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A Group Preserving Scheme for Burgers Equation with Very Large Reynolds
Number

Chein-Shan Liu1

Abstract: In this paper we numerically solve the Burg-
ers equation by semi-discretizing it at the n interior spa-
tial grid points into a set of ordinary differential equa-
tions: u̇ = f(u, t), u ∈ R

n. Then, we take the dissipa-
tive behavior of Burgers equation into account by consid-
ering the magnitude ‖u‖ as another component; hence,
an augmented quasilinear differential equations system
Ẋ = AX with X := (uT,‖u‖)T ∈ M

n+1 is derived. Ac-
cording to a Lie algebra property of A ∈ so(n,1) we thus
develop a new numerical scheme with the transformation
matrix G ∈ SOo(n,1) being an element of the proper or-
thochronous Lorentz group. The numerical results were
in good agreement with exact solutions, and it can be
seen that the group preserving scheme is better than other
numerical methods. Even for very large Reynolds num-
ber the group preserving scheme supplemented with a
spatial rescaling technique also provides a reliable result
without inducing numerical instability.

keyword: Burgers equation, Lie algebra, Lorentz
Group, Group preserving scheme, Spatial rescale.

1 Introduction

In this paper we are concerned with numerical solutions
of Burgers equation:

ut +uux =
1
R

uxx, a < x < b, 0 < t < T, (1)

u(a, t) = ua(t), u(b, t) = ub(t), 0 ≤ t ≤ T, (2)

u(x,0) = f (x), a ≤ x ≤ b, (3)

where R is the Reynolds number characterizing the vis-
cosity of fluid. Burgers’ equation has been of consider-
able physical interest because it is an appropriate sim-
plification of the Navier-Stokes equations, and is also
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the governing equation for a number of one-dimensional
flow systems including the convection and diffusion of
heat, weak shock propagation, compressible turbulence,
and continuum traffic simulation.

The Burgers equation was named after Burgers (1948,
1974), the behavior of which exhibits a delicate balance
between advection and diffusion. Moreover, it is one of
the few nonlinear partial differential equations that exact
solutions are known in terms of the initial values [Cole
(1951), Hopf (1950)]. However, when R is large over
100, the computation by means of exact solution is not
practical due to the slow convergence of the Fourier se-
ries. Sometimes, the numerical methods for ut +uux = 0
and their generalization often employ an artifical viscos-
ity or dissipation mechanism to control instability with
uxx/R playing a suitable regularization role for large R.
In this sense, a numerical method that can treat the com-
putations of Burgers equation with large R becomes sig-
nificant.

In the past a few decades there were much studies on
the numerical solutions of Burgers’ equation, for ex-
ample, Fletcher (1983), Basdevant, Deville and Halden-
wang (1986), Arina and Canuto (1993), Özis and Özdes
(1996), Hon and Mao (1998), Kutluay, Bahadir and
Özdes (1999), Lin and Zhou (2001), Wei and Gu (2002),
Özis, Aksan and Özdes (2003), Young (2005) and Young,
Hu, Fan and Chen (2006).

As mentioned by Ames (1992), the numerical solution
for Burgers equation using explicit method may induce
oscillations and ripples when R is very large as to R =
10000, and under more large R, the computer time limita-
tions imposed by stability requirements prevented further
use of the explicit method.

In this paper we will propose a new numerical scheme of
explicit type for calculating the Burgers’ equation under
very large Reynolds number even up to R = 20000 and
only using 100 grid points and with a reasonable time
stepsize 10−4 sec. In order to get a stable solution of the
Burgers’ equation with R = 10000 by using the predictor-
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corrector method, it requires 200 grid points and with a
stepsize 4×10−4 sec as reported by Ames (1992).

The proposed scheme is based on the numerical method
of line, which is a well-developed numerical method
that transforms partial differential equations (PDEs) into
a system of ordinary differential equations (ODEs), to-
gether with the group preserving scheme (GPS) devel-
oped previously by Liu (2001) for ODEs. The GPS
method is very effective to treat ODEs with special struc-
tures as shown by Liu (2005, 2006a) for stiff equa-
tions and ODEs with constraints. Furthermore, Liu
(2006b) has applied the backward group preserving
scheme (BGPS) on the calculations of backward in time
Burgers equation. However, this methodology is not yet
applied to the forward Burgers equation in the open liter-
ature. On the other hand, the Burgers equation is a useful
test medium for investigating various numerical methods
on PDEs. It thus deserves our attention to develop an
effective numerical method for this specific well-known
PDE and to investigate the numerical behavior of this
new method based on group properties.

The major contributions of this paper would be em-
ploying the group preserving property of the resultant
system in the development of numerical scheme and
giving a conviction that the proposed scheme is superior
to the Euler scheme and the fourth-order Runge-Kutta
method (RK4). Specifically, the proposed scheme is
easy to implement and time saving than other methods,
for example, the multiquadric spatial approximation
[Hon and Mao (1998)], which at each time step requires
to solve the coefficients iteratively even its grid points
can be largely reduced. Usually, when one applies the
line method to PDEs, the resultant differential equations
system is highly-dimensional for an accuracy considera-
tion, and thus it is desired to use an easily-implemented
program with a minimal step and a minimal stage in the
numerical method. Of course, for ODEs the forward
Euler method is the simplest one to be implemented;
however, it would be seen that the Euler scheme can not
be applied to the Burgers equation under a reasonable
grid spacing length and time stepsize. Through this
study, we might have an easy-implementation and
explicit-single step group preserving scheme used in the
calculations of Burgers’ equation, the accuracy of which
is much better than the Euler scheme and other methods,
and also over the RK4.

2 Numerical method of line

The line method for a given system of PDEs discretizes
all but one of the independent variables; see, e.g.,
Schiesser (1991) and Ames (1992). The semi-discrete
procedure yields a coupled ODEs system which is then
numerically integrated. For the Burgers equation we dis-
cretize the derivatives on spatial coordinate x by the cen-
tral differences:

∂u(x, t)
∂x

∣∣∣∣
x=a+i∆x

=
ui+1(t)−ui−1(t)

2∆x
,

∂2u(x, t)
∂x2

∣∣∣∣
x=a+i∆x

=
ui+1(t)−2ui(t)+ui−1(t)

(∆x)2 ,

where ∆x = (b− a)/(n + 1) is a uniform grid spacing
length, and ui(t) := u(a+ i∆x, t) for simplicity. There are
totally n variables ui(t) at the n interior grid points. Then,
from Eq. (1) we obtain a system of ODEs:

u̇i(t) =
ui+1(t)−2ui(t)+ui−1(t)

R(∆x)2 −ui(t)
ui+1(t)−ui−1(t)

2∆x
,

(4)

where the index i runs from 1 to n, and a superimposed
dot stands for the differential with respect to t.

If we replace the second ui on the right-hand side of
Eq. (4) by the average ui := (ui+1 +ui +ui−1)/3, we also
have

u̇i(t) =
ui+1(t)−2ui(t)+ui−1(t)

R(∆x)2 −ui(t)
ui+1(t)−ui−1(t)

2∆x
.

(5)

Eq. (5) has totally n coupled differential equations for the
n variables ui(t), i= 1,2, . . .,n, which are subjected to the
initial conditions:

ui(0) = f (a+ i∆x). (6)

The two boundary conditions in Eq. (2) led to u0(t) =
ua(t) and un+1(t) = ub(t).

Aref and Daripa (1984) have compared the two differ-
ent discretizations (4) and (5), and indicated that the dis-
cretization (4) may induce spurious solution and the dis-
cretization (5) provides a dissipative mechanism to rule
out the spurious solution.
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To see this, let us consider homogeneous boundary con-
ditions. From Eq. (1) it can be shown that the kinetic
energy of the field u:

Ekin =
1
2

Z b

a
u2dx (7)

satisfies

dEkin

dt
= − 1

R

Z b

a

(
∂u
∂x

)2

dx < 0. (8)

A discrete version is thus
n

∑
k=1

uk
duk

dt
< 0, (9)

which is an one-side constraint that requires the numeri-
cal scheme to be a contraction mapping.

Let u = (u1, . . .,un)T and then Eq. (5) can be expressed
as

u̇ =
1

R(∆x)2 Cu− 1
6∆x

Wu, (10)

where

W :=

⎡
⎢⎢⎢⎢⎢⎣

0 u1 +u2 0 0
−(u1 +u2) 0 u2 +u3 0

0 −(u2 +u3) 0 u3 +u4
...

...
...

...
0 0 0 0

· · · 0 0
· · · 0 0
· · · 0 0

· · · ...
...

· · · −(un−1 +un) 0

⎤
⎥⎥⎥⎥⎥⎦

(11)

is an n×n skew-symmetric matrix, and

C :=

⎡
⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

· · ·
· · ·

· · ·
1 −2

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

is an n×n symmetric center difference matrix.

In above we have imposed the homogeneous boundary
conditions u0 = un+1 = 0. The eigenvalues of C are found
to be [Liu (2004)]

−4sin2 mπ
2(n+1)

, m = 1,2, . . .,n, (13)

which together with the symmetry indicate that C is
negative definite. Thus, from Eq. (10) it follows that
u · u̇ < 0, where the dot between two vectors denotes
their inner product. That is, the discretization (5)
satisfies the requirement specified in Eq. (9). For this
reason we will use Eq. (5) as a platform of our numerical
integrations of the Burgers equation.

3 The group preserving scheme

Let f = ( f1, . . . , fn)T denote the corresponding vector
fields in Eq. (5), which can be viewed as a system of
n ordinary differential equations:

u̇ = f(u, t), (14)

where u is an n-dimensional vector, and f is a vector-
valued function of u and t with components

fi =
1

R(∆x)2 [ui+1−2ui +ui−1]− 1
2∆x

ui[ui+1−ui−1],

i = 1, . . .,n. (15)

From Eqs. (10)-(12) it can be seen that u is dominated
by two forces: the first term on the right-hand side
of Eq. (10) tends to decrease the magnitude ‖u‖ :=√

u2
1 + . . .+u2

n of u, while the second term is strongly
to keeping the magnitude invariant. Especially, when R
is very large, the dominion is the second term. Therfore,
we prefer a new numerical scheme that can take the vari-
ation of ‖u‖ into account and keeps the magnitude very
slowly decreasing when R is very large.

On the other hand, Eq. (9) shows that the magnitude is
an important factor to select a suitable numerical scheme
with d‖u‖/dt < 0. It is noteworthy to take the evolution
of ‖u‖ into account, which by Eq. (14) leads to

d
dt
‖u‖ =

f ·u
‖u‖ . (16)

Combined Eqs. (14) and (16) together, Liu (2001) has
derived a single differential equations system:

Ẋ = AX, (17)

where

X :=
[

u
‖u‖

]
(18)
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is an augmented vector, and

A :=

⎡
⎣ 0n×n

f(u,t)
‖u‖

fT(u,t)
‖u‖ 0

⎤
⎦ (19)

is an augmented state matrix.

It is obvious that the first differential equation in Eq. (17)
is the same as Eq. (14), but the introduction of the sec-
ond differential equation led to a Minkowskian structure
for the augmented nonlinear system with the augmented
variable X satisfying

XTgX = u ·u−‖u‖2 = ‖u‖2 −‖u‖2 = 0, (20)

where

g =
[

In 0n×1

01×n −1

]
(21)

is a Minkowski metric, and In is the identity matrix of
order n. Moreover, A satisfying

ATg+gA = 0 (22)

is a Lie algebra of the Lorentz group SOo(n,1).

Therefore, the n-dimensional dynamical system (14)
in R

n can be embedded into an augmented n + 1-
dimensional dynamical system (17) in M

n+1, and the
cone condition

XTgX = 0 (23)

is a constraint. Even the dimension of the new system
is raising one more, the new system with its Lie algebra
property (22) allows us to develop a group preserving nu-
merical scheme [Liu (2001, 2004, 2005, 2006a)]:

u j+1 = u j +η j∆tf j (24)

with the adaptive factor

η j :=
4‖u j‖2 +2∆tf j ·u j

4‖u j‖2− (∆t)2‖f j‖2 (25)

varying step-by-step on time. In above u j denotes the
numerical value of u at a discrete time t j, ∆t = t j+1 − t j,
and f j := f(u j, t j) for simplicity.

Employing the numerical scheme (24) on Eq. (5) we
obtain a new numerical scheme for the Burgers equa-
tion. For the heat conduction problems, Liu (2004) has

adopted the group preserving scheme for the numerical
solutions of both forward and backward problems, and
Chang, Liu and Chang (2005) have applied the group
preserving scheme for the numerical solutions of the
sideways heat equation, finding that the group preserv-
ing scheme was able to calculate the numerical solutions
within a certain accuracy. In the next section we will ap-
ply it to some numerical examples.

Now, we prove that the group preserving scheme pro-
vides a contraction mapping under the following condi-
tions about the vector field and time stepsize:

f ·u < 0, (26)

∆t <
−2f ·u
‖f‖2 . (27)

From Eq. (24) we have

‖u j+1‖2 = ‖u j‖2 +2∆tη ju j · f j +(∆t)2η2
j‖f j‖2. (28)

Inserting Eq. (25) for η j into the above equation and
through some manipulations we get

‖u j+1‖2 =
‖u j‖2[4‖u j‖2 +(∆t)2‖f j‖2 +4∆tf j ·u j]2

[4‖u j‖2 − (∆t)2‖f j‖2]2
.

(29)

Under condition (27) the time stepsize is smaller than
2‖u j‖/‖f j‖, hence 4‖u j‖2 − (∆t)2‖f j‖2 > 0, and then
taking the square roots of both sides of the above equa-
tion we obtain

‖u j+1‖ =
4‖u j‖2 +(∆t)2‖f j‖2 +4∆tf j ·u j

4‖u j‖2 − (∆t)2‖f j‖2 ‖u j‖. (30)

The factor before ‖u j‖ satisfies

4‖u j‖2 +(∆t)2‖f j‖2 +4∆tf j ·u j

4‖u j‖2 − (∆t)2‖f j‖2 < 1, (31)

if conditions (26) and (27) hold. Therefore, the scheme
(24) is a contraction mapping. However, in the limiting
case with R = ∞, the new method preserves the magni-
tude ‖u‖ invariant.

It deserves to note that Eqs. (24) and (30) can be ex-
pressed neatly in terms of the augmented variable X by

X j+1 = GX j, (32)
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Table 1 : Comparing the errors of GPS and Euler scheme for R =100 and 200 of Problem 1.

∆x ∆t Error of GPS Error of Euler R = 100
0.025 1/60 0.03024 0.11199

1/70 0.01429 0.10291
1/80 0.00331 0.09635
1/90 0.00470 0.09141

1/100 0.01081 0.08754
0.02 1/60 0.05579 0.08715

1/70 0.03849 0.07907
1/80 0.02661 0.07323
1/90 0.01796 0.06880

1/100 0.01138 0.06533

R = 200
0.025 1/70 0.03805 0.24369

1/80 0.00644 0.23810
1/90 0.03251 0.23044

1/100 0.05054 0.22352
0.02 1/70 0.08321 0.23086

1/80 0.03955 0.21418
1/90 0.01331 0.20227

1/100 0.00524 0.19304

where

G =

⎡
⎢⎣

In + 2(∆t)2f j(f j)T

4‖u j‖2−(∆t)2‖f j‖2
4∆t‖u j‖f j

4‖u j‖2−(∆t)2‖f j‖2

4∆t‖u j‖(f j)T

4‖u j‖2−(∆t)2‖f j‖2
4‖u j‖2+(∆t)2‖f j‖2

4‖u j‖2−(∆t)2‖f j‖2

⎤
⎥⎦ (33)

under condition (27) satisfying the following properties:

GTgG = g, (34)

det G = 1, (35)

G0
0 ≥ 1. (36)

The det is the shorthand of determinant, and G0
0 is the

00th component of G, which is indeed an element of
SOo(n,1), and the numerical scheme basing on it is
called a group preserving scheme (GPS).

In passing we note that the scheme (24) becomes an Euler
scheme when η j = 1:

u j+1 = u j +∆tf j. (37)

Under conditions (26) and (27) the above scheme is
also of the contraction type. However, we will give
numerical examples below to show that GPS is much
accurate than the Euler scheme. The latter cannot be
applied to the Burgers equation when the Reynolds
number is moderately large. Both schemes are explicit
and single-step.

4 The problems of Burgers equation

4.1 Problem 1

Let us first consider the Burgers equation (1) with the
following boundary conditions and initial condition:

u(0, t) =
1

1+exp[−Rt/4]
,

u(1, t) =
1

1+exp[R/2−Rt/4]
,

u(x,0) =
1

1+exp[Rx/2]
, 0 ≤ x ≤ 1.
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Figure 1 : Comparison of numerical solutions with exact solutions for Problem 1: (a) numerical errors at three
different times and (b) the wave fronts at three different times.

The exact solution [Byrne and Hindmarsh (1987)] is
given by

u(x, t) =
1

1+exp[Rx/2−Rt/4]
. (38)

We apply the computational schemes (24) and (37) as
well as the RK4 to this problem by letting n = 99, ∆t =
10−3 sec, R = 100, and T = 1 sec. The numerical errors
being the differences of numerical solutions and exact so-
lutions were plotted in Fig. 1(a) for GPS, Euler and RK4
at three different times of t = 0.2,0.6,1 sec, while the
wave fronts propagation obtained by GPS were plotted
in Fig. 1(b). The exact solutions obtained from Eq. (38)
were also drawn on the same figure, but the graphs can
not be distinguished due to the closeness of the numerical
solutions to the exact ones. The peaks of numerical er-

rors appeared in Fig. 1(a) are caused by the propagation
of wave fronts, during which the field variable u under-
goes a steep variation from 1 to 0 within a thin spatial
region. At these places it can be seen that the numerical
errors are still in the order of O(∆t) for GPS but the er-
rors of the Euler scheme are large up to the order of 10−2.
The errors of GPS are smaller than that of RK4.

In addition, we make a comparison of the numerical er-
rors of GPS and Euler scheme in Table 1 for two values
of R =100 and 200 and for different grid spacing lengths
and time stepsizes. The errors were defined by the ab-
solute values of the differences of numerical solutions
to the exact solution at x = 0.5 and t = 1 sec, which is
u = 0.5 for all R by Eq. (38). From Table 1 it can be seen
that the errors of GPS are far less than those of the Euler
scheme for all cases. From the same table we can observe
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Figure 2 : For Problem 1 the numerical errors of (a) GPS and Euler scheme vs. time stepsize, (b) Euler scheme vs.
grid spacing length, and (c) GPS vs. grid spacing length.

that the errors of the Euler scheme are reduced when the
time stepsizes decrease or when the grid spacing lengths
decrease. But they are not true for GPS. For example,
under the same ∆x = 0.025, the error with ∆t = 1/80 is
smaller than those with ∆t =1/90 and 1/100; and under
the same ∆t = 1/80 the error with ∆x = 0.025 is far less
than that with ∆x = 0.02. We also observe that the Eu-
ler scheme is almost failed applying to the case R = 200.
But for GPS the errors for these two cases of R =100 and
200 are both in the range of 10−3−10−2.

Next, we choose to compare the numerical solutions with
the exact solution at x = 0.2 and t = 0.4 sec, of which u =
0.5 for all R by Eq. (38). This is used to explain that the
above positive results about GPS are not dependent on x
and t. Fixing R = 100 and varying the time stepsizes in
the range of 0.001-0.02 sec, we plot the numerical errors
in Fig. 2(a) with the solid line for GPS and the dashed line

for the Euler scheme with both n = 39 interior grid points
(∆x = 0.025), and the dashed-dotted line for GPS and the
dotted line for the Euler scheme with both n = 49 interior
grid points (∆x = 0.02). In all cases, GPS is much better
than the Euler scheme. It is only in the limiting case with
an almost zero time stepsize, where η = 1 by Eq. (25),
that the Euler scheme is comparable with GPS. The Euler
scheme is a linear scheme, since its numerical errors are
nearly linear functions of time stepsizes. Conversely, the
GPS is a nonlinear scheme, the numerical errors of which
do not depend on the time stepsizes linearly. For both
cases n =39 and 49 there exists a time stepsize under
which the numerical error of GPS is minimal; it is not of
the usual situation that a smaller time stepsize implies a
smaller numerical error. For example, the GPS with n =
49 can suppress the error to 1.47893×10−4 with a time
stepsize of ∆t = 1.14286× 10−2 sec; but with the time
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Table 2 : Comparing the numerical solutions of RK4,
GPS and exact solutions for R = 10 of Problem 1.

x t RK4 GPS Exact
0.25 0.4 0.43772 0.43780 0.43782

0.6 0.56201 0.56210 0.56218
0.8 0.67901 0.67912 0.67918
1.0 0.77717 0.77730 0.77730
3.0 0.99808 0.99809 0.99807

0.5 0.4 0.18245 0.18245 0.18243
0.6 0.26890 0.26892 0.26894
0.8 0.37738 0.37745 0.37754
1.0 0.49972 0.49985 0.50000
3.0 0.99335 0.99337 0.99331

0.75 0.4 0.06013 0.06012 0.06009
0.6 0.09540 0.09538 0.09535
0.8 0.14808 0.14806 0.14805
1.0 0.22264 0.22265 0.22270
3.0 0.97712 0.97718 0.97702

stepsize of ∆t = 4×10−4 the error increases to 3.3965×
10−2.

Then, we fixed the time stepsize to ∆t = 0.002 sec and
varied the grid spacing lengths from ∆x = 0.01 to 0.02,
and the numerical errors were obtained by comparing the
numerical solutions to the closed form solution at an end
time T = 1 sec and at the midle point x = 0.5. The numer-
ical errors of the Euler scheme are plotted in Fig. 2(b),
which locate in the range of (1.4× 10−2,4.2× 10−2).
The numerical errors of GPS are plotted in Fig. 2(c),
which locate in the range of (1×10−3,2.8×10−2). The
accuracy of GPS can be appreciated. It is known that
the accuracy of Euler scheme is of the first order. How-
ever, the situation is slightly complicated for the Burgers
equation with a semi-discretization, since the accuracy
is also dependent on the grid spacing length as shown
in Fig. 2(b). Under the above grid spacing lengths of
∆x = 0.025 and 0.02 the accuracy of the Euler scheme is
always worse than the first order as shown in Fig. 2(a) for
its numerical error lines are over the first order line. For
GPS the numerical error curves may be under the first or-
der line in a certain range of the time stepsizes as shown
in Fig. 2(a), which indicates that GPS has better accu-
racy than the first order and when using some stepsizes
the accuracy may approach to the second order.

Due to the wave front propagation of Burgers’ equa-

Table 3 : Comparing the global errors of GPS, Euler and
RK4 for R =100 of Problem 1.

∆t Error of GPS Error of Euler Error of RK4
1/60 0.76422 1.26882 0.26293
1/70 0.63620 1.21381 0.30629
1/80 0.55849 1.18613 0.34966
1/90 0.51268 1.17578 0.39302
1/100 0.48702 1.17711 0.43639
1/110 0.47556 1.18668 0.47975
1/120 0.47435 1.20228 0.52312

tion, the numerical error heavily depends on the grid
point position and the time elapsed, and the compari-
son needs to consider different positions and times. For
this purpose we first compare the numerical solutions of
RK4, GPS and exact solutions in Table 2 with n = 39,
∆t = 0.001 sec and R = 10 at three different grid points
of x = 0.25,0.5,0.75 and at five different times of t =
0.4,0.6,0.8,1,3 sec. It can be seen that for most of the
data, GPS is accurate than RK4.

Then, let us consider the following global error:

Error :=
n

∑
i=1

N

∑
j=1

[u j
i −u(i∆x, j∆t)]2, (39)

of which u j
i is a numerical solution at the i-th grid point

and at the j-th time step; u(i∆x, j∆t) is a corresponding
exact solution. N = T/∆t is the total number of time
steps. In Table 3 we compare the global errors of GPS,
Euler and RK4 with R = 100, n = 39 and T = 1 sec.
No matter which time stepsize is used the error by the
Euler scheme is over 1 and much larger than the other
two schemes. When the time stepsizes decrease from
1/60 sec to 1/120 sec, the errors of GPS stably reduce;
conversely, the errors of RK4 increase. The errors
of RK4 are smaller than that of GPS at the first five
time stepsizes, and then over GPS at the last two time
stepsizes.

4.2 Problem 2

For the Burgers equation (1) with the following boundary
conditions and initial condition:

u(0, t) = u(1, t) = 0,

u(x,0) = sinπx,
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Table 4 : Comparison of exact solutions with the nu-
merical results calculated by GPS and the Galerkin finite
element method for R = 1 of Problem 2.

x t Galerkin GPS Exact
0.25 0.10 0.25469 0.25376 0.25364

0.15 0.15672 0.15672 0.15660
0.20 0.09619 0.09654 0.09644
0.25 0.05924 0.05929 0.05921

0.5 0.10 0.37134 0.37177 0.37158
0.15 0.22674 0.22700 0.22682
0.20 0.13829 0.13862 0.13847
0.25 0.08457 0.08464 0.08453

0.75 0.10 0.27102 0.27273 0.27258
0.15 0.16411 0.16450 0.16437
0.20 0.09929 0.09954 0.09943
0.25 0.06036 0.06042 0.06034

the exact solution is obtained by transforming them
through the Hopf-Cole transformation [Cole (1951),
Hopf (1950)]:

u =
−2φx

Rφ
, (40)

into the following heat diffusion equation, boundary con-
ditions and initial condition:

φt =
1
R

φxx, 0 < x < 1, 0 < t < T,

φx(0, t) = φx(1, t) = 0,

φ(x,0) = exp

[Z x

0

−R
2

sinπξdξ
]

= exp

[
R
2π

(cosπx−1)
]
.

Then, applying the method of separation of variables and
the Fourier series method to the above linear equation we
obtain

φ(x, t) = a0 +
∞

∑
k=1

ak exp

[−(kπ)2t
R

]
cos(kπx), (41)

where

a0 = exp

[−R
2π

]Z 1

0
exp

[
Rcosπx

2π

]
dx, (42)

ak = 2exp

[−R
2π

]Z 1

0
exp

[
Rcosπx

2π

]
cos(kπx)dx. (43)

Table 5 : Comparison of exact solutions with the nu-
merical results calculated by GPS and the Galerkin finite
element method for R = 10 of Problem 2.

x t Galerkin GPS Exact
0.25 0.4 0.31429 0.30889 0.30889

0.6 0.24373 0.24077 0.24074
0.8 0.19758 0.19573 0.19568
1.0 0.16391 0.16264 0.16256
3.0 0.02743 0.02725 0.02720

0.5 0.4 0.57636 0.56988 0.56963
0.6 0.45169 0.44745 0.44721
0.8 0.36245 0.35948 0.35924
1.0 0.29437 0.29215 0.29192
3.0 0.04057 0.04028 0.04021

0.75 0.4 0.62952 0.62605 0.62544
0.6 0.49034 0.48778 0.48721
0.8 0.37713 0.37438 0.36392
1.0 0.29016 0.28784 0.28747
3.0 0.01334 0.02983 0.02977

Substituting Eq. (41) for φ into Eq. (40) we can obtain
the solution for u:

u(x, t) =
2π∑∞

k=1 kak exp[−(kπ)2t/R] sin(kπx)
Ra0 +R∑∞

k=1 ak exp[−(kπ)2t/R]cos(kπx)
.

(44)

Özis, Aksan and Özdes (2003) have employed the
Galerkin finite element method to calculate this prob-
lem with R = 1, ∆x = 0.0125 and ∆t = 10−5 sec. We
first calculate this problem by using ∆x = 0.025 and
∆t = 10−4 sec. The numerical results are then compared
with those of Özis, Aksan and Özdes (2003) and with the
exact solutions calculated from Eq. (44) at three differ-
ent grid points of x = 0.25,0.5,0.75 and at four different
times of t = 0.1,0.15,0.2,0.25 sec in Table 4. It can be
seen that our method is more accurate than that of the
Galerkin finite element method, even our time stepsize is
larger and the number of grid points is much fewer than
that used by Özis, Aksan and Özdes (2003).

Next we consider the case R = 10. Comparisons made in
Table 5 are the exact solutions, the numerical solutions
by Özis, Aksan and Özdes (2003) with ∆x = 0.0125 and
∆t = 10−4 sec, and GPS solutions with ∆x = 0.025 and
∆t = 10−3 sec. The solutions are compared at three dif-
ferent grid points of x = 0.25,0.5,0.75 and at five dif-
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Table 6 : Comparison of exact solutions with the numerical results calculated by GPS, RK4 and the exact-explicit
finite difference method for R = 100 of Problem 2.

x t Exact-explicit RK4 GPS Exact
0.25 0.4 0.34164 0.34197 0.34193 0.34191

0.6 0.26890 0.26900 0.26897 0.26896
0.8 0.22150 0.22151 0.22149 0.22148
1.0 0.18825 0.18821 0.18820 0.18819
3.0 0.07515 0.07512 0.07511 0.07511

0.5 0.4 0.65606 0.66083 0.66079 0.66071
0.6 0.52658 0.52950 0.52946 0.52942
0.8 0.43743 0.43919 0.43916 0.43914
1.0 0.37336 0.37446 0.37443 0.37442
3.0 0.15015 0.15019 0.15018 0.15018

0.75 0.4 0.90111 0.91053 0.91058 0.91026
0.6 0.75862 0.76741 0.76739 0.76724
0.8 0.64129 0.64750 0.64747 0.64740
1.0 0.55187 0.55620 0.55609 0.55605
3.0 0.22454 0.22484 0.22483 0.22481

Table 7 : Comparison of exact solutions with the numerical results calculated by GPS, RK4 and the exact-explicit
finite difference method for R = 100 of Problem 3.

x t Exact-explicit RK4 GPS Exact
0.25 0.4 0.36185 0.36260 0.36224 0.36226

0.6 0.28193 0.28229 0.28201 0.28204
0.8 0.23046 0.23064 0.23042 0.23045
1.0 0.19474 0.19483 0.19466 0.19469
3.0 0.07617 0.07616 0.07612 0.07613

0.5 0.4 0.67851 0.68412 0.68385 0.68368
0.6 0.54508 0.54867 0.54831 0.54832
0.8 0.45176 0.45399 0.45366 0.45371
1.0 0.38446 0.38590 0.38561 0.38568
3.0 0.15215 0.15223 0.15215 0.15218

0.75 0.4 0.91169 0.92128 0.92179 0.92050
0.6 0.77402 0.78355 0.78349 0.78299
0.8 0.65617 0.66311 0.66286 0.66272
1.0 0.56478 0.56961 0.56932 0.56932
3.0 0.22746 0.22789 0.22778 0.22774

ferent times of t = 0.4,0.6,0.8,1,3 sec. It can be seen
that our results are more accurate than that calculated by
the Galerkin finite element method, even our time step-
size and grid spacing length are larger than that used by
Özis, Aksan and Özdes (2003). Kutluay, Bahadir and
Özdes (1999) have calculated this problem by consider-
ing the explicit and exact-explicit finite difference meth-
ods for the transformed heat diffusion equation from the

Burgers equation, and then converted the finite difference
solutions of heat diffusion equation to the numerical so-
lutions of the Burgers equation by the Hopf-Cole trans-
formation. The accuracy of our numerical solutions are
compatible with the numerical solutions by Kutluay, Ba-
hadir and Özdes (1999). However, their numerical solu-
tions require a lot of computations of integrals and the
sum of infinite series.
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Figure 3 : The relation between x and y with A = 2.5.

Then we consider the third case R = 100. Comparisons
made in Table 6 are the exact solutions, the numerical
solutions by Kutluay, Bahadir and Özdes (1999) with
exact-explicit finite-difference scheme with ∆x = 0.0125
and ∆t = 10−4 sec, and GPS and RK4 solutions with the
same ∆x and ∆t. The solutions are compared at three
different grid points of x = 0.25,0.5,0.75 and at five dif-
ferent times of t = 0.4,0.6,0.8,1,3 sec. The accuracy of
our numerical solutions is better than that calculated by
RK4 and is much better than that calculated by Kutluay,
Bahadir and Özdes (1999). For this case, their numerical
solutions converge slowly.

Through the above comparisons of GPS solutions with
the exact solutions for three cases of R = 1,10,100, it
can be seen that GPS is effective for moderately high
Reynolds number, and the computational accuracy in-
creases when R increases.

When R is more large, we prefer to consider a scalar
transformation of x-coordinate:

x =
tanh(Ay)

tanhA
, (45)

or its inverse:

y =
1

2A
ln

1+x tanhA
1−x tanhA

. (46)
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Figure 4 : The GPS solutions of Burgers’ equation for
(a) R = 10000; (b) R = 20000.

It can accumulate much grid points in the region where
the solution appears large variation, and place a small
number of grid points in the region where the solution
does not change rapidly. To demonstrate this effect, we
have plotted the relation of x and y in Fig. 3 for a given
A = 2.5. It can be seen that when the grid points are
uniformly distributed in the y-coordinate, there appear
much grid points near the end x = 1 in the x-coordinate,
wherein the solution of the Burgers equation with high
Reynolds number exhibits large variation.

From Eqs. (1) and (46) it follows that

ut +
tanhA

A[1− tanh2(Ay)]
uuy

=
1
R

[
tanh2 A

A2[1− tanh2(Ay)]2
uyy

]

+
1
R

[
2tanh2 A tanh(Ay)
A[1− tanh2(Ay)]2

uy

]
. (47)
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Figure 5 : The GPS solutions of Burgers’ equation for
(a) R = 10000; (b) R = 20000 in the y-domain.

Applying the GPS on the above equation by a uniform
grid spacing length of ∆y = 1/(n+1), we can integrate it
for large R. Figure 4 displays the numerical results for
two cases of R = 10000,20000. The parameters used
in these calculations are n = 99, ∆t = 0.0001 sec and
A = 3,3.5. The six curves represent the solutions at six
different times at t = 0,0.2,0.4,0.6,0.8,1 sec. For the
comparison purpose we also plotted these curves in the
y-domain as shown in Fig. 5. The very sharp variations
as seen in the x-domain are now released in y-domain.

As reported by Ames (1992), in order to get a stable
solution of the Burgers’ equation with R = 10000 by
using the predictor-corrector method, it requires 200 grid
points and with a stepsize 4×10−4 sec. This method is
however more complicated than our method.

4.3 Problem 3

Let us consider the Burgers equation (1) with the follow-
ing boundary conditions and initial condition:

u(0, t) = u(1, t) = 0,

u(x,0) = 4x(1−x).

The exact solution can be obtained by a similar way in
the previous problem but with the following Fourier co-
efficients:

a0 =
Z 1

0
exp

[−Rx2

3
(3−2x)

]
dx, (48)

ak = 2
Z 1

0
exp

[−Rx2

3
(3−2x)

]
cos(kπx)dx,

k = 1,2,3, . . .. (49)

Comparisons made in Table 7 are exact solutions, the
numerical solutions by Kutluay, Bahadir and Özdes
(1999) with ∆x = 0.0125 and ∆t = 10−3 sec, and GPS
and RK4 solutions with ∆x = 0.025 and the same ∆t.
The solutions are compared at three different grid points
of x = 0.25,0.5,0.75 and at five different times of
t = 0.4,0.6,0.8,1,3 sec. The accuracy of our numerical
solutions by GPS is much better than that calculated by
Kutluay, Bahadir and Özdes (1999), and is also better
than that calculated by RK4.

4.4 Problem 4

In this section we extend Problem 1 to a two-dimensional
case with the following boundary conditions and initial
condition:

u(0,y, t) =
1

1+exp[Ry/2−Rt/2]
, 0 ≤ y ≤ 1,

u(1,y, t) =
1

1+exp[R/2+Ry/2−Rt/2]
, 0 ≤ y ≤ 1,

u(x,0, t) =
1

1+exp[Rx/2−Rt/2]
, 0 ≤ x ≤ 1,
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Figure 6 : The numerical errors of GPS and Euler
scheme with respect to time stepsize for Problem 4.

u(x,1, t) =
1

1+exp[R/2+Rx/2−Rt/2]
, 0 ≤ x ≤ 1,

u(x,y,0) =
1

1+exp[Rx/2+Ry/2]
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

The exact solution [Schiesser (1991)] is given by

u(x,y, t) =
1

1+exp[Rx/2+Ry/2−Rt/2]
. (50)

We can apply the GPS on the following discretization:

u̇i, j(t) =
ui+1, j(t)−2ui, j(t)+ui−1, j(t)

R(∆x)2

+
ui, j+1(t)−2ui, j(t)+ui, j−1(t)

R(∆y)2

−ui, j(t)
[

ui+1, j(t)−ui−1, j(t)
2∆x

+
ui, j+1(t)−ui, j−1(t)

2∆y

]

(51)

by considering the average ui, j := (ui+1, j +ui, j+1 +ui, j +
ui−1, j + ui, j−1)/5, where ∆x = ∆y = 1/(N + 1) is a uni-
form grid spacing length, and ui, j(t) := u(i∆x, j∆y, t) for
simplicity. There are totally n = N ×N variables ui, j(t)
at the totally N ×N interior grid points.

We have compared the numerical solutions with the ex-
act solution at x = 0.5, y = 0.5 and t = 1 sec, of which
u = 0.5 for all R by Eq. (50). Fixing R = 100 and vary-
ing the time stepsizes in the range of 0.001-0.01 sec, we
plot the numerical errors in Fig. 6 with the solid line
for GPS and the dashed line for the Euler scheme with
both 39×39 interior grid points (∆x = ∆y = 0.025), and
the dashed-dotted line for GPS and the dotted line for
the Euler scheme with both 49× 49 interior grid points
(∆x = ∆y = 0.02). In all cases GPS is much better than
the Euler scheme. It is only in the limiting case with an
almost zero time stepsize that the Euler scheme is com-
parable with GPS.

By letting n = 39×39, ∆t = 2×10−3 sec, R = 150, and
T = 1 sec, the numerical errors being the differences of
numerical solutions and exact solutions were plotted in
Fig. 7(a) with the solid lines for GPS and the dashed
lines for the Euler scheme at three different times of
t = 0.6,0.8,1 sec and at point y = 0.5 along the x-axis,
while the differences were plotted in Fig. 7(b) with the
solid lines for GPS and the dashed lines for the Euler
scheme at three different times of t = 0.6,0.8,1 sec and
at point x = 0.25 along the y-axis. It can be seen that
GPS is much better than the Euler scheme.

5 Conclusions

The Burgers equation was calculated by a semi-
discretization of the spatial coordinates in conjuction
with the group preserving numerical integration scheme.
We have taken the dissipative behavior of Burgers
equation into account by considering the magnitude
‖u‖ as another component, and according to the Lie
algebra property we have developed a novel numerical
scheme with the transformation matrix G being a proper
orthochronous Lorentz group. Under certain condition
on the time stepsize we have proved that the resulting
numerical scheme is a contraction mapping, which
is congruent with the dissipation behavior of Burgers
equation. The computational accuracy of GPS was
confirmed by comparing its numerical results with those
of other numerical methods and closed-form solutions
for several numerical examples. Even for very high
Reynolds number our scheme was applicable under
a reasonable grid spacing length and time stepsize.
The numerical results indicate that the group preserving
scheme is efficient to numerically integrating the Burgers
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Figure 7 : Comparison of numerical solutions with exact solutions for Problem 4: (a) numerical errors at three
different times along x-direction, and (b) numerical errors at three different times along y-direction.

equation. Numerical tests indicated that GPS is also
better than RK4. In the plane of numerical error vs.
time stepsize an L-curve appeared for GPS, and at the
tip point a best time stepsize would make the numerical
error minimal. We have verified this point by 1D and 2D
Burgers’ equations. The particular behavior of GPS is
very different from the conventional numerical methods,
e.g., the Euler scheme and RK4, of which the numerical
errors are reduced when the time stepsizes are decreased.
Because under a reasonable grid spacing length and
time stepsize, the GPS produced almost the exact values
as shown in Tables 2, 5-7, and its implementation is
very easy, it is highly recommended to be used in the
numerical computations of the Burgers’ equation.
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