
(

x(k),y
)
·U(y)dSy

= ∑
j

Z
Γ(k)u

ũ∗∗
(

x(k),y
)
· Ñ(y) · D̃ · Ẽ

(
y,x( j)

)
dSy

·u
(

x( j)
)

+
Z

Γ(k)t

ũ∗∗
(

x(k),y
)
·T(y) dSy (44)

where u represents the fictitious nodal displacements
when the MLS approximation scheme is used, or the ex-
act ones in the case of the RBPIF.

It should be noted here that Eq. 44 contains derivatives of
shape functions only when the support domain of point
x(k) intersects the global boundary Γ in a part where the
displacement vector is prescribed (Γ(k)u). Perfoming all
the numerical integrations, as in the previous formula-
tions, a final system of linear algebraic equations similar
to that of Eq. 39, is obtained.

Depending on the type of interpolation functions, the so-
lution of this system provides all the fictitious or exact
displacement values of the considered elastic problem.

3.4 MLPG(LBIE) formulation 4

In this formulation, Eq. 34 instead of Eq. 36 is employed.
On the global boundary both displacements and tractions
are treated as independet variables, while the tractions
defined on the local boundaries ∂Ω(k) are analyzed via

the representation of Eq. 15. Thus, one can write

a∑
j

φ
(
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)

u
(

x( j)
)

+∑
j

Z
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)
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Z
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ũ∗
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)

+∑
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Z
Γ(k)

ũ∗
(

x(k),y
)

φ
(

y,x( j)
)

dSy · t
(

x( j)
)

(45)

Collocating Eq. 45 at all nodes of the discretized model, a
set of linear equations similar to that of Eq. 38 is formed
and the solution procedure is exactly the same as that de-
scribed in the first formulation.

3.5 MLPG(LBIE) formulation 5

This formulation, as the previous one, utilizes Eq. 34 and
for the treatment of BCs exploits the procedure adopted
in the third formulation. Thus, Eq. 34 for the k-th node is
the one below

a〈
∑ j φ

(
x(k),x( j)

)
u
(
x( j)

)
or

U
(
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Z
∂Ω(k)∪Γ(k)t

t̃∗
(

x(k),y
)

φ
(

y,x( j)
)

dSy ·u
(

x( j)
)

+
Z

Γ(k)u

t̃∗
(
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)
·U(y)dSy
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Z
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ũ∗
(
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)
· Ñ(y) · D̃ · Ẽ

(
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)
dSy

·u
(

x( j)
)

+
Z

Γ(k)t

ũ∗
(

x(k),y
)
·T(y) dSy (46)

Collocating Eq. 46 at all nodes and following the so-
lution procedure of the previous formulation the un-
known nodal displacements are evaluated. Comparing
with MLPG(LBIE) formulation 4, one can say that the
present formulation employs LBIEs comprising deriva-
tives of the MLS or RBPIF shape functions for all con-
sidered nodal points.

4 Numerical Examples

In this section two elastostatic problems, known in the
literature as Lamé and Kirsch problems, are solved with
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the aid of the five MLPG formulations presented in the
previous section. For comparison purposes of the present
work, the displacement relative error L2 norm in logarith-
mic scale, i.e.

erru = log10

√√√√‖uanalytical −unumerical‖2

‖uanalytical‖2 (47)

is evaluated for both problems and for the five
MLPG(LBIE) formulations.

4.1 Lamé problem

Consider a cylinder of unit external radius and thickness
equal to 0.2cm, as shown in Fig. 3, subjected to internal
pressure load of magnitude equal to 10Pa. Due to sym-
metry of the problem only one quadrant is analyzed with
130 uniformly distributed nodes covering both the inte-
rior and the boundary of the cylinder (Fig. 4). Since the
mesh is uniform, all nodes are set in the numerical cal-
culations to share the same support domain radius. The
material properties are considered to be E = 4.22kPa for
Young modulus of elasticity and ν = 0.25 for Poisson ra-
tio. The exact solution of the Lamé problem can be found
in the book of [Timoshenko and Goodier (1970)].

Fig. 5 depicts the displacement relative error L2 norm,
evaluated for the five MLPG(LBIE) formulations, as a
function of the dimensionless ratio of the support domain
radius r0 of all nodes to the Euclidean distance d of two
close-distant nodes. The same error measures are dis-
played in Fig. 6, where the RBPIF scheme is exploited.

For a uniform distribution of points Fig. 5 and Fig. 6
show that:

• MLS approximation scheme provides more accu-
rate results than the RBPIF one. It should be noted,
however, that this remark is valid for the weighted
functions and constant considered in the MLS and
RBPIF schemes, explained in subsections 2.1 and
2.2. No parametric study on the determination of
the optimum shape parameters of the utilized inter-
polation schemes is carried out in the context of the
present work.

• Higher accuracy is accomplished with the aid of for-
mulation 1 and 3. Furthermoe, when the MLS ap-
proximation scheme is employed, formulation 1 in-
creases its accuracy as the support domain of each

0.8cm

1.0cm

10Pa

Figure 3 : Lamé’s problem of a cylinder subjected to a
uniform internal pressure load.

Figure 4 : Cylinder quadrant discretized with uniformly
distributed nodes.

nodal point increases, while formulation 3 seems to
be independed of the size of the considered support
domains.

• The use of derivatives of the MLS and RBPIF shape
functions on the local boundary of the support do-
mains, affects drastically the solution accuracy and
the stability of a MLPG(LBIE) formulation.
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Figure 5 : Displacement relative error L2 norm for vari-
ous support domain radii when the MLS scheme is used,
for the Lamé problem.

Figure 6 : Displacement relative error L2 norm for var-
ious support domain radii when the RBPIF scheme is
used, for the Lamé problem.

1cm
1Pa 1Pa

Figure 7 : Kirsch’s problem of the infinite plate sub-
jected to a uniform tensile load.

Figure 8 : Distribution of nodes on the quarter part of
the plate with hole.

4.2 Kirsch problem

The Kirsch problem is that shown in Fig. 7 where a plate
with a circular hole, located in the center, subjected to
plane stress. For symmetry reasons only the upper right
10cm× 10cm quadrant is analyzed, as shown in Fig. 8,
while the hole has 1cm radius. 145 non-uniforn nodes
are used to discretize the model, with the node distribu-
tion being more dense near to the central hole of the plate.
Due to the pattern of point distribution, the nodes that

have the same radial distance from the center of the plate
have the same support domain radius. In order to keep
the ratio r0/d constant for each nodal point, the support
domain radius r0 increases as the radial distance at the
points increases. Of course the criterion of adequate sup-
port domain overlapping is fulfilled. The material prop-
erties are considered to be: E = 4.2kPa and ν = 0.25.
The analytical solutions for this problem can be found in
[Timoshenko and Goodier (1970)].

Fig. 9 and Fig. 10 depict the displacement relative er-
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Figure 9 : Displacement relative error L2 norm for vari-
ous support domain radii when the MLS scheme is used,
for the Kirsch problem.

ror L2 norm in depedence to the dimensionless mean ra-
tio of the support domain radius to the minimum dis-
tance of two neighborhood nodes for both approxima-
tion/interpolation schemes, respectively.

In view of Fig. 9 and Fig. 10, the following remarks have
to be made:

• For non-uniform distribution of points, both
MLPG(LBIE)/MLS and MLPG(LBIE)/RBPIF for-
mulations provide comparable results.

• Higher accuracy and stability is accomplished via
formulations 1, 2 and 3.

• As in the previous numerical example, the use of
derivatives of shape functions in the integrals de-
fined on the local boundaries affects the accuracy
and the stability of the studied MLPG(LBIE) for-
mulations.

5 Conclusions

A comparison study on five MLPG(LBIE) formulations
has been made in the present work. Both MLS approxi-
mation and RBPIF schemes are used in their implemen-
tation. In brief the main characteristics of these five for-
mulations are:

MLPG(LBIE) formulation 1: It is identical to that pro-
posed by [Sellountos and Polyzos (2003)]. No shape
function derivatives are involved in this formulation,

Figure 10 : Displacement relative error L2 norm for var-
ious support domain radii when the RBPIF scheme is
used, for the Kirsch problem.

since the companion solution is exploited and on the
global boundary displacements and tractions are interpo-
lated as independet variables. When the MLS approxi-
mation scheme is utilized, the BCs are imposed directly
on the fictitious û and t̂.

MLPG(LBIE) formulation 2: This formulation is the
same with the previous one, utilizing however the in-
verse MLS approximation scheme of [Atluri, Kim, and
Cho (1999)] where the exact nodal displacement vectors
and not the fictitious ones are involved in the MLS shape
functions.

MLPG(LBIE) formulation 3: The main difference of this
formulation, as it is compared to the previous ones, is
that it treats the unknown global boundary traction vector
through Hooke’s law, inserting thus derivatives of shape
functions in LBIEs valid for some nodal points lying on
the global boundary of the analyzed problem.

MLPG(LBIE) formulation 4: In this formulation dis-
placements and tractions defined on the global bound-
ary are treated in the same way as in formulation 1. On
the local boundaries, however, tractions are expressed in
terms of displacements inserting thus derivatives of shape
functions for all the internal points.

MLPG(LBIE) formulation 5: Except the nodal points
where the traction vectors are prescribed, in this formula-
tion all traction fields are expressed through Hooke’s law.
Thus, derivatives of shape functions appear in LBIEs de-
fined on internal and boundary points.
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Two problems have been solved via the aforemen-
tioned MLPG(LBIE) formulations using uniform and
non-uniform distribution of points. In view of the ob-
tained results the following conclusions can be drawn:

(i) MLPG(LBIE) formulations with uniform distribu-
tion of points provide the best results. This conclu-
sion is in agreement with the comments refered in
the work of [Augarde and Deeks (2005)].

(ii) Utilizing the same constants and weighted functions
in all formulations, MLPG(LBIE)/MLS solutions
are more accurate than the MLPG(LBIE)/RBPIF
ones.

(iii) The MLPG(LBIE) formulation 1 delivers the most
accurate results even for irregularly distributed
points.

(iv) The use of derivatives on the local boundary of the
support domains decreases the solution accuracy of
the MLPG(LBIE) formulation.

(v) Although the MLPG(LBIE) formulation 3 contains
shape function derivatives in the LBIEs of some
nodal points lying on the global boundary, it ex-
hibits accuracy being comparable to that of formu-
lation 1.

(vi) The results provided by formulations 4 and 5 show
that their solution accuracy is strongly depended on
the size of the support domains.
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