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Applications of MLPG Method in Dynamic Fracture Problems

L. Gao 1, K. Liu1 2, Y. Liu 3

Abstract: A new numerical algorithm based on the
Meshless Local Petrov-Galerkin approach is presented
for analyzing the dynamic fracture problems in elastic
media. To simplify the treatment of essential bound-
ary condition, a novel modified Moving Least Square
(MLS) procedure is proposed by introducing Lagrange
multiplier into MLS procedure, which can perform both
MLS approximation and interpolation in one approxima-
tion domain. The compact spline function is used as the
test function in the local form of elasto-dynamic equa-
tions. For the feature of stress wave propagation, the cou-
pled second-order ODEs respect to the time are solved
by the explicit central difference method with lumped
mass matrix. By adopting the modified MLS techniques,
the essential boundary conditions can be simply intro-
duced by direct row cross-out method. In order to im-
prove the accuracy of this algorithm, quadratic basis and
Gaussian weight function with a support domain larger
than test functions are used in the approximation. Visi-
bility criterion is used for presenting the discontinuous
fields caused by cracks. The dynamic stress intensity
factors in various modes are evaluated through a path-
independent dynamic J′ integral method, and the com-
plicated diffractions of the stress waves near cracks are
investigated in detail. The numerical results show that
the present method is easy to implement, highly accurate
and efficient for the problems considered.
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1 Introduction

Dynamic crack responses and propagation are impor-
tant aspects of impact dynamics, and attract more and
more scholars’ interests due to the crucial need of
wide-ranging engineering application and the research
of many nature phenomena [Freund (1990); Rosakis and
Ravichandran (2000)]. Stress wave propagation plays an
important role in this study. Clarification of the mecha-
nism of the interaction between transient wave propaga-
tion and cracks, defects or holes can help us in the de-
sign of complex structures and composite materials by
acoustic emission, quantitative nondestructive materials
testing, seismology applications and so on. Owing to the
complication of these problems, the analytical results are
always hard to be obtained. Thus, numerical simulation
becomes an effective tool for analyzing such problems.

However, traditional numerical methods such as finite
difference method, finite element method and finite
boundary method, which are based on meshes, some-
times suffer from the difficulties of mesh discontinu-
ity and distortion in the calculation of rapid dynamic
fracture, plastic flow and fluid solid coupling problems,
where large deformation often occurs. Although these
difficulties can be partly solved by remeshing or mesh
refinement, the complex algorithms for mesh treatments
not only consumedly decrease the efficiency of compu-
tation, but also affect accuracy of the calculation results,
even finally ruin the whole computational results.

In resent years, many meshless methods are introduced to
overcome these drawbacks of mesh-based methods, such
as SPH, EFG, FPM, Hp-Clouds Method, PUM, RKPM,
MLPG, LBIE, RBF, PIM, BNM and so on. The summary
of these newly developed meshless methods can be found
in some key references [Belytschko, Krougauz, Organ,
Fleming and Krysl (1996); Atluri and Shen (2002); Liu
(2002); Li and Liu (2002); Atluri (2004); Atluri (2005)].
The common feature of meshless methods lies in that
they all use weighted function with compact domain
(also called window function in wavelet analysis) to con-
struct unknown functions and fulfill interpolation or ap-
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proximation of variables through arbitrary arranged dis-
crete nodes in the space without the topology information
of the connections among them (namely mesh). These
techniques include Kernel Approximation [Gingold and
Moraghan (1977)], Moving Least Square (MLS) [Lan-
caster and Salkauskas (1981)], Partition of Unity (PU)
[Melen and Babuska (1996)], Radial Based Function
(RBF) [Powell (1992)] and so on. On the whole, mesh-
less methods could be classified through the presentation
of partial differential equations (PDEs) or the weighted
residual method (WRM) [Atluri and Shen (2002); Liu
(2002)]. Various newly developed meshless methods
show more versatility, flexibility and capability than the
traditional ones, although they are still immature in some
aspects, and bring a new exciting prosperity to the whole
filed of scientific computation.

Among these meshless methods, MLPG approach, first
proposed by Atluri and Zhu (1998), can be considered
as a general framework for the other meshless meth-
ods. It provides the flexibility in choosing the trial and
test functions, as well as the sizes and shapes of local
sub-domains, and has been proved to be a truly mesh-
less method [Atluri, Han and Rajendran (2004)]. It not
only overcomes the problems that the traditional meth-
ods, which are based on the meshes, suffer from, but also
brings forward some new methods with amazing flexibil-
ity and efficiency. By now, it has been successfully ap-
plied in analyzing both elasto-static and elasto-dynamic
problems. Atluri and Zhu (2000) solved elasto-static
problems. Lin and Atluri (2000) introduced the upwind-
ing scheme to analyze steady convection-diffusion prob-
lems. Ching and Batra (2001) determinated the crack tip
fields in linear elasto-statics. Gu and Liu (2001) stud-
ied the forced vibrations of a beam. Long and Atluri
(2002) solved the bending problem of a thin plate. Batra
and Ching (2002) analyzed elasto-dynamic deformations
near a crack/notch tip. Qian, Batra and Chen (2004) stud-
ied the static and dynamic deformations of the thick func-
tionally graded elastic plate, etc. Han and Atluri (2004)
extended this approach for solving 3-dimensional elasto-
dynamics problems. For recent development of this ap-
proach, please refer to the references [Atluri (2004)] and
[Atluri (2005)]. However, the applications of the MLPG
method in the problems, such as the dynamic crack re-
sponses and propagation, have not been fully investi-
gated. In addition, the efficiency and the accuracy of this
method need to be further analyzed.

The purpose of this paper is to develop a new algorithm
that further extends the MLPG method to analyze the
stress wave propagation and dynamic fracture problems.
In order to introduce essential boundary condition more
directly and simply than general meshless methods by
using MLS approximation, a new modified MLS proce-
dure is proposed. The formulation for elasto-dynamics is
discretized using MLPG1 approach. But the domains for
the test functions and for the approximation are chose in
different sizes. The coupled ODEs are integrated with re-
spect to the time by the explicit central difference method
with lumped mass matrix. The dynamic stress intensity
factors near the crack tip are determined by using visible
criterion and path independent dynamic J′ integral. The
availability of this algorithm in analyzing the dynamic
response of cracks in various modes is discussed, respec-
tively. Finally the complicated diffraction of the stress
waves near a crack is investigated in detail.

2 MLPG formulation of elasto-dynamic equations

2.1 Governing equations

Considering a two-dimensional elasto-dynamic problem,
the governing equations in Cartesian coordinates are
written as

σi j, j +bi = ρ ü i

σi j = Di j k l εk l

εi j = (ui, j +u j, i)/2 in Ω (i, j = 1,2) (1)

where σi j and εi j are the stress and strain components,
ui and bi the displacement and body force components,
Di j k l the elastic constants, ρ the mass density. The
comma before an index represents partial space differ-
entiation, and the dot notation is used to represent dif-
ferentiation with respect to the time. The boundary and
initial conditions are given as

ui = ui on Γu

σi jn j = t i on Γt

ui(x,0) = u0i(x)

u̇i(x,0) = u̇0i(x) (2)

where ui are the prescribed displacement components on
the essential boundary Γu. t i are the tractions on the nat-
ural boundary Γt . Γu and Γt present the complementary
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parts of the whole boundary Γ(Γ = Γu ∪Γt). u0i(x) and
u̇0i(x) are the prescribed initial displacement components
and the velocity components, n j the unit outward normal
to the boundary Γ.

2.2 Modified MLS approximation

The MLS method of approximation is usually used in
meshless approximation, due to its reasonable approx-
imation accuracy with random data. However, for the
shape functions obtained by the normal MLS procedure
do not hold Kronecker delta property at nodes, special
treatments, such as penalty method, modified variation
principle method, Lagrange multiplier method and so on,
are used to introduce essential boundary conditions in the
procedure of the equation discretization. In this paper, we
developed a new modified MLS, which can fulfill Kro-
necker delta property on essential boundary nodes.

The trial function uh
i (x, t) at the point x = [x1,x2]T for ap-

proximated displacement components over a 2D domain
Ωx is given as

uh
i (x, t) = pT (x) ai(x, t) x ∈ Ωx ( i = 1, 2 ) (3)

where Ωx is a sub-domain around the approximation
point x, ai(x, t) a vector of corresponding coefficient.
p(x) = [p1(x), p2(x), · · · , pm(x)]T is a complete basis
vector, in which m is the number of terms in the basis.
In present algorithm, polynomial basis are used. For lin-
ear basis,

p(x) = [1,x1,x2]T (m = 3) (4)

and for quadratic basis,

p(x) = [1,x1,x2,x2
1,x1x2,x2

2]
T (m = 6) (5)

Assume that there are total N nodes in Ωx. Differing
from the normal MLS technique, these nodes are divided
into two parts: Nin nodes satisfying MLS approxima-
tion condition, numbered as 1 , · · · ,Nin, and Nb = N−Nin

nodes satisfying interpolation condition, numbered as
Nin +1 , · · · ,N. Thus, a modified functional Ji can be con-
structed by the summation of the weighted discrete L2

norm of displacement components over the former part
of 1 , · · · , Nin nodes and the contrained conditions over
the rest part of Nin + 1 , · · · ,N nodes introduced by La-

grange multiplier, which is given as

Ji =
Nin

∑
I=1

w (x−xI)
[
pT (xI) ai(x, t)−uiI(t)

]2

+2
N

∑
I=Nin+1

λiI
[
pT (xI) ai(x, t)−uiI(t)

]
(6)

where xI denotes the position vector of node I, uiI(t) the
fictitious values of displacement components on node I,
w(x−xI) the weight function with the property of posi-
tive, compact, unity, decay about |x−xI | and delta func-
tion behavior as normal MLS weight functions, which
could be Gaussian weight function

w(x−xI) =

{
e−(|x−xI |/cI )2k−e−(rI/cI )2k

1−e−(rI/cI )2 |x−xI | ≤ rI

0 |x−xI | > rI

(7)

or spline function

w(x−xI) =

⎧⎨
⎩

1−6( |x−xI|
rI

)2 +8( |x−xI|
rI

)3 −3( |x−xI|
rI

)4

0 ≤ |x−xI | ≤ rI

0 |x−xI| > rI

(8)

where rI is the radius of the influence domain for the
weight function accompanied by node I, parameters cI

and k are used to control the shape of Gaussian weight
function.

By minimizing weighted norm Ji over ai and combining
with the constrain conditions, the following equations are
obtained{

∂Ji
∂ai

= 0
pT (xI) ai(x, t) = uiI(t) (I = NI +1 , · · · ,N)

(9)

Written in matrix form, the equations above change to⎡
⎢⎣

A(x)
(m×m)

P
(m×Nb)

PT

(Nb×m)
0

(Nb×Nb)

⎤
⎥⎦

⎧⎪⎨
⎪⎩

ai(x, t)
(m×1)

λλλi
(Nb×1)

⎫⎪⎬
⎪⎭

=

⎡
⎢⎣

B(x)
(m×Nin)

0
(m×Nb)

0
(Nb×Nin)

I
(Nb×Nb)

⎤
⎥⎦ ui(t)

(N×1)
(10)

where

A(x) =
Nin

∑
I=1

w(x−xI)p(xI)pT (xI)
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B(x) = [w(x−x1)p(x1), w(x−x2)p(x2), · · · ,
w(x−xNin)p(xNin)]

P = [p(xNin+1), p(xNin+2), · · · , p(xN)] (11)

The subscript values below the matrices in Eq. (10)
denote the dimensions of these matrices. ui(t) =
[ui1,ui2, · · · ,uiN ]T is the generalized displacement vector
with N nodes, λλλi = [λi1,λi2, · · · ,λiNb]

T is the Lagrange
multiplier vector, 0

(Nb×Nb)
, 0
(m×Nb)

and 0
(Nb×Nin)

are Nb ×Nb,

m×Nb and Nb ×Nm zero matrices, I
(Nb×Nb)

is a Nb ×Nb

identity matrix. It can be also written as{
A(x)ai(x, t)+Pλλλi = B(x)uiin(t)
PT ai(x, t) = uib(t)

(12)

where uiin(t) = [ui1,ui2, · · · ,uiNin ]
T and uib(t) =

[uiNin+1,uiNin+2, · · · ,uiN ]T are generalized displacement
vectors for MLS approximation and interpolation
conditions, respectively.

The coefficient ai(x, t) can be obtained as

ai(x, t)
= A−1(x){[I−P(PTA−1(x)P)−1PT A−1(x)]B(x)uiin(t)
+P(PT A−1P)−1uib(t)} (13)

The trial function uh
i (x, t) is rewritten as

uh
i (x, t) = ΦT (x)ui(t) (14)

where Φ(x)= [φ1,φ2, · · · ,φN]T is the shape function vec-
tor given by

ΦT (x)
(1×N)

= pT (x)
(1×m)

[
S(x)B(x)

(m×Nin)
YT (x)
(m×Nb)

]
(15)

where

Y(x)
(Nb×m)

= Q−1(x)PTA−1(x)

Q(x)
(Nb×Nb)

= PT A−1(x)P

S(x)
(m×m)

= A−1(x) [ I
(m×m)

−PY(x)] (16)

The first derivations of this shape function over space
variables xi are obtained by

ΦT
,i (x) = pT

,i (x)
[

S(x)B(x) YT (x)
]

+pT (x)
[

S,i(x)B(x)+S(x)B,i(x) YT
,i (x)

]
(17)

where

pT
,i (x) = [p1,i(x), p2,i(x), · · · , pm,i(x)]

B,i(x) = [w1,i(x−x1)p(x1), w2,i(x−x2)p(x2), · · · ,
wNin,i(x−xNin)p(xNin)]

S,i(x) = A−1
,i [I−PY(x)]−A−1 PY,i(x)

Y,i(x) = Q−1
,i (x)PT A−1(x)+Q−1(x) PT A−1

,i (x)

Q−1
,i (x) = −Q−1(x)Q,i(x)Q−1(x)

Q,i(x) = PT A−1
,i (x)P

A−1
,i (x) = −A−1(x)A,i(x)A−1(x)

A,i(x) =
Nin

∑
I=1

wI,i(x−xI)p(xi)pT (xi) (18)

In order to obtain the nontrivial solution of Eq. (12), not
only the conditions in normal MLS should be satisfied,
in which the nodes for approximation should be well ar-
ranged and N ≥ m in order to satisfy det(A(x)) �= 0, but
also Nb ≤ m should be satisfied. Especially, if N = Nb =
m, this formulation degenerates to normal interpolation
operation; if Nin = N ≥ m, it degenerates to normal MLS
approximation; in general solvable conditions, it can ful-
fill part interpolation and part approximation in one do-
main. In an approximation domain Ωx, if there are some
nodes on essential boundary, we can set these nodes as
interpolation nodes and set the other nodes as MLS ap-
proximation nodes. From Eqs. (12) and (14), it can be
easily proved that the shape functions at the interpolation
nodes satisfy the property of Kronecker delta property as

ΦI(xJ) =
{

1 I = J
0 I �= J

I = 1 , · · · ,N; J = Niin +1 , · · · ,N

(19)

Thus, the shape function obtained by our new modified
MLS procedure can perform Kronecker delta property
over the nodes on essential boundary, and the essential
boundary can be directly introduced as the methods in
FEM without other special treatments. This procedure
could also be used in other meshless methods to simplify
the introduction of essential boundary conditions.
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2.3 MLPG discretization

In this paper, MLPG1, which is based on the local sym-
metric weak form (LSWF), and uses MLS weight func-
tion as the test function in each sub domain, are adopted
to implement the discretization of the governing equa-
tions.

Integrating the product of Eq. (1) and the test function
vi over the sub domain Ωs ⊂ Ω (integral domain), we
can obtain the local weighted residual integral function
(LWRM)Z

Ωs

(σi j, j +bi −ρ ü i)vi dΩ = 0 (20)

The compact weight function are used as the trial func-
tion vi (MLPG1), which vanishes over the local boundary
Ls (Ls ∪Γsu ∪Γst = ∂Ωs = Γs, where Γsu = Γs ∩Γu and
Γst = Γs ∩ Γt are the prescribed displacement and trac-
tion boundary within the local domain Ωs, respectively,
but Ls ∩Γu = /0 and Ls ∩Γt = /0). Combinating with Eq.
(2), Eq. (20) is integrated by parts, which results in the
following LSWF expression
Z

Ωs

(ρviüi +vi, jσi j −vibi)dΩ−
Z

Γst

vit idΓ−
Z

Γsu

viσi jn jdΓ = 0

(21)

Substituting Eq. (14) into Eq. (21) yields the sub MLPG
discretized equation about node I

Msüs(t)+Ksus(t) = fs(t) (22)

where Ms, Ks, and fs are the local mass, stiffness and
load matrices, respectively. The components of the ma-
trices are derived by

MsIJ =
Z

Ωs

ρφJv(x,xI)dΩ

KsIJ =
Z

Ωs

εv(x,xI)DBJdΩ−
Z

Γsu

v(x,xI)NDBJSdΓ

fsI =
Z

Γst

v(x,xI)tdΓ+
Z

Ωs

v(x,xI)bdΩ (23)

For 2D elasto-dynamic problems, Ms is a 2×2Ns matrix,
Ks a 2× 2Ns matrix, where Ns is the bandwidth of Ks,
and fs a 2×1 vector. The explicit forms of the matrices
in Eqs. (23) are as follows

εεεv =

[
ε(1)

11 ε(1)
22 2ε(1)

12

ε(2)
11 ε(2)

22 2ε(2)
12

]
, v =

[
wI 0
0 wI

]
,

BJ =

⎡
⎣ φJ,1 0

0 φJ,2

φJ,2 φJ,1

⎤
⎦ ,N =

[
n1 0 n2

0 n2 n1

]
,

D =
E

1−ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 (1−ν)/2

⎤
⎦ ,

E =
{

E for plane stress deformations ,
E/(1−ν2) for plane strain deformations ,

ν =
{

ν for plane stress deformations ,
ν/(1−ν) for plane strain deformations ,

Si =
{

1 i f x ∈ Γu ,
0 i f x /∈ Γu ,

(24)

where E is the Young’s modulus, and ν the Poisson’s
ratio. In this paper, the sub domain Ωs is a circle do-
main, denoted as ΩI(rsI), with node I as its center. The
test function is taken as a spline weight function wI =
w(x−xI) in Eq. (8), and has the same center as the sub
domain. However, the radius rsI for the test function v
over domain Ωs and the radius rI for trial function over
domain Ωx, in which the modified MLS approximation is
performed, could be chosen differently. Considering the
propagation characteristic of the stress waves, lumped
mass matrix is used by row-sum technique. Thus Eq.
(22) is modified to

Msüs(t)+Ksus(t) = fs(t) (25)

where{
MsIJ = ∑

K
MsIK I = J

MsIJ = 0 I �= J
(26)

are the lamped mass matrix.

If the node numbers in the whole domain Ω is n, the n
sets of Eq. (25) form a global second-time ordinary dif-
ferential equation system

M ü(t)+K u(t) = f(t) (27)

where u(t) is the displacement vector of the nodes, M
the total diagonalized lump mass matrix, K the total stiff-
ness matrix, and f(t) the total load vector. In the practice,
for a node I on the essential boundary, considering the
prescribed displacements are already known, the corre-
sponding equations in Eq. (27) along this direction need
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not to be solved again. The displacement values are di-
rectly used in the other equation solutions. This treat-
ment is called direct row cross-out method, which re-
duces the equation numbers to be solved and increases
the calculating efficiency.

2.4 Explicit time integral scheme and its stability con-
ditions

Eqation (27) can be solved by central difference scheme
[Belytschko, Liu and Moran (2000)],

un+1 = un +∆t vn+1/2 , vn+1/2 = vn−1/2 +∆t an (28)

where un+1, un are the displacement vectors at time t +∆t
and t, vn+1/2 and vn−1/2 are the velocity vectors at time
t +∆t/2 and t−∆t/2, an is the acceleration vector at time
t, ∆t is the time increment. This explicit scheme is condi-
tionally stable. The stability condition for algorithm (28)
is given by

∆t ωmax ≤ 2 (29)

where ωmax = (λmax)1/2, λmax is the maximum eigen-
value of the matrix

Kx = λMx (30)

3 Crack modeling and evaluation method for dy-
namic fracture parameters

3.1 Treatment of a crack

Because a crack has the property that its length is far
longer than its width, from the mathematic point of view,
in 2D case, it could be considered as a curve separating
two parts of a body, which is also called inner bound-
ary. Different from the treatment of cracks in finite ele-
ment method, where tremendous remeshing is needed to
hold the consistency of mesh boundaries near a crack, in
meshless methods, a curved crack could be constructed
by several continuous connected line segments. These
short crack lines control the approximation domain of a
given point. If a crack needs to develop to a certain direc-
tion, it is simple to add a crack tip point in that direction,
and form a new crack line. Moreover, it is also easy to
add, eliminate or split points near a crack tip for a rea-
sonable precision.

Several procedures have been introduced to present this
approximation discontinuity, such as visibility criterion

[Belytschko, Gu and Lu (1994)], diffraction or trans-
parency method [Organ, Fleming, Terry and Belytschko
(1996)] and see through method [Terry (1994)]. In the
present study, visibility criterion is used. The basic idea
is that the cracks are assumed to be opaque. When
putting a light on an approximation point, within its ap-
proximation region, only the nodes that could be lighted
are chosen as the basic nodes to perform the approxi-
mation. In the practice, we first draw a line between a
point to be approximated and a node. If it does not inter-
sect with the crack, this node is then used to approximate
the integral point. When considering the crack propa-
gation along a certain direction, a new crack tip point
could be added in that direction. Thus the local stiffness,
mass and load matrices Ks, Ms and fs in Eq. (25) should
be updated. In favor of the local feature of the present
MLPG method, these changes can be made only among
the nodes that the added crack line influences. Thus only
a small part of the matrices will be changed. This treat-
ment dramatically improves the efficiency of the present
algorithm.

3.2 Path-independent dynamic J′ integral and evalu-
ation of DSIF

In this paper, the path-independent dynamic J′ integral
proposed by Nishioka and Atluri (1983) is used to extract
the dynamic fracture parameters, for it has good proper-
ties of integral path independency, and presents physical
meaning of dynamic energy release rate. It is expressed
as

J′k = lim
ε→0

{
Z

Γp+Γc

[(W +K)nk − tiui,k]dS

+
Z

Vp−Vε

[(ρ üi −bi)ui,k −ρ u̇iu̇i,k]dV} (31)

where ni denotes the outward direction cosine, W and K
are the strain and kinetic energy densities. Vp and Vε are
the region surrounded by Γp and Γε, with Γε, Γp and Γc

a near-field path, far-field path and crack surface path,
respectively, as shown in Figure1.

In this paper, the far-field path Γp is taken as a circle cen-
tered at the crack tip with radius tipR, and assumed that
the gap of a crack is wide enough so that the two surfaces
of the crack would not contact with each other during the
loading time. Considering the nature boundary condition
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2x

1x

uΓ

tΓ

Ω

Γ

pV pΓ

c
−Γ

c
+Γ

Vε

0
1x

0
2x

εΓ

Figure 1 : Diagrammatic sketch for path-independet in-
tegrals

along the crack surfaces, the integral alone the crack sur-
face Γc is omitted. And the variables in Eq. (31) are all
evaluated by MLS method using the corresponding val-
ues on the nodes.

Transformation from global coordinate to the local coor-
dinate located near the crack tip yields

J′0l = αlk(θ0)J′k l = 1, 2 k = 1, 2 (32)

where αl k(θ0) is the coordinate transformation tensor
along the crack tip direction θ0. The dynamic J′ inte-
gral can be related to the instantaneous stress intensity
factors for a propagating crack with velocity V as

J
′0
1 =

1
2µ

[AI(V)K2
I (t)+AII(V)K2

II(t)+AIII(V)K2
III(t)]

J
′0
2 = −AIV (V)

µ
KI(t)KII (33)

where

AI(V) = β1(1−β2
2)/D(V)

AII(V) = β2(1−β2
2)/D(V)

AIII(V) = 1/β2

AIV (V) =
(β1 −β2)(1−β2

2)D(V)
2D2(V)

×[
(2+β1 +β2)√
(1+β1)(1+β2)

− 4(1+β2
2)

D(V)

]

D(V) = 4β1β2 − (1+β2
2)

2

D(V) = 4β1β2 +(1+β2
2)

2

β1 =
√

1− (V/Cd)2

β2 =
√

1− (V/Cs)2 (34)

where µ is the shear modulus, Cd and Cs are the veloci-
ties of the longitudinal wave and the shear wave. For a
stationary crack (V = 0), the velocity functions reduce to

AI(0) = AII(0) = AIV (0) = (κ+1)/4, AIII(0) = 1 (35)

where κ is presented as

κ =
{

3−4ν for plane strain
(3−ν)/(1+ν) for plane stress

(36)

KI(t), KII(t)and KIII(t) are the dynamic stress intensity
factors for the opening, in-plane sliding and anti-plane
sliding modes, known as mode I, mode II and mode III,
respectively. They could be directly obtained by solving
Eqs. (33). Thus, for the pure mode III, we have

KIII(t) = ± [
2µ

AIII(V)
(J′01 )]1/2 (37)

where the sign of KIII(t) is determined by the sign of the
mode III crack anti-plane sliding displacement δIII. For
the in-plane mixed-mode problems, the dynamic stress
intensity factors for mode I and mode II can be evaluated
as

KI(t) =

± <
µ

AI(V)
{J′01 ± [(J′01 )2 − (AIAII/A2

IV )(J′02 )2]
1
2} >

1
2

KII(t) =

± <
µ

AII(V)
{J′01 ∓ [(J′01 )2 − (AIAII/A2

IV )(J′02 )2]
1
2 } >

1
2

(38)

Here the signs of KI(t) and KII(t) are the same as those of
crack opening displacements δI and δII , respectively. As
to the signs before the braces [ ], we have plus if |δI | ≥
|δII|, otherwise, minus is taken.
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4 Numerical examples and discussion

In order to verify the availability of the present algorithm
for the dynamic crack problems, some numerical results
are discussed in this section. In the practice, quadratic
basis and Gaussian weight function are adopted to ensure
the accuracy of calculation. The region of the local test
function with a spline type (as in Eqn. (8)) Ωs is taken as
a circle centered at node I with a radius rΩs, which forms
the sub equation system shown in Eq. (25). The radius
of the influence domain of MLS interpolation rI and the
integral domain rΩs are set differently as rI = 2.5 ∆x and
rΩs = 1.1∆x, where ∆x is the smallest space step of the
regularly arranged nodes. The other parameters in Eq.
(7) is set as cI = 0.365rI, and k = 2.

A piecewise midpoint quadrature rule [De and Bathe
(2001)] is used in the numerical integral of Eqs. (23) and
(31). The simple formulation of this integral procedure is
as follows: the integral of a function f (x,y) over a sector
ΩR0 , which is with radius R0, center point (x0, y0), initial
angle θinit and total angle θ0, is approximated asZ Z

ΩR0

f (x,y) dxdy

�
nθ

∑
i=1

nr

∑
j=1

Di j f (x0 + r j cosθi, y0 + r j sinθi) (39)

where nθ and nr are the numbers of sections subdivided
along circular direction and radial direction, θi = θinit +
(i−1/2)∆θ(i = 1 · · ·nθ), r j = j2− j+1/3

j−1/2 ∆r ( j = 1 · · ·nr),

∆θ = θ0
nθ

and ∆r = R0
nr

. This scheme is proved to be
superior to other integral schemes numerically, such as
Gauss-Legendre product rule, in both stability and effi-
ciency on the condition of similar numerical integral in
meshless methods. For detail information, please refer
the paper. In the practice, the circle or sector for integral
in Eq. (23) is subdivided by 5 in radius direction and 8
in circumferential direction, respectively. 8 quadrature
points with uniform separation are used for the integral
along each boundary line within a sub-domain. As for
the path-independent dynamic J′ integral in Eq. (31), 8
by 8 quadrature points are used for the area integral, and
16 quadrature points with uniform separation are used for
the line integral.

4.1 Analysis of pure mode problems

Firstly, the dynamic response of a rectangular plate with
a centrally located horizontal crack is investigated. For

mode I and II, the tensile stress σ(t) = H(t)σ0 and in-
plane shear stress τ(t)= H(t)τ0 are applied along the up-
per and lower boundaries of the plate, respectively, where
H(t) is a Heaviside function. The size of the rectangular
plate is 104mm in width and 40mm in height. A half
part of this model is drawn in Figure 2, which shows the
scattered node pattern and the circle path centered at the
crack tip for the calculation of dynamic J′ integral.

0a
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-0.02

-0.01

0.00

0.01

0.02

h 
 (m

)

w  (m)

tipR

Crack tip

Figure 2 : Discrete model for a plate with a center crack
and the path for the dynamic J′ integral.

The material parameters are given in Table 1. 4410 nodes
with regular pattern (105×42) are used in this analysis.
The amplitude of the loading is τ0 = σ0 = 0.1MPa. The
time step is ∆t = 0.1µs.

Table 1 : Parameters for the calculation of pure and
mixed modes DSIF

Crack modes I II Mixed
mode

Young’s modulusE(GPa) 75.6 73.5 75.6
Poisson’s ratio ν 0.286 0.25 0.286
Densityρ (kg/m3) 2450 2450 2450
Crack length a0(mm) 12 12 22.63
Node number 4410 4410 1485

Figures 3 and 4 show the path independence of J′01 inte-
grals for modes I and II, and they are path independent
to within 2.4% and 1.8% of the values for path tipR =
3mm, respectively. Figures 5 and 6 describe the nor-
malized dynamic stress intensity factors KI(t)/(σ0

√
πa0)
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Figure 3 : Path-independence of dynamic J0
1 inte-

gral computed by present algorithm for pure mode I
(with a stationary crack).
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Figure 4 : Path-independence of dynamic J0
1 inte-

gral computed by present algorithm for pure mode
II (with a stationary crack).
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Figure 5 : Time-dependence of the normalized
mode I dynamic stress intensity factors for a center-
cracked rectangular plate subjected to Heaviside
step-function normal stress (with a stationary crack
and a propagating crack at a constant crack velocity
V = 1000 m/s, respectively).
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Figure 6 : Time-dependence of the mode II dynamic
stress intensity factors for a center-cracked rectangu-
lar plate subjected to Heaviside step-function shear
stress (with a stationary crack).

and KII(t)/(τ0
√

πa0) for modes I (with a stationary crack
and a propagating crack at a constant crack velocity
V = 1000 m/s, respectively) and II (with a stationary
crack).

These results agree well with the analytical solutions
[Baker (1962); Thau and Lu (1971)], and the numeri-
cal results computed by moving singular elements [Nish-
ioka and Atluri (1980)] and singular elements [Kishi-
moto, Aoki and Sakata (1980)], respectively.

4.2 Analysis of mixed mode problem

Figure 7 shows the scattered node pattern of a rectangular
plate with a crack slanted at 450. 1485 nodes with regu-
lar pattern (45×33) are used in this analysis. A tensile
stress σ(t) = H(t)σ0 is applied on the left boundary and
the hinged supports are posed on the other three bound-
aries. The loading amplitude is σ0 = 0.1MPa. The crack
is from (6.5, 0) to (22.5, 16). The other computational
conditions are shown in Table 1.

Figures 8 and 9 are the path independence of J′01 and J′02
integrals for mixed mode, respectively. Referring to the
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Figure 7 : Discrete model for a plate with a crack
slanted at 450 and the path for the dynamic J′ inte-
grals.
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Figure 8 : Path-independence of dynamic J0
1 inte-

gral computed by present algorithm for mixed mode.
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Figure 10 : Time-dependence of the normalized
mixed mode dynamic stress intensity factors for a
rectangular plate with a slanted crack.

values at tipR=3mm, the variation of the path indepen-
dent J′01 and J′02 are within 0.6% and 3.1%, respectively.

Figure 10 shows the results for the normalized dy-
namic stress intensity factors KI(t)/(σ0

√
πa0) and

KII(t)/(σ0
√

πa0). Comparing these results with the ana-
lytical solutions [Thau and Lu (1971)], and the numerical
results computed by singular finite element [Kishimoto,
Aoki and Sakata (1980)], they agree well.

4.3 Stress wave diffraction in a square plate with
cracks

In this section, the stress wave propagation and diffrac-
tion near the cracks are investigated. Figures 11a, 11b
and 11c exhibit the diagrammatic sketches of a plate

(200mm × 200mm) without cracks, with a horizontal
crack or a vertical crack, respectively.

A uniform impact load with b = 8 mm in length is applied
on the center of the upper surface of the square plate. The
impact load is expressed as⎧⎨
⎩

σx = σy = σxy = 0,vx = vy = 0 for t = 0
σy = p0 [1−0.5(106t −2.5)2]exp[−(106t −2.5)2],
σx y = 0 for y = 0

(40)

where p0 = 1MPa. The crack length is a = 40mm. The
location of the cracks is shown in Figures 12-14 in de-
tail. The material parameters are: E = 210MPa, ν = 0.3
and ρ = 7800kg/m3. 40401 nodes with a regular pattern
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Figure 11 : Diagrammatic sketches of a plate without cracks, with a horizontal crack or a vertical crack.
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Figure 12 : The stress wave field of σy at four different times (no cracks). Figures (a), (b), (c) and (d) are for
propagation times 15, 20, 26 and 30 µs, respectively.
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Figure 13 : The stress wave field of σy at four different times (central horizontal cracks). Figures (a), (b), (c) and
(d) are for propagation times 15, 18, 22.5 and 25 µs, respectively.

(1mm×1mm in a space step) are adopted in this exam-
ple. The time step is also ∆t = 0.1µs.

Figures 13 and 14 display the stress wave propagation
processes in the square plate with a horizontally or verti-
cally located crack under the impact loading at different
time, respectively. In order to make a comparison, the
stress wave propagation process in the same plate with-
out cracks is also given in Figure 12. Figures 12a, 13a
and 14a are the stress wave field at time t = 15µs. The
longitudinal wave, shear wave, Raleigh wave and von
Schmidt wave are distinctly demonstrated. It can be ob-
served clearly that the peak of Rayleigh wave decreases
rapidly with the increase of depth. Figures 13b, 13c and

13d show the diffraction process of the waves due to hor-
izontal crack continuously. From Figure 13b (t = 18µs),
it can be seen that the longitudinal wave is reflected on
the upper surface of the crack, and it changes from the
tension wave to the pressure wave. At the same time,
the diffraction of the longitudinal wave at two crack tips
happens. At t = 22.5µs and t = 25µs (shown in Figures.
13c and 13d, respectively), two kinds of diffracted waves
at the two crack tips have radiated out, and according to
their wave velocities, it could be identified that they are
longitudinal wave and shear wave, respectively.

As shown in Figure 14, for the case of the vertical crack,
the diffracted waves from the upper crack tip are not so
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Figure 14 : The stress wave field of σyat four different times (central vertical cracks). Figures (a), (b), (c) and (d)
are for propagation times 15, 20, 22.5 and 25 µs, respectively.

clear, for the reason that the width of the crack is too
small. When the longitudinal wave arrives at the verti-
cal crack and then propagates along the crack, two head
waves start to appear in Figure 14b (t = 20µs), which
are produced by the grazing incidence of the longitudi-
nal wave over two surfaces of the crack. These two head
waves propagating at the velocity of the shear wave cs

are clearly displayed in Figures 14c (t = 22.5µs) and 14d
(t = 25µs), respectively.

The above numerical results demonstrate high capability
of the present algorithm in the extraction of the compli-
cated stress wave fields, such as the perplexing reflection
and diffraction phenomena caused by cracks.

5 Conclusions

A new MLPG algorithm is proposed to analyze stress
wave propagation and dynamic fracture problems in elas-
tic media with cracks. In our algorithm, a new mod-
ified MLS procedure is developed for simplifying the
treatment of essential boundary condition by introduc-
ing Lagrange multiplier into MLS procedure. In addi-
tion, lumped mass and explicit central difference scheme
are used in this algorithm, which makes the calcula-
tion more efficiently. By using this algorithm, the dy-
namic stress intensity factors for pure modes and mixed
modes are evaluated through an indirect method of path-
independent dynamic J′ integrals. Our results are con-
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sistent with the analytical solutions and the results com-
puted by singular finite element method and moving sin-
gular FEM. Good agreement is presented. Finally the
elastic wave field in a square plate with a crack is inves-
tigated. The complicated wave fields caused by the wave
diffraction near the crack tips, and the multi-interfaces
between different waves are clearly extracted from the
results computed by the present algorithm in detail. All
the numerical examples given above prove the accuracy,
capability and efficiency of present MLPG algorithm in
the application of dynamic fracture problems.
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