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Structured Mesh Refinement in Generalized Interpolation Material Point (GIMP)
Method for Simulation of Dynamic Problems
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Abstract: The generalized interpolation material point
(GIMP) method, recently developed using a C1 continu-
ous weighting function, has solved the numerical noise
problem associated with material points just crossing the
cell borders, so that it is suitable for simulation of rela-
tively large deformation problems. However, this method
typically uses a uniform mesh in computation when one
level of material points is used, thus limiting its effec-
tiveness in dealing with structures involving areas of
high stress gradients. In this paper, a spatial refinement
scheme of the structured grid for GIMP is presented for
simulations with highly localized stress gradients. A uni-
form structured background grid is used in each refine-
ment zone for interpolation in GIMP for ease of generat-
ing and duplicating structured grid in parallel processing.
The concept of influence zone for the background node
and transitional node is introduced for the mesh size tran-
sition. The grid shape function for the transitional node
is modified accordingly, whereas the computation of the
weighting function in GIMP remains the same. Two
other issues are also addressed to improve the GIMP
method. The displacement boundary conditions are in-
troduced into the discretization of the momentum conser-
vation equation in GIMP, and a method is implemented to
track the deformation of the material particles by tracking
the position of the particle corners to resolve the prob-
lem of artificial separation of material particles in GIMP
simulations. Numerical simulations of several problems,
such as tension, indentation, stress concentration and
stress distribution near a crack (mode I crack problem)
are presented to verify this refinement scheme.
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1 Introduction

The material point method (MPM) uses a collection of
material points, mathematically represented by Dirac
delta functions to represent a material continuum (Sul-
sky, Zhou, and Schreyer (1995); Hu and Chen (2003);
Guilkey and Weiss (2003)). A spatially fixed background
grid, and interpolation between grid nodes and mate-
rial points are introduced to track physical variables car-
ried by the material points in the Lagrangian descrip-
tion. Field equations are solved on the background grid
in the Eulerian description. Physical variables are inter-
polated from the solutions on the background grids to
material points back and forth for solution and convec-
tion of physical variables. In general, the isoparametric
shape functions, same as those used in the finite element
method (FEM), are used. As the MPM simulation is in-
dependent of the background grid, a structured grid is
usually employed for purposes of simplicity. The move-
ment of the material points represents the deformation of
the continuum. MPM has been demonstrated to be capa-
ble of handling large deformations in a natural way (Sul-
sky, Zhou, and Schreyer (1995)). However, primarily due
to the discontinuity of the gradient of the interpolation
function at the borders of the neighboring cells, artificial
noise can be introduced when the material points move
just across the grid cell boundaries, leading to simulation
instability for MPM. The generalized interpolation ma-
terial point (GIMP) method, introduced by Bardenhagen
and Kober (2004) can resolve this problem. In GIMP
a C1 continuous interpolation function is used and each
material point/particle occupies a region. GIMP has been
demonstrated to be stable and capable of handling rela-
tively large deformations (Ma, Lu, Wang, Roy, Hornung,
Wissink, and Komanduri (2005)).

The current MPM typically uses a uniform background
mesh for solving the field equations. However, this is
not efficient when stress gradients are high such as stress
concentrations in a plate with a hole, or the stress field of
a workpiece under indentation. In contrast, transitional
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mesh is effective in solving problems involving rapidly
varying stress in an area. Wang, Karuppiah, Lu, Roy,
and Komanduri (2005) have presented a method using
an irregular background mesh to deal with problems in-
volving rapidly varying stress, such as stress field near a
crack. However, this approach does not use regular struc-
tured background mesh so that mesh generation encoun-
ters the same difficulty as FEM, and leads to the loss of
some advantage of MPM on the ease of generating mesh
for a complex problem.

The use of structured grid in GIMP has facilitated the
implementation of GIMP in parallel processing. A re-
finement scheme based on splitting and merging material
particles was proposed by Tan and Nairn (2002). Re-
cently, a multilevel refinement algorithm has been devel-
oped for parallel processing using the structured adap-
tive mesh refinement application infrastructure (SAM-
RAI) (Hornung and Kohn (2002); Ma, Lu, Wang, Roy,
Hornung, Wissink and Komanduri (2005)). The compu-
tational domain was divided into multiple nested levels
of refinement. Each grid level is uniform but has a differ-
ent cell size. Smaller material particles and smaller cell
sizes are used in each finer level. Two neighboring lev-
els are connected by overlapped material particles of the
same size and data communication between levels is per-
formed at predefined intervals. However, the refinement
through material particles requires extra communication
and simulation time. In this paper, a refinement for GIMP
based on the transitional grid nodes is developed. This
refinement is natural and does not involve extra simula-
tion time. Moreover, the refined grid remains uniformly
structured in each refinement region.

While the problem associated with artificial noise has
been resolved with the use of GIMP method, it has been
observed recently that material separation could occur if
the deformation of the material particles was not tracked,
Guilkey (2005). Tracking the deformation of material
particles properly in GIMP is necessary especially when
the material particles are stretched. In this paper, an ap-
proach is developed for tracking the particle deformation
to resolve material point separation problem. This pa-
per focuses on the refinement scheme for structured grid.
Several numerical problems, such as tension, indenta-
tion, stress concentration and stress distribution near a
crack (mode I crack problem) were simulated to verify
this refinement algorithm, as well as to demonstrate the
effectiveness of tracking particle deformations.

2 GIMP

For the purpose of completeness, the basic equations in
GIMP (Bardenhagen and Kober (2004)) are summarized
here. In dynamic simulations, the mass and momentum
conservation equations are given by

dρ
dt

+ρ∇ ·v = 0, and (1)

ρa = ∇σσσ+b in Ω, (2)

where ρ is the material density, a is the acceleration, σ
and b are the Cauchy stress and body force density, re-
spectively. The displacement and traction boundary con-
ditions are given as

u = u on ∂Ωu, (3)

τττ = τττ on ∂Ωτ, (4)

where ∂Ωu ⊂ ∂Ω,∂Ωτ ⊂ ∂Ω and ∂Ωu ∩∂Ωτ = 0. In vari-
ational form, the momentum conservation equation can
be written as
Z

Ω

ρa ·δvdx

=
Z

Ω

∇σσσ ·δvdx+
Z

Ω

b ·δvdx−α
Z

∂Ωu

(u−u) ·δvdx, (5)

where δv is an admissible velocity field, α is a penalty
parameter we introduce herein to impose the essential
boundary conditions and α >> 1, Atluri and Zhu (1998),
Atluri and Zhu (2000). Applying the chain rule, ∇ ·σσσ ·
δv = ∇ · (σσσ · δv)−σσσ : ∇δv, and the divergence theorem,
Eq. (5) can be written as
Z

Ω

ρa ·δvdx +
Z

Ω

σσσ : ∇δvdx

=
Z

Ω

b ·δvdx +
Z

∂Ωτ

τττ ·δvdS

+
Z

∂Ωu

τττu ·δvdS−α
Z

∂Ωu

(u−u) ·δvdS (6)

where τu is the resultant traction due to the displacement
boundary condition on ∂Ωu. In GIMP, the domain Ω is
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discretized into a collection of material particles, with Ωp

as the domain of particle p. The physical quantities, such
as the mass, stress and momentum can be defined for
each particle. For example, the momentum for particle
p can be expressed as pp =

R
Ωp

ρ(x)v(x)χp(x)dx, where

v(x) is the velocity and χp(x) is the particle characteris-
tic function. The momentum conservation equation can
be discretized as

∑
p

Z

Ω∩Ωp

ṗpχp

Vp
·δvdx+∑

p

Z

Ω∩Ωp

σpχp : δvdx

= ∑
p

Z

Ω∩Ωp

mpχp

Vp
b ·δvdx +∑

p

Z

∂Ωτ∩Ωp

τττ ·δvdx

+∑
p

Z

∂Ωu∩Ωp

τττu ·δvdS−α∑
p

Z

∂Ωu∩Ωp

(u−u) ·δvdS (7)

where Vp =
R

Ω∩Ωp

χp(x)dx is the particle volume. Intro-

ducing a background grid and the grid shape function

Si(x) that satisfies partition of unity
Si(x)
∑
i

= 1, the admis-

sible velocity field can be represented by the grid nodal
data as δv = ∑

i
δviSi(x). Without the loss of generality,

we take u in Eq. (7) to be the displacement of the bound-
ary particles at the current time step and τu = σpnu where
nu is the unit outward normal to ∂Ωu. The momentum
conservation, Eq. (7), can eventually be written for each
node i as

ṗi = fint
i + fb

i + fτ
i + fu

i , (8)

where the time rate of change of nodal momen-
tum ṗi = ∑

p
Sippp/∆t, the nodal internal force vec-

tor fint
i = −∑

p
σσσp ·∇SipVp, the nodal body force vector

fb
i = ∑

p
mpbSip and the nodal traction force vector fτ

i =

∑
p

R
∂Ωτ∩Ωp

τττSi(x)dS. fu
i is the force vector induced by the

essential boundary condition given by

fu
i =∑

p

Z

∂Ωu∩Ωp

σσσpnuSi(x)dS−α∑
p

Z

∂Ωu∩Ωp

(up−u)Si(x)dS.

(9)

Sip is weighting function between particle p and node i

given as

Sip =
1

Vp

Z

Ω∩Ωp

χp(x)Si(x)dx. (10)

The weighting function in GIMP is C1 continuous and
satisfies partition of unity. The momentum conservation,
Eq. (8), can be solved at each node to update the nodal
momentum, acceleration, and velocity. These updated
nodal quantities can be interpolated to the material par-
ticles to update the particles, as given by Bardenhagen
and Kober (2004). It may be noted that the mass of each
material particle does not change, so that the mass con-
servation equation is satisfied automatically.

In the discretization of the weak form of the momentum
conservation equation, a background grid is used. How-
ever, the computation is independent of the grid from one
increment to another. Hence a spatially fixed structured
grid can be used for convenience. In the background grid,
no nodal connectivity is required and the integration is
never performed on the element domain. Similar char-
acteristics have been reported for other meshless meth-
ods, such as the meshless local Petrov-Galerkin (MLPG)
method, Atluri and Shen (2002).

For a uniform structured grid, the grid shape function in
3D is defined as the product of three nodal tent functions
(Bardenhagen and Kober (2004))

Si(x) = Sx
i (x)Sy

i (y)Sz
i(z), (11)

in which the nodal tent functions are in the same form,
e.g.,

Sx
i (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x−xi ≤−Lx

1+(x−xi)/Lx −Lx ≤ x−xi ≤ 0

1− (x−xi)/Lx 0 ≤ x−xi ≤ Lx

0 Lx ≤ x−xi

(12)

Fig. 1 shows one 2D grid cell with four nodes. In this
paper, the particle characteristic function of the material
particle located at (xp, yp) is taken as

χp(x) = χx
p(x)χy

p(y), (13)

where χx
p(x) = H[x− (xp − lx)]−H[x− (xp + lx)] and H

denotes the step function.
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Figure 1 : 2D representation of a particle and a grid cell

3 Structured mesh refinement

In this section, a refinement scheme for a structured mesh
in GIMP is described. Since GIMP shares some char-
acteristics with meshless methods, we expect the GIMP
method to have h convergence in simulation (Atluri and
Shen (2002)). The momentum conservation equation is
essentially solved at each node (see Eq. (8)). Therefore,
the number of equations to be solved is the same as the
number of nodes. Finer grid and smaller material par-
ticles will lead to more accurate results. In some simu-
lations, high stress gradients exist in small regions. For
instance, in indentation with a sharp tip, the stress gra-
dient is high in the workpiece beneath the indenter tip.
In simulation of fracture problems, the stress gradient at
the crack tip is high and of particular interest. Conse-
quently, finer grid is needed for these regions; but away
from these regions, a coarser grid can be used to reduce
the computational cost. In conclusion, a uniform grid can
be either too computationally expensive if it is too fine,
or inaccurate, if it is coarse. A non-uniform grid with re-
finement can provide accurate results while minimizing
the overall computational time.

Grid refinement should maintain the same characteristics
of the structured grid as much as possible, in order to
replicate the grid generation in parallel processing. The
proposed refinement scheme is illustrated in Fig. 2 with
one particle per cell assigned. The material particles that
fill each cell are square in nature but denoted as circles
for clarity. To understand this grid, one can consider that
there are two overlapped structured grids. The coarse
grid covers a rectangular region from (0, 0) to (8, 6) and
the fine grid covers a region from (2, 2) to (6, 6). For

X 

Y 

0 2 4 6 8 

4 

2 

6 

Figure 2 : Refinement of structured grid with a refine-
ment ratio of two

each grid, the shape function can be evaluated from Eq.
(12). To be consistent with any other general refinement,
it is required that the region of the fine grid to be smaller
than the coarse grid.

When these two grids are merged into one, the shape
function and the weighting function for the nodes at
the boundary of the finer grid, for example, the nodes
at (2, 2) and (2, 3) should be changed. These nodes
are called transition nodes. To facilitate the computa-
tion of the interpolation function, we define an influ-
ence zone for each node, denoted as [L−

x , L+
x , L−

y , L+
y ] in

2D or [L−
x , L+

x , L−
y , L+

y , L−
z , L+

z ] in 3D. The symbols in
the square bracket define the size of the influence zone,
whereas the subscript denotes the coordinate axis and the
superscript denotes the direction of the axis. For exam-
ple, L−

x and L+
x represent the sizes in the negative and

positive X direction, respectively. The influence zone for
each node in 2D is rectangular and it extends to the next
immediate grid line to the left, right, bottom and top of
the node. If no more grid lines exist in any direction, such
as the boundary nodes, the size is zero in that direction.
For example, in the refined grid in Fig. 2, the influence
zones for the nodes at (2, 3) and (2, 4) are both [2, 1, 1,
1]. The influence zone for the node at (2, 2) is [2, 1, 2, 1].
Based on this definition, the influence zone for this node
in the coarse grid is [2, 2, 2, 2], and in the uniformly fine
grid is [0, 1, 0, 1].

Based on the influence zone, the nodal tent function in
each direction can be modified as, for example, in the X
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(a) Influence zone: [1, 1, 1, 1] (b) Influence zone: [1, 0.5, 1, 1] 
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Figure 3 : Effect of influence zone on the weighting functions
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     Gap

Figure 4 : Schematics showing overlaps and gaps that may occur when particle deformation is not tracked

direction,

Sx
i (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x−xi ≤ −L−
x

1+(x−xi)/L−
x −L−

x ≤ x−xi ≤ 0

1− (x−xi)/L+
x 0 ≤ x−xi ≤ L+

x

0 L+
x ≤ x−xi

. (14)

Eq. (14) can be substituted into the grid shape function
(Eq. (11)), and the weighting function between the parti-
cle p and the node i can be evaluated as

S
x
ip =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 B ≤−L−
x or A ≥ L+

x

b−a+(b2−a2)/(2L−
x )

2lp
b ≤ 0

b−a−(b2−a2)/(2L+
x )

2lp
a ≥ 0

b−a−a2/(2L−
x )−b2/(2L+

x )
2lp

otherwise

(15)

where A = x− xi − lp, B = x− xi + lp, a =max(A, −L−
x )

and b =min(B, L+
x ). When L−

x = L+
x , Eqs. (14) and

(15) are degraded to the cases for uniform grid. Without
detailed proof, the grid shape function and the weight-
ing function still satisfy partition of unity. Similarly, the
gradient of the modified weighting function can be com-
puted.

It may be noted that in Fig. 2 the refinement ratio is two,
i.e., the length of a side of a coarse cell is twice that of
the fine cell. To maintain the convenience of the struc-
tured grid, only integer refinement ratio should be used.
All nodal positions can be computed from the domain
of each grid and the cell sizes. The proposed refinement
scheme can be applied to any integer refinement ratio and
for multiple times for successive refinements. As an ex-
ample, the weighting function between a particle of size
0.5×0.5 and a node at (0, 0) with an influence zone of [1,
1, 1, 1] is shown in Fig. 3(a). The particle is on the X-
Y plane and the weighting function is computed at each
particle position. For comparison, the influence zone is
changed to [1, 0.5, 1, 1], representing a transitional node,
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Figure 5 : Simulation showing separation when the particle deformation is tracked by strain

while other conditions are the same. The weighting func-
tion for this case is plotted in Fig. 3(b). It can be seen that
the weighting function for the transitional node is still C1

continuous.

4 Numerical simulations

4.1 Tracking particle deformation

Prior to presenting the results of structured mesh re-
finement, tracking particle deformation is addressed first
since this is necessary in later simulations to achieve ac-
curacy. The material particles are initialized into regular
shapes, normally square and cube for 2D and 3D simu-
lations, respectively. All the physical quantities in a par-
ticle domain are considered to be uniform. The shape
of the particle changes during deformation. So, it is im-
portant to track the deformation of each particle. Fig. 4
illustrates the deformation of the particles in 2D when
the particles are stretched in the X-direction. If the par-
ticle deformation is not tracked, gaps will form between
neighboring particles in the X-direction, as shown in Fig.
4 (a). Due to Poisson’s effect, there will be overlap-
ping between particles in the Y-direction, if the particles
do not follow the deformation of the materials properly.
When the stretch and gaps are large enough, the particles
would be separated. Fig. 4 (b) shows the correct defor-

mation in which contiguous particles remain contiguous
after deformation.

1 2 

3 4 

Figure 6 : Velocity field of a continuum region (the ar-
rows represent both direction and magnitude)

To track the particle deformation, a convenient approach
is to calculate the deformed particle shape based on strain
history. Since the linear strain increment is computed
in GIMP, the effectiveness and validity of tracking parti-
cle deformation based on strain would be limited to rel-
atively small deformations. As an example, Fig. 5 (a)
shows the simulation of a uniaxial tension problem under
plane strain conditions. The material is silicon. Its mass
density is 2.71 g/cm3, Young’s modulus 175.8 GPa, and
Poisson’s ratio 0.28. The background grid size is 0.002
× 0.002 mm2. One particle per cell is assigned initially
and the time step is 0.02 ns (1 ns = 10−9 s). The applied
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  (b) FEM  
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(a) GIMP 

Figure 7 : GIMP results with tracking deformation of corners and their comparison with FEM

pressure increases linearly with time from 0 to 10 ns and
is then maintained constant, as shown in Fig. 5 (b). The
elongation in the X-direction of the particle is computed
as (1+εx)l0

x , where l0
x is the initial length of the particles.

Separation of the particles occurred at ∼25% strain at 6
ns before the full pressure was applied, as shown in Fig.
5 (c). Similar problems have been reported by Guilkey
(2005).
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Figure 8 : Two-dimensional indentation simulation

Tracking particle deformation by strain could be more
effective if nonlinear strain is used in the GIMP method.
However, recovery of the deformed shape based on non-
linear strain involves additional complications. Based
on the GIMP algorithm, there is another convenient ap-
proach to track the particle deformation. Numerically,
the displacement and velocity of each particle in GIMP
are computed at the center of the particle to represent the
entire particle domain. However, in reality, the velocity
and deformation at the corners of a particle can be dif-
ferent from the center. Fig. 6 shows four 2D contiguous
particles sharing one common corner point at the middle.
This corner point should have unique displacement and
velocity. As a result, it is helpful to track the displace-
ment and velocity of each corner to track the particle de-
formation.

It is not difficult to compute the velocity of the particle
corner given its location. It is computed from the inter-
polation from the background grid, similar to the center
of the particle. For a 2D particle, in addition to updating
the position of the center of the particle, the positions of
the four corners are updated at each increment. To com-
pute the weighting function for the corners, a fictitious
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 (b) Two levels  (a) One level 

 (d) Deformation not tracked  (c) Three levels 

 (MPa)

Figure 9 : Comparison of the stress distributions at different levels of refinements in force indentation

size can be assigned to each corner. Numerical simu-
lation shows that the result is not sensitive to this size
in the range of 10% to 80% of the initial particle size.
The new particle shape can be obtained by connecting the
four corners with straight lines. In order to avoid numeri-
cal integration of the interpolation function, it is assumed
that the deformed material particle shape is rectangular
with edges parallel to the coordinate axes. The size of
the rectangle is, therefore, determined from the extent of
the corners. As will be demonstrated later in this section,
this assumption does not introduce any significant error
while it can greatly improve the efficiency of the GIMP
algorithm.

Using this approach to track the particle deformation, the
problem in Fig. 5 (a) was simulated again with GIMP
and the results at 20 ns are plotted in Fig. 7 (a). No sep-
aration of particles was seen during the entire simulation
up to 50% strain. It is noted that each material particle
is plotted as a square of the same size and the particle
deformation is not shown due to software limitations on
visualization. For comparison, the same problem is sim-
ulated using FEM (Abaqus/Explicit) and the FE result is
shown in Fig. 7 (b). It can be seen that these two sets of
results agree reasonably well with each other; the maxi-
mum difference in maximum tensile stress is ∼8%.
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Figure 11 : A simple tension problem with displace-
ment boundary conditions

Time (µs)

U
x
(m

m
)

0 10 20 30 400

0.05

0.1

0.15

0.2

0.25

0.3

GIMP d=0
FE d=0
GIMP d=106 1/s
Steady State

(a) Displacement history 
Time (µs)

σ x

0 10 20 30 400

5

10

15

20

GIMP d=0
FE d=0
GIMP d=106 1/s
Steady State

(G
Pa

)

(b) Stress history 

Figure 12 : Comparisons of the displacement and stress

4.2 Indentation problem

To verify the refinement algorithm, a 2D indentation
problem was simulated. Pressure is applied at the top
of the workpiece, as shown in Fig. 8. The dashed lines
indicate the borders of refinement levels. The work mate-
rial is silicon with the properties the same as those given
in the previous section. Due to symmetry with respect to
the Y-axis, only half of the workpiece is modeled. The
size of the model is 0.027 × 0.04 mm2. The pressure in-
creases linearly with time from t = 0 - 30 ns and is then
kept constant at 60 GPa.

Several simulations were performed under different set-
tings for the purpose of comparison. In the first simu-

lation, a uniform grid with a cell size of 0.001 × 0.001
mm2 is used and the time step is 20 ps (1 ps = 10–12

s). The stress distribution in the workpiece at t = 20 ns
is shown in Fig. 9(a). In this figure, the units of length
and stress are mm and MPa, respectively. In the second
simulation, as indicated in Fig. 9(b), two levels of re-
finements are used with the refinement ratio to be 2. The
cell lengths are 0.002 mm and 0.001 mm for the first and
second levels, respectively. The fine level covers a rect-
angular area of the workpiece from (0, 0.02) to (0.02,
0.04). The grid is fixed in space; the material particles
initially in the fine region move to the coarse region dur-
ing deformation. As shown in Fig. 9(b), some fine mate-
rial particles have moved below the line Y = 0.02 mm. It



222 Copyright c© 2006 Tech Science Press CMES, vol.12, no.3, pp.213-227, 2006

may be noted that in Fig. 9 the material particles are plot-
ted as squares corresponding to their initial sizes. Gaps
between particles are intentionally shown to depict the
particle sizes.

Three levels of refinements are used in the third simu-
lation of the same problem. In this simulation, the time
step is 10 ps and the results are shown in Fig. 9(c). The
stresses agree very well with the previous two simula-
tions. Fig. 9(d) shows the result when the particle de-
formation is not tracked. A severe material separation
was observed at t = 36 ns, as indicated by the arrow.
Additionally, the displacement history of the particle in
the middle of the top surface for the third simulations is
shown in Fig. 10. The same result of the integration
point of the element in the middle of the top surface in
FE simulation using ABAQUS/Explicit is also shown in
Fig. 10 for comparison. It can be seen that the displace-
ment compares well with FE up to t = ∼20 ns. After this
time, FE simulation aborted due to mesh distortion. This
demonstrates the capability of GIMP using a grid with
structured refinement in handling large deformations.

It may be noted that if the exterior corners of the sur-
face particles are tracked from the nodal interpolations
in the same way as the interior corners, simulations tend
to become unstable due to erroneous surface corner dis-
placements. This problem was observed to be strictly
and consistently associated with the particles with exter-
nal tractions applied. It is caused by insufficient nodal
interpolation. To eliminate this problem, the exterior cor-
ners of the surface particles were tracked by strain only,
as used in these simulations.

4.3 Validation of the displacement boundary condi-
tion

We next describe the results on the verification of the
displacement boundary conditions. For dynamic simu-
lations, an artificial damping may be introduced. With
damping, the nodal momentum can be updated as

∆pi = (fint
i + fb

i + fτ
i + fu

i −dpi)∆t, (16)

where d is the artificial damping coefficient.

A rectangular slab is fixed on the left and a displacement
boundary condition is applied on the right, as shown in
Fig. 11. The material is silicon and its properties are
given in the previous section. The cell size in this simu-
lation is 0.5 × 0.5 mm2 and four particles are assigned to

each cell initially. The time step is 5 ns. The prescribed
displacement increases linearly with time to 0.5 mm at t
= 10 µs, which corresponds to a velocity of 50 m/s, and
remains constant thereafter. This problem is simulated
in FE using Abaqus/Explicit for comparison. The dis-
placement in the X-direction, Ux, for a particle initially
centered at (2.625, 1.625) as a function of time is plot-
ted in Fig. 12 (a). It can be seen that without damping,
the vibrations of displacement from both FEM and GIMP
simulation are in phase before t = 14 µs, but out of phase
afterwards. The dashed line represents the steady state
displacement at this point. It can be seen that when an
artificial damping of 106 s−1 is used, the GIMP solution
converges quickly. The error of the converged displace-
ment is 0.46%. Fig. 12 (b) shows the comparison of the
normal stress in the X-direction. Good comparison be-
tween GIMP and FE has been obtained. With damping,
the GIMP solution converges to the analytical solution
for static simulations.

4.4 Stress concentration problem

p p 
X 

Y 

θ 

Figure 13 : A plate with a circular hole subjected to ten-
sion

Fig. 13 shows a copper plate (60 × 60 mm2) with a
central hole (4 mm diameter) subjected to a distributed
load. This problem is simulated using GIMP as a dy-
namic problem with a damping factor of 1000 s−1 and
three levels of refinement. The cell sizes at these three
levels are 1.0 mm, 0.5 mm, and 0.25 mm, respectively.
One particle is assigned to each cell not adjacent to the
hole initially. The cells close to the circular hole are as-
signed 25 particles each to model the circular edge more
accurately with the use of square particles. It may be
noted that all the particles occupy square areas initially.
The time step is 10 ns and the applied distributed load
intensity p = 10 MPa. The stress distribution after 4000
steps is shown in Fig. 14 (a) and the area close to the
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Figure 14 : Normal stress in the X-direction with p = 10 MPa
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Figure 15 : Normalized tangential stress along the cir-
cumference of the hole

hole (bottom left corner in Fig. 14 (a)) is magnified in
Fig. 14 (b). The normal stress of the particle at the top of
the hole is 30.7 MPa when the applied tension is 10 MPa.
This gives a stress concentration factor of 3.07. The tan-
gential stress of the particles along the hole circumfer-
ence, normalized by the applied pressure, is plotted in
Fig. 15 in comparison with the theoretical value, Pilkey
(1997). A good agreement between the numerical sim-
ulation and theoretical value is obtained. This demon-
strates that the GIMP refinement algorithm is effective

for problems involving significant stress gradients. Fur-
thermore, with the use of small square particles, GIMP is
capable of modeling curved surfaces.

4.5 Static stress intensity factor

We next use the GIMP refinement algorithm to determine
the stress field and stress intensity factor for a mode I
crack problem to determine the capability of the GIMP
refinement algorithm in simulation of stress distribution
near a crack. Guo and Nairn (2003) have successfully
extended the MPM method to compute stress distribu-
tion in a plate with explicit cracks using multiple nodal
fields along the crack surface. The physical quantities of
material particles on each side of the crack were inter-
polated using variables in the field on that side of crack
surface. In their simulation, a uniform mesh was used.
Since the stress gradient at the crack tip is very high, a re-
fined mesh near the crack tip and a coarse mesh in the far
field should lead to savings in computational time while
maintaining the same accuracy with the use of a uniform
fine mesh. The fracture problem is thus an appropriate
problem to evaluate the refined GIMP algorithm. For this
purpose, we model the same fracture problem by Guo
and Nairn (2003) using MPM, that is, a double cantilever
beam (DCB) with a crack as shown in Fig. 16. In the
area close to the crack tip, finer meshes are used, while
in the area far away from the crack tip, coarse meshes
are used. The thickness of the plate is 1 mm, thereby
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Figure 16 : Geometry of a double cantilever beam with
a crack

justifying a plane stress condition for this problem. The
material of the DCB is considered to be homogeneous,
isotropic, and linearly elastic. Its density, Young’s mod-
ulus, and Poisson’s ratio are 1500 kg/m3, 2300 GPa, and
0.33, respectively. The applied force is F = 4×10−4 N
and this results in a mode I crack problem. The static
stress intensity factor for the DCB can be calculated us-
ing the following equation (Kanninen 1973)

KI = 2
√

3
F(a+3H/2)

H3/2
. (17)

Crack surface

X 

Y 

1 

2 

Figure 17 : Material points and background grid around
the crack tip

This problem has been simulated using MPM with uni-
form grids of three sizes, 4 mm, 2 mm, and 1 mm (Guo,
Nairn (2003)). They have computed the energy release
rate and determined the stress intensity factor from J-
integral. Their results indicate that the stress intensity
factor determined from finer grid is more accurate and
closer to the theoretical value.

(a) Overall 

(b) Magnified 

Figure 18 : Computed stress intensity factor as a
function of time

In the mesh refinement GIMP algorithm used in this
study, the energy release rate was computed using the
virtual crack closure technique (Rybicki and Kanninen
(1977); Wang, Karuppiah, Lu, Roy, and Komanduri
(2005)). The energy released during an infinitesimal
crack growth of ∆a is assumed to be the energy required
to close the crack to its initial size. Hence, the energy
release rate G is determined by

G = lim
∆a→0

1
2∆a

Z ∆a

0
(σσσn) ·∆uda. (18)

where n is the unit normal vector at the crack surface.
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For the 2D mode I crack in the X-direction,

GI = lim
∆a→0

1
2∆a

Z ∆a

0
σyy ·∆uyda. (19)

In GIMP, the energy release rate can be computed as

GI =
1

2t∆a
Ftip(u1

y −u2
y), (20)

where the superscripts 1 and 2 denote the two material
particles immediately to the left of the crack tip as shown
in Fig. 17, ∆a is the X distance between particle 1 and
the crack tip, t is the thickness of the beam. Ftip is the
nodal force to hold the crack tip together (Rybicki and
Kanninen (1977)) and is computed as the crack tip nodal
force from one side of the crack in this simulation.

The mode I stress intensity factor for the static crack is
given by

KI =
√

GE. (21)

GIMP simulations were carried out using four material
points per cell. The time step is 0.1 µs, and a damp-
ing coefficient of 4000 s−1 is used to allow the results to
converge to the static data. The computed stress intensity
factors using uniform grids of 4 mm and 1 mm, respec-
tively, are plotted in Fig. 18 (a) and the theoretical value
calculated from Eq. (17) is also shown for comparison.
For simulation with refinement, two levels of refinement
were used, i.e., 2 mm grid size for the coarse level and 1
mm grid size for the fine level, and the extent of the fine
level is indicated by the dashed square in Fig. 16. The
computed stress intensity factor using the refinement al-
gorithm is also plotted in Fig. 18 (a). It is seen that the
results from two levels of refinement are identical to the
results from one uniform fine level with 1 mm cell size.
Moreover, the simulation time using the refinement algo-
rithm is 38% shorter than that of one uniform fine level.
The computed stress intensity factor became even closer
to the theoretical value when a third level of refinement
was added for the crack tip as shown in Fig. 18 (b). For
the case of using uniform grid of 2 mm, the computed
stress intensity factor using GIMP and MPM (Guo and
Nairn 2003) are plotted in Fig. 19. The MPM results
were computed using a damping factor of 1000 s−1, and
therefore, more oscillations can be seen as expected.

Fig. 20 shows the distribution of σy at t = 2.5 ms when
the force applied on the beam was changed to F = 4 N,

Figure 19 : Comparison of the stress intensity factor
with MPM results

10000 times of the previous value, with other parameters
the same. In this simulation, three levels of refinements
with cell sizes of 1 mm, 0.5 mm and 0.25 mm, were used
and the different density of material points in each level
can be clearly seen in the figure. The computed stress
intensity factor, scaled by 10000 times, still compares
well with the theoretical value. It is noted that deforma-
tion near the crack surfaces has caused material points
crossing cell boundaries, a situation where MPM would
give numerical noise such as alternating stress signs. De-
spite the extent of the deformation, and material points
crossing cell boundaries, GIMP method with the use of
particle deformation tracking still gives correct results,
further verifying the structured refinement methods de-
veloped herein.

5 Conclusions

1. A spatial refinement scheme for a structured grid
was developed by adding transitional nodes and
by changing the influence zone of the transition
nodes in GIMP. The influence zone is square for
uniform grid nodes and rectangular for transitional
nodes. This influence zone affects the computation
of the nodal shape function. The computation of the
weighting function remains the same as for the uni-
form grid. The refinement scheme can be applied
successively and the refined grid remains structural
in each refinement level, i.e., every node can be de-
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Figure 20 : Stress distribution in the beam using three levels of refinements at t = 2.5 ms

termined by the extent of the grid level and cell size.
The refinement scheme was implemented and sev-
eral problems such as tension, indentation, stress
concentration, and stress distribution near a crack
(mode I crack problem) were modeled to demon-
strate its effectiveness and accuracy. A good agree-
ment has been obtained between numerical and the-
oretical results, indicating the validity of the struc-
tured mesh refinement for GIMP scheme.

2. The GIMP algorithm has also been extended to in-
clude the displacement boundary condition, based
on the approach used in the meshless local Petrov-
Galerkin (MLPG) method, Atluri and Zhu (2000).
A penalty parameter is used to impose the displace-
ment boundary condition and a nodal force vector
because the displacement boundary condition is in-
troduced to the nodal momentum governing equa-
tion. A uniaxial tension problem with constant
pulling velocity was simulated to verify the dis-
placement boundary condition.

3. A method to track the material particle deformation
was developed and verified in one example. When
the particle deformation is not tracked, artificial sep-
aration was observed when the particle strain in-
creases to a certain level. In tensile simulations,
when the normal strain is ∼25%, material particles
tend to separate from the body. Our approach tracks
the displacement of each corner of the material par-
ticles. Since neighboring particles share corners,
no separation would occur during deformation us-
ing this approach.
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