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Computing Prager’s Kinematic Hardening Mixed-Control Equations in a
Pseudo-Riemann Manifold

Chein-Shan Liu1

Abstract: Materials’ internal spacetime may bear cer-
tain similarities with the external spacetime of special
relativity theory. Previously, it is shown that material
hardening and anisotropy may cause the internal space-
time curved. In this paper we announce the third mech-
anism of mixed-control to cause the curvedness of inter-
nal spacetime. To tackle the mixed-control problem for
a Prager kinematic hardening material, we demonstrate
two new formulations. By using two-integrating factors
idea we can derive two Lie type systems in the product
space of M

m+1 ⊗M
n+1. The Lie algebra is a direct sum

of so(m,1)⊕ so(n,1), and correspondingly the symme-
try group is a direct product of SOo(m,1)⊗ SOo(n,1),
which left acts on a twin-cone. Then, by using the one-
integrating factor idea we can convert the nonlinear con-
stitutive equations into a Lie type system of Ż = CZ with
C ∈ sl(5,1,R) a Lie algebra of the special orthochronous
pseudo-linear group SL(5,1,R). The underlying space is
a distorted cone in the pseudo-Riemann manifold. Con-
sistent numerical methods are then developed according
to these Lie symmetries, and numerical examples are
used to assess the performance of new algorithms. The
measures in terms of the errors by satisfying the consis-
tency condition, strain and stress relative errors and ori-
entational errors confirm that the new numerical methods
are better than radial return method.

keyword: Prager kinematic hardening rule, Integrating
factors, Mixed-controls, Pseudo-Riemann manifold, In-
ternal spacetime, Internal symmetry, Consistent numeri-
cal schemes

1 Introduction

While a full stress control is not suitable for materials
with strain softening, a full strain control is almost im-
possible to execute in real experimental testing of ma-
terials. Hence, by the strain control we usually refer to
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specifying just part of strain components and allowing to
be zero of these stress components which are conjugate
to the unspecified strain components. A mixed-control is
a prescription of part of strain components and a simulta-
neous prescription of part of stress components conjugate
to the unspecified strain components.

After introducing an elastoplastic model with Prager’s
kinematic hardening rule (Prager, 1956), our task is to
find the response path as output from the constitutive re-
lations when the stress-strain mixed-control path is pre-
scribed as input. In the open literature, the subject of
plasticity under mixed-controls has been investigated by
Klisinski et al. (1992) and Klisinski (1998), and an in-
tegration algorithm under mixed-controls has been dis-
cussed by Ritto-Corrêa and Camotim (2001). It is im-
portant that in the experimental testing of materials a
mixed-control is frequently used; for example, the uniax-
ial stress test is the simplest one of mixed-control. Upon
recognizing this point we are naturally led to study the
material behavior and response under mixed-controls.

In terms of five-dimensional stress and strain vectors, the
material endowed with Prager’s kinematic hardening rule
can be modeled by [Hong and Liu (1999a); Liu (2005)]:

ė = ėe + ėp, (1)

s = ξξξ+ααα, (2)

ṡ = keėe, (3)

ξξξλ̇ = ξ0ėp, (4)

α̇αα = kbėp, (5)

‖ξξξ‖ ≤ ξ0, (6)

λ̇ ≥ 0, (7)



162 Copyright c© 2006 Tech Science Press CMES, vol.12, no.3, pp.161-179, 2006

‖ξξξ‖λ̇ = ξ0λ̇. (8)

There appear three material constants of ke, kb and ξ0 in
this material model.

The boldfaced e, ee, ep, s, ξξξ and ααα are respectively the
five-dimensional vectors of strains, elastic strains, plas-
tic strains, stresses, active stresses and back stresses,
whereas λ is a scalar called the equivalent plastic strain,
with ξ0λ̇ being the specific power dissipation.

The concept of internal spacetime as advocated by Hong
and Liu (1999a, 1999b, 2000) to model materials’ plas-
tic behaviors bears certain similarities with the external
spacetime structure originated from the Einstein’s land-
mark theory of special relativity (Hong and Liu, 2001).
Both spacetimes are flat Minkowski spaces and the action
groups are both of the Lorentz types, but with different
dimensions.

Recent studies indicate that materials’ internal spacetime
due to isotropic hardening (Liu, 2003) or anisotropy (Liu,
2004c; Liu and Chang, 2005) cannot be flattened into a
flat one. In addition, there is a third possibility to cause a
curved internal spacetime due to an external stress-strain
mixed-control imposing on materials. A common lan-
guage to describe the curved spacetimes is a mathemat-
ical theory of pseudo-Riemann manifold. Essentially,
the pseudo-Riemann manifold is a differentiable man-
ifold equipped with a non-degenerate and non-positive
metric tensor (Lang, 1999). Because the metric tensor
is non-constant, the resulting spacetime is also non-flat.
To demonstrate the third mechanism to cause the non-
flatness of internal spacetime, the material elastoplas-
tic model with Prager’s kinematic hardening is a good
choice, because this model allows stress-strain mixed-
controls and the yield surface is always constant in the
active stress space without considering isotropic hard-
ening and anisotropy. Therefore, the latter two reasons
to cause the non-flatness of internal spacetime just men-
tioned above can be ruled out, and we can concentrate
our study on the third reason of mixed-control to cause
the non-flatness of internal spacetime.

In this paper we analyze the above rate-form constitu-
tive equations under strain-control in Section 2, stress-
control in Section 3, and then stress-strain mixed-control
in all subsequent sections. In Section 4 we derive a mixed
stress-strain control equation. In Section 5 we propose
a two integrating factors method to quasi-linearize the
mixed stress-strain control equation, where the twin-cone

structure and the symmetry group in a product space of
M

m+1⊗M
n+1 are discussed, and then a group-preserving

scheme is derived. In Section 6 we use an integrating fac-
tor idea to form the constitutive equations under mixed-
control in a pseudo-Riemann manifold, and then a con-
sistent numerical scheme is developed. In Section 7 we
derive a radial return method to integrate the constitutive
equations under mixed-control. Section 8 demonstrates
the performance of these numerical schemes by numer-
ical examples. Finally, we draw conclusions in Section
9. This paper may provide us a deeper understanding of
the underlying structure of an elastoplastic model with
Prager’s kinematic hardening under mixed-controls.

2 Exact linearization under strain control

2.1 Expressed the responses in terms of ξξξ

From Eqs. (1)-(3) and (5) it follows that

1
ke

ṡ+
1
kb

(ṡ− ξ̇ξξ) = ė, (9)

1
ke

(ξ̇ξξ+α̇αα)+
1
kb

α̇αα = ė, (10)

ξ̇ξξ+kb ėp = ke(ė− ėp). (11)

Once ξξξ(t) can be obtained, it is easy to compute s(t), ααα(t)
and ep(t) via the following formulae (Liu, 2002):

s(t) = s(ti)+β[ξξξ(t)−ξξξ(ti)]+βkb[e(t)−e(ti)], (12)

ααα(t) = ααα(ti)+(1−β)[ξξξ(ti)−ξξξ(t)]+βkb[e(t)−e(ti)],(13)

ep(t) = ep(ti)+
1

ke +kb
[ξξξ(ti)−ξξξ(t)]+β[e(t)−e(ti)],(14)

where β = ke/(ke +kb). They were obtained by integrat-
ing Eqs. (9)-(11). Here t is the current time and ti is an
initial time, at which the initial conditions of ξξξ(ti), ααα(ti),
ep(ti) and λ(ti) should be prescribed. The above three
equations indicate that the responses are fully determined
by ξξξ under strain control.
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2.2 Linear system under strain control

Inserting the plastic flow rule (4) for ėp into Eq. (11) we
obtain

ξ̇ξξ+
(ke +kb)λ̇

ξ0
ξξξ = keė. (15)

The inner product of ξξξ with Eq. (15) is

ξξξ · ξ̇ξξ+
(ke +kb)λ̇

ξ0
ξξξ ·ξξξ = keξξξ · ė, (16)

which, due to the constancy of ξ0, asserts that

λ̇ =
β
ξ0

ξξξ · ė > 0 if ‖ξξξ‖= ξ0 and ξξξ · ė > 0, (17)

λ̇ = 0 if ‖ξξξ‖ < ξ0 or ξξξ · ė ≤ 0. (18)

They are switching criteria of plastic irreversibility under
strain control.

For Eq. (15) we can define an integrating factor:

Y := exp

(
ke +kb

ξ0
λ
)

, (19)

such that it becomes

d
dt

(Yξξξ) = keY ė. (20)

On the other hand, Eq. (17) changes for Y into

Ẏ =
keY

ξ2
0

ξξξ · ė. (21)

Introduce

X =
[

Xs

X0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

X1

·
·
·

X5

X0

⎤
⎥⎥⎥⎥⎥⎥⎦

:=

⎡
⎢⎢⎢⎢⎢⎢⎣

Y ξ1

·
·
·

Y ξ5

Y ξ0

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

as the 5 + 1-dimensional augmented state vector. Thus,
from Eqs. (20) and (21) we have

Ẋ = AX (23)

with

A :=
ke

ξ0

[
05 ė
ėT 0

]
. (24)

Here, the superscript T denotes the transpose and 05 is
a zero matrix with dimensions five. It can be seen that
in this augmented space of X = (YξξξT

,Y ξ0)T the govern-
ing equations become linear and therefore tractable more
easy than the original nonlinear equations.

The above procedure to exactly linearize the nonlinear
constitutive equations in the space of X has been first de-
veloped by Hong and Liu (1999a).

3 Exact linearization under stress control

3.1 Expressed the responses in terms of ξξξ

From Eqs. (2), (5) and (4) it follows that

ξ̇ξξ+
kbλ̇
ξ0

ξξξ = ṡ, (25)

or

d
dt

(yξξξ) = yṡ, (26)

in terms of another integrating factor:

y := exp

(
kb

ξ0
λ
)

. (27)

Once ξξξ(t) can be obtained, it is easy to directly compute

ααα(t) = s(t)−ξξξ(t), (28)

e(t) = e(ti)+
1

βkb
[s(t)− s(ti)]+

1
kb

[ξξξ(ti)−ξξξ(t)], (29)

ep(t) = ep(ti)+
1
kb

[s(t)− s(ti)]+
1
kb

[ξξξ(ti)−ξξξ(t)]. (30)

The second equation is obtained from Eq. (12), and the
third equation is obtained from Eqs. (14) and (29). Sim-
ilarly, the above three equations indicate that the re-
sponses are fully determined by ξξξ under stress control.

3.2 Linear system under stress control

The inner product of ξξξ with Eq. (25) is

ξξξ · ξ̇ξξ+
kbλ̇
ξ0

ξξξ ·ξξξ = ξξξ · ṡ, (31)

which, due to the constancy of ξ0, asserts that

λ̇ =
1

kbξ0
ξξξ · ṡ > 0 if ‖ξξξ‖= ξ0 and ξξξ · ṡ > 0, (32)



164 Copyright c© 2006 Tech Science Press CMES, vol.12, no.3, pp.161-179, 2006

λ̇ = 0 if ‖ξξξ‖ < ξ0 or ξξξ · ṡ ≤ 0. (33)

They are switching criteria of plastic irreversibility under
stress control.

Eq. (32) can be expressed in terms of y defined by
Eq. (27) as

ẏ =
y

ξ2
0
ξξξ · ṡ. (34)

Let

x =
[

xs

x0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

·
·
·

x5

x0

⎤
⎥⎥⎥⎥⎥⎥⎦

:=

⎡
⎢⎢⎢⎢⎢⎢⎣

yξ1

·
·
·

yξ5

yξ0

⎤
⎥⎥⎥⎥⎥⎥⎦

(35)

be another 5 + 1-dimensional augmented state vector.
Thus, from Eqs. (26) and (34) it follows that

ẋ = Bx, (36)

where

B :=
1
ξ0

[
05 ṡ
ṡT 0

]
. (37)

It can be seen that in this augmented space of x =
(yξξξT

,yξ0)T the governing equations are also linear.

4 Mixed stress-strain control equation

To properly address all kinds of controls we define the
control path by

u := kePee+Pss, (38)

where Pe and Ps are the second-order tensors which are
disjoint projection operators, namely,

PePe = Pe, (39)

PsPs = Ps, (40)

Pe +Ps = I5, (41)

PePs = PsPe = 05. (42)

Pe can be represented by a diagonal matrix with (Naylor
and Sell, 1982)

Pe =

⎡
⎢⎢⎢⎢⎣

λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5

⎤
⎥⎥⎥⎥⎦ , (43)

where the elements λi, i = 1, . . .,5, are either 0 or 1. In
the later the abbreviation of Pe = diag [λ1,λ2,λ3,λ4,λ5]
will be used.

Multiplying Eq. (15) by Pe we obtain

Peξ̇ξξ+
(ke +kb)λ̇

ξ0
Peξξξ = kePeė. (44)

Similarly, multiplying Eq. (25) by Ps we obtain

Psξ̇ξξ+
kbλ̇
ξ0

Psξξξ = Psṡ. (45)

Then, the sum of these two resultants yields

ξ̇ξξ+
(ke +kb)λ̇

ξ0
Peξξξ+

kbλ̇
ξ0

Psξξξ = u̇. (46)

Substituting Ps = I5 −Pe into the left-hand side of the
above equation, and inserting it for ξ̇ξξ into the consistency
condition ξξξ · ξ̇ξξ = 0, leads to

Hmλ̇ = ξξξ · u̇, (47)

where

Hm :=
ke

ξ0
ξξξ ·Peξξξ+kbξ0 (48)

is the stability function for stress-strain mixed-control
equation.

Supposing Hm > 0, from Eq. (47) we can deduce the fol-
lowing on-off switching criteria of plastic irreversibility:

λ̇ =
ξξξ · u̇
Hm

> 0 if ‖ξξξ‖ = ξ0 and ξξξ · u̇ > 0, (49)

λ̇ = 0 if ‖ξξξ‖ < ξ0 or ξξξ · u̇ ≤ 0. (50)

In the on phase of the switch, λ̇ > 0, the mechanism
of plastic irreversibility is working and the material ex-
hibits an elastoplastic behavior, while in the off phase of
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the switch, λ̇ = 0, the material deformation is reversible
and elastic. According to the complementary trio (6)-(8),
there are just two phases: (i) λ̇ > 0 and ‖ξξξ‖= ξ0, and (ii)
λ̇ = 0 and ‖ξξξ‖≤ ξ0. From criteria (49) and (50) it is clear
that (i) corresponds to the on phase whereas (ii) to the off
phase.

The mixed-control problem is for a given Pee(t) and
Pss(t) to find Pes(t) and Pse(t), which can be obtained
by multiplying Eq. (12) by Pe and Eq. (29) by Ps:

Pes(t) = Pes(ti)+β[Peξξξ(t)−Peξξξ(ti)]
+βkb[Pee(t)−Pee(ti)], (51)

Pse(t) = Pse(ti)+
1

βkb
[Pss(t)−Pss(ti)]

+
1
kb

[Psξξξ(ti)−Psξξξ(t)]. (52)

The back stress can be obtained by multiplying Eq. (13)
by Pe, multiplying ααα(t) = s(t)−ξξξ(t) by Ps, and adding
these two resultants together as

ααα(t) = Peααα(ti)+Pss(t)−Psξξξ(t)
+(1−β)[Peξξξ(ti)−Peξξξ(t)]
+βkb[Pee(t)−Pee(ti)]. (53)

Similarly, the plastic strain can be obtained by multi-
plying Eq. (14) by Pe, multiplying Eq. (30) by Ps, and
adding these two resultants together as

ep(t) = ep(ti)+
1

ke +kb
[Peξξξ(ti)−Peξξξ(t)]

+β[Pee(t)−Pee(ti)]+
1
kb

[Pss(t)−Pss(ti)]

+
1
kb

[Psξξξ(ti)−Psξξξ(t)]. (54)

Thus, upon substituting ξξξ, Pee and Pss into Eqs. (51)-(54)
we obtain Pes, Pse, ααα and ep.

It can be seen that the problem of finding responses under
mixed-controls is still fully determined by Peξξξ and Psξξξ
under the inputs of Peė and Psṡ as shown in Fig. 1. How-
ever, this problem becomes difficult because Eqs. (44)
and (45) exhibit two different moduli of ke + kb and kb,
which corresponding to mixed strain and stress controls.

When inserting Eq. (49) for λ̇ into Eq. (46) we obtain

ξ̇ξξ+
(ke +kb)ξξξ · u̇

ξ0Hm
Peξξξ+

kbξξξ · u̇
ξ0Hm

Psξξξ = u̇. (55)

� �

� �

Peė PeξPeξ̇ + (ke+kb)λ̇
ξ0

Peξ = keP
eė

Psṡ PsξPsξ̇ + kbλ̇
ξ0

Psξ = Psṡ

Eqs. (44) and (45)

� �u̇
ξ̇ +

(ke+kb)ξ·u̇
ξ0Hm

Peξ +
kbξ·u̇
ξ0Hm

Psξ = u̇
ξ

Eq. (55)

Figure 1 : Schematic drawings to show the block dia-
grams of a mixed-control problem.

The problem is that for the specified mixed-control input
of u̇ we must solve ξξξ as shown in Fig. 1.

Both Hm = (ke + kb)ξ0 for strain control and Hm = kbξ0

for stress control are constant, and the above equation can
be linearized as shown in Section 2 for strain-control and
Section 3 for stress-control. However, for mixed-controls
Hm is a function of ξξξ, which renders the above equation
highly nonlinear. If one does not use a specifically de-
signed numerical method to integrate the above constitu-
tive equation, then the yield condition of ‖ξξξ‖ = ξ0 may
not be guaranteed for all time in the plastic phase.

5 Two integrating factors formulation

Unlike the strain or stress control case, each of which can
be exactly linearized in an augmented active stress space
as shown in Eqs. (23) and (36), respectively, the gov-
erning equation (46) for the mixed-control case cannot
be linearized exactly. The main obstacle lies in the fact
that there are two different integrating factors of Y and y
as defined, respectively, by Eqs. (19) and (27) appearing
in Eq. (46) with the forms of Ẏ/Y = (ke + kb)λ̇/ξ0 and
ẏ/y = kbλ̇/ξ0, such that one of the procedures to linearize
Eq. (15) to Eq. (20) or Eq. (25) to Eq. (26) is no more ap-
plicable for this mixed-control case. Physically speaking,
the two augmented active stress spaces are endowed with
different moduli: one with ke + kb and another one with
kb. However, we develop below two novel methods to
quasi-linearize the governing equations for ξξξ.

5.1 Quasi-linear mixed-control equation

First, the yield condition can be written as

ξξξ ·Peξξξ+ξξξ ·Psξξξ = ξ2
0, (56)
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because of Pe +Ps = I5. Let

ξ2
e := ξξξ ·Peξξξ, (57)

ξ2
s := ξξξ ·Psξξξ, (58)

such that

ξ2
e +ξ2

s = ξ2
0 (59)

due to Eq. (56).

Multiplying Eq. (20) by Pe we obtain

d
dt

(YPeξξξ) = keY Peė. (60)

On the other hand, taking the inner product of Eq. (60)
with Peξξξ, and noting that

Peξξξ ·Peξξξ = ξ2
e ,

Peξξξ ·Peξ̇ξξ = ξeξ̇e

due to Eq. (57) and (Pe)2 = Pe = (Pe)T, we obtain

d
dt

(Yξe) =
ke

ξe
YPeė ·Peξξξ. (61)

Eqs. (60) and (61) can be combined together to a quasi-
linear differential equations system:

Ẋe = AeXe (62)

with

Xe =
[

Xs
e

X0
e

]
:=
[

Y Peξξξ
Yξe

]
, (63)

Ae :=
ke

ξe

[
0m Peė

(Peė)T 0

]
, (64)

where m is the dimensions of strain-controlled space.
Since Ae is slightly dependent on ξe, which is not a con-
stant but an unknown function, Eq. (62), unlike the linear
systems (23) and (36), is a quasi-linear system.

Similarly, multiplying Eq. (26) by Ps we obtain

d
dt

(yPsξξξ) = yPsṡ. (65)

Then, taking the inner product of Eq. (65) with Psξξξ, and
noting that

Psξξξ ·Psξξξ = ξ2
s ,

Psξξξ ·Psξ̇ξξ = ξsξ̇s

due to Eq. (58) and (Ps)2 = Ps = (Ps)T, we obtain

d
dt

(yξs) =
1
ξs

yPsṡ ·Psξξξ. (66)

Eqs. (65) and (66) can be combined together to a quasi-
linear differential equations system:

Ẋs = AsXs (67)

with

Xs =
[

Xs
s

X0
s

]
:=
[

yPsξξξ
yξs

]
, (68)

As :=
1
ξs

[
0n Psṡ

(Psṡ)T 0

]
, (69)

where n is the dimensions of stress-controlled space with
n = 5−m.

5.2 Twin-cone and symmetry groups

Both strain and stress control cases exhibit a cone struc-
ture in the augmented spaces of X and x, respectively.
From Eq. (22) we have

XTgX = ‖Xs‖2− (X0)2 = Y 2[‖ξξξ‖2 −ξ2
0], (70)

where

g =
[

I5 05×1

01×5 −1

]
(71)

is a six-dimensional indefinite metric tensor. The 5 + 1-
dimensional vector space of augmented active stress X
endowed with the Minkowski metric g is referred to as
Minkowski spacetime denoted by M

5+1.

Regarding Eqs. (70) and (6), we may distinguish two cor-
respondences:

‖ξξξ‖ = ξ0 ⇐⇒ XTgX = 0, (72)
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‖ξξξ‖ < ξ0 ⇐⇒ XTgX < 0. (73)

That is, an active stress ξξξ on the yield hypersphere of
‖ξξξ‖= ξ0 corresponds to an augmented active stress X on
the right circular cone {X| XTgX = 0} in the Minkowski
space, whereas a ξξξ within the yield hypersphere corre-
sponds to an X in the interior {X| XTgX < 0} of the cone.
The exterior {X| XTgX > 0} of the cone is uninhabitable
since ‖ξξξ‖ > ξ0 is forbidden according to Eq. (6).

Since A in Eq. (23) satisfying

ATg+gA = 0 (74)

is a six-dimensional Lie algebra of the proper or-
thochronous Lorentz group SOo(5,1), the G being the
fundamental solution of Eq. (23) satisfies the following
group properties (Liu, 2001):

GTgG = g, detG = 1, G0
0 ≥ 1, (75)

where det is the shorthand of determinant and G0
0 is the

00th component of G. A more detailed discussion about
the internal symmetry groups of material models can be
found in Hong and Liu (1999a, 1999b, 2000), Liu (2003,
2004a-d, 2005), Liu and Chang (2004, 2005) and Liu and
Li (2005).

Similar results hold for stress control case. Now, we turn
our attention to the mixed-control case. From Eqs. (63)
and (68) it follows that

XT
e geXe = ‖Xs

e‖2 − (X0
e )2 = Y 2[‖Peξξξ‖2 −ξ2

e ], (76)

XT
s gsXs = ‖Xs

s‖2 − (X0
s )2 = y2[‖Psξξξ‖2 −ξ2

s ], (77)

where

ge =
[

Im 0m×1

01×m −1

]
, gs =

[
In 0n×1

01×n −1

]
(78)

are the m+1- and n+1-dimensional Minkowski metrics
in the Minkowski spacetimes of M

m+1 and M
n+1, respec-

tively.

By Eqs. (76), (77), (57) and (58) we may further distin-
guish two correspondences:

‖Peξξξ‖ = ξe ⇐⇒ XT
e geXe = 0, (79)

‖Psξξξ‖ = ξs ⇐⇒ XT
s gsXs = 0. (80)

The former corresponds to a cone in the augmented space
Xe of M

m+1, while the latter a cone in the augmented
space Xs of M

n+1. Totally, in the augmented active stress
space they composed as a twin-cone. When Ps = 0, i.e.,
strain control case, the twin-cone is collapsed into a sin-
gle cone for X, and conversely, when Pe = 0, i.e., stress
control case, the twin-cone is collapsed into a single cone
for x. Conversely, we may also say that when a mixed-
control problem is concerned with, the single cone in the
space of M

5+1 either for strain or stress control is split
into a twin-cone in the space of M

m+1 ⊗M
n+1, where

m+n = 5.

Now, since Ae in Eq. (62) satisfying

AT
e ge +geAe = 0 (81)

is an m + 1-dimensional Lie algebra of the proper or-
thochronous Lorentz group SOo(m,1), the Ge generated
from Eq. (62) satisfies the following group properties:

GT
e geGe = ge, detGe = 1, (Ge)0

0 ≥ 1. (82)

Correspondingly, since As in Eq. (67) satisfying

AT
s gs +gsAs = 0 (83)

is an n + 1-dimensional Lie algebra of the proper or-
thochronous Lorentz group SOo(n,1), the Gs generated
from Eq. (67) satisfies the following group properties:

GT
s gsGs = gs, detGs = 1, (Gs)0

0 ≥ 1. (84)

In summary, we have used the two integrating factors
method to derive two Lie type systems in the product
space of M

m+1 ⊗M
n+1. The Lie algebra is a direct sum

of so(m,1)⊕ so(n,1), and correspondingly the symme-
try group is a direct product of SOo(m,1)⊗ SOo(n,1),
left acting on a twin-cone.

5.3 Group-preserving scheme

For the calculation purpose we may approximate the
specified mixed-controlled path by a rectilinear path,
such that Peė and Psṡ at each time increment are con-
stant vectors, denoting by Peė(�) and Psṡ(�) at a discrete
time t = t�. The numerical scheme attempts to provide a
medium to calculate the values of Xe and Xs at the next
time t = t�+1 when knowing Xe and Xs at time t = t�.

The evolution of Xe is governed by Eq. (62) with ma-
trix Ae given by Eq. (64). Due to the piecewise linearity
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of controlled strain, Peė is constant in each time incre-
ment equal to ∆t. Unluckily, due to the presence of ξe

in Eq. (64), this is not true for matrix Ae. Therefore we
approximate the solution of Eq. (62) by considering ξe as
a constant in each single time step. Under such an addi-
tional hypothesis, the matrix Ae is constant, and so the
evolution of Eq. (62) is known to be

Xe(�+1) = Ge(�)Xe(�), (85)

where

Ge(�) := exp[∆tAe(�)]

=

⎡
⎢⎣ Im + [ae(�)−1]

‖Peė(�)‖2 Peė(�)(Peė(�))T be(�)Peė(�)
‖Peė(�)‖

be(�)(Peė(�))T

‖Peė(�)‖ ae(�)

⎤
⎥⎦ ,

(86)

in which

ae(�) := cosh

(
ke∆t‖Peė(�)‖

ξe(�)

)
, (87)

be(�) := sinh

(
ke∆t‖Peė(�)‖

ξe(�)

)
. (88)

A similar argument is applied to Eq. (67) with matrix As

given by Eq. (69), leading to

Xs(�+1) = Gs(�)Xs(�), (89)

where

Gs(�) := exp[∆tAs(�)]

=

⎡
⎢⎣ In + [as(�)−1]

‖Ps ṡ(�)‖2 Psṡ(�)(Psṡ(�))T bs(�)Ps ṡ(�)
‖Ps ṡ(�)‖

bs(�)(Psṡ(�))T
‖Ps ṡ(�)‖ as(�)

⎤
⎥⎦ ,(90)

in which

as(�) := cosh

(
∆t‖Psṡ(�)‖

ξs(�)

)
, (91)

bs(�) := sinh

(
∆t‖Psṡ(�)‖

ξs(�)

)
. (92)

However, in their current forms, Eqs. (85) and (89) are
insufficient to determine the values of Peξξξ(� + 1) and
Psξξξ(�+1), since from Eqs. (63) and (68) we have

Peξξξ(�+1) =
Xs

e(�+1)
X0

e (�+1)
ξe(�+1), (93)

Psξξξ(�+1) =
Xs

s(�+1)
X0

s (�+1)
ξs(�+1), (94)

and there are still two unknowns of ξe(�+ 1) and ξs(�+
1) on the right-hand sides. In order to solve this problem
we need four equations:

Y (�+1)ξe(�+1) = X0
e (�+1), (95)

y(�+1)ξs(�+1) = X0
s (�+1), (96)

ξ2
e(�+1)+ξ2

s (�+1) = ξ2
0, (97)

y(�+1)−Y (1−β)(�+1) = 0 (98)

to solve the four unknowns of ξe(�+1), ξs(�+1), Y (�+
1) and y(�+ 1). In above the values on right-hand sides
are all known. Eq. (95) is obtained from the last one row
in Eq. (63); Eq. (96) is obtained from the last one row
in Eq. (68); Eq. (97) is a direct result of Eq. (59); and
Eq. (98) is obtained by comparing Eq. (19) with Eq. (27).
Substituting Eq. (96) for ξs(�+ 1) into Eq. (97), where
y(�+ 1) is replaced by Y (1−β)(�+ 1) which is further re-
placed by X0

e (�+1)/ξe(�+1) due to Eq. (95), we obtain

F(ξe(�+1)) := ξ2
e(�+1)

+
(X0

s (�+1))2

(X0
e (�+1))2(1−β)ξ2(1−β)

e (�+1)−ξ2
0 = 0. (99)

Because of F(0) = −ξ2
0 < 0 and F(ξ0) = (X0

s (� +
1))2ξ2(1−β)

0 /(X0
e (�+1))2(1−β) > 0, there must exist a real

root of the above equation in the range of 0 < ξe(�+1) <

ξ0.

Numerically solving Eq. (99) we obtain ξe(� + 1) and
then ξs(� + 1) can be obtained from Eq. (97). There-
fore, from Eq. (95) we obtain Y (�+1), and from Eq. (96)
we obtain y(� + 1). Substituting these two values of
ξe(�+1) and ξs(�+1) into Eqs. (93) and (94) we can ob-
tain Peξξξ(�+1) and Psξξξ(�+1), and hence ξξξ(�+1). Thus,
substituting ξξξ, Pee and Pss into Eqs. (51)-(54) we obtain
Pes, Pse, ααα and ep.

6 A pseudo-Riemann method

In Section 5 we have furnished a two-integrating-factor
and a twin-cone formulation for mixed-control equa-
tions, and then derived a numerical scheme to implement
it. In this section we attempt to unify the mixed-control
equations from an integrating factor method and a single-
cone formulation.



Computing Prager’s Kinematic Hardening Mixed-Control Equations in a Pseudo-Riemann Manifold 169

6.1 A pseudo-Riemann manifold

Multiplying Eqs. (20) and (26) by Pe and Ps, respectively,
and then letting

Zs(m) := Y Peξξξ, (100)

Zs(n) := yPsξξξ, (101)

where m and n indicate the dimensions of strain and
stress control variables, we can obtain

Żs(m) = keY Peė, (102)

Żs(n) = yPsṡ. (103)

The above y defined by Eq. (27) can be written as y =
Y (1−β). Then, from Eqs. (19) and (47) it follows that

d
dt

(Yξ0) =
(ke +kb)Y

Hm
ξξξ · u̇. (104)

Upon introducing

Z =

⎡
⎣ Zs(m)

Zs(n)

Z0

⎤
⎦=

⎡
⎣ Y Peξξξ

yPsξξξ
Y ξ0

⎤
⎦ (105)

as the m + n + 1 = 5 + 1-dimensional augmented state
vector, Eqs. (102)-(104) can be combined to a single dif-
ferential equations system:

Ż = CZ (106)

with

C :=⎡
⎢⎢⎢⎢⎣

0m×m 0m×n
ke
ξ0

Peė

0n×m 0n×n
1

(Z0)βξ(1−β)
0

Psṡ

ke(ke+kb)
Hm

(Peė)T (ke+kb)(Z0)β

Hmξβ
0

(Psṡ)T 0

⎤
⎥⎥⎥⎥⎦ ,

(107)

where Hm defined by Eq. (48) can be written as

Hm =
keξ0

(Z0)2‖Zs(m)‖2 +kbξ0. (108)

Now we turn our attention to reveal the underlying space
of the above system. The yield condition as expressed by

Eq. (56) can be written as, after multiplying both sides
by Y2,

‖YPeξξξ‖2 +‖Y Psξξξ‖2 = (Y ξ0)2. (109)

In terms of Zs(m), Zs(n) and Z0 the above equation further
changes to

‖Zs(m)‖2 +
(

Z0

ξ0

)2β

‖Zs(n)‖2 = (Z0)2. (110)

If we introduce the following metric:

ηηη :=

⎡
⎢⎢⎢⎢⎣

Im 0m×n 0m×1

0n×m

(
Z0

ξ0

)2β
In 0n×1

01×m 01×n −1

⎤
⎥⎥⎥⎥⎦ , (111)

then by Eqs. (110) and (105) we eventually arrive at

ZTηηηZ = 0. (112)

The space of Z endowed with the above metric ηηη, which
depends on the temporal component Z0, is known as a
pseudo-Riemann manifold, which is locally a pseudo-
Euclidean space denoted by E

6
5,1; and the above equation

signifies a distorted cone in a non-flat Minkowski space
(Liu, 2003, 2004d).

6.2 A consistent numerical scheme

The evolution of Z is governed by Eq. (106) with its state
matrix C given by Eq. (107). Due to the piecewise lin-
earity of controlled strain and controlled stress, Peė and
Psṡ are constant at each time step. Unluckily, due to the
presence of Z0 and ‖Zs(m)‖2 in Eq. (107), this is not true
for matrix C. Therefore we approximate the solution of
Eq. (106) by considering Z0 and ‖Zs(m)‖ constant in each
time step. Under these additional hypotheses, the matrix
C is constant, and so the solution of Eq. (106) is found to
be

Z(�+1) = Gz(�)Z(�), (113)

where

Gz(�) := exp[∆tC(�)]

=

⎡
⎢⎣

I5 + [az(�)−1]
U(�)·V(�)U(�)VT(�) bz(�)U(�)√

U(�)·V(�)

bz(�)VT(�)√
U(�)·V(�)

az(�)

⎤
⎥⎦ , (114)
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in which

U :=

⎡
⎣ ke

ξ0
Peė

1
(Z0)βξ(1−β)

0

Psṡ

⎤
⎦ , (115)

V :=

⎡
⎣ ke(ke+kb)

Hm
Peė

(ke+kb)(Z0)β

Hmξβ
0

Psṡ

⎤
⎦ , (116)

and

az(�) := cosh(∆t
√

U(�) ·V(�)), (117)

bz(�) := sinh(∆t
√

U(�) ·V(�)). (118)

Once Zs(m)(�+ 1), Zs(n)(�+ 1) and Z0(�+ 1) are calcu-
lated from Eq. (113), Y (�+1), Peξξξ(�+1) and Psξξξ(�+1)
can be calculated by

Y(�+1) =
Z0(�+1)

ξ0
, (119)

Peξξξ(�+1) =
Zs(m)(�+1)

Y (�+1)
, (120)

Psξξξ(�+1) =
Zs(n)(�+1)

Y (1−β)(�+1)
. (121)

Substituting the latter two equations into Eqs. (51)-(54)
we obtain Pes(�+1), Pse(�+1), ααα(�+1) and ep(�+1).

From Eqs. (113), (114) and (105) we obtain[
Y (�+1)Peξξξ(�+1)

y(�+1)Psξξξ(�+1)

]
=

[
Y (�)Peξξξ(�)

y(�)Psξξξ(�)

]

+

(
[az(�)−1]c(�)Y(�)

U(�) ·V(�)
+

ξ0bz(�)Y(�)√
U(�) ·V(�)

)
U(�), (122)

Y(�+1)ξ0 =
bz(�)c(�)Y(�)√

U(�) ·V(�)
+ξ0az(�)Y(�), (123)

where

c(�) =
ke +kb

Hm(�)
ξξξ(�) · u̇(�). (124)

Eq. (122) dividing by Eq. (123) and deleting Y(�) in both
the numerator and denominator we get two equations:

Peξξξ(�+1) = ξ0W1(�), (125)

Psξξξ(�+1) =
ξ0

Y−β(�+1)
W2(�), (126)

where

d(�) :=
ke +kb

ξ0Hm(�)
‖u̇(�)‖2, (127)

W1(�) =
Peξξξ(�)+

[
ke[az(�)−1]c(�)

ξ0d(�) + kebz(�)√
d(�)

]
Peė(�)

az(�)ξ0 + bz(�)c(�)√
d(�)

, (128)

W2(�) = Y−β(�)
Psξξξ(�)+

[
[az(�)−1]c(�)

ξ0d(�) + bz(�)√
d(�)

]
Psṡ(�)

az(�)ξ0 + bz(�)c(�)√
d(�)

(129)

are all known from the previous time step.

Substituting Eqs. (125) and (126) into the yield condition
(56), and solve it for Y−β(�+1) we obtain

Y−β(�+1) =

√
‖W2(�)‖2

1−‖W1(�)‖2 . (130)

Once Y−β is substituted into Eqs. (125) and (126), it is
easy to check that

‖Peξξξ(�+1)‖2 +‖Psξξξ(�+1)‖2 = ξ2
0, (131)

and thus we get a consistent numerical scheme without
needing for any iterations.

7 Radial-return method

In this section we briefly discuss the radial return method
for the mixed-control case. This method requires two
steps to search a suitable increment of ∆λ(�+1): the first
step is to find the trial stress state with an elastic predic-
tion, and then the second step is to correct the stress to
satisfy the consistency condition.
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Figure 2 : The time histories of strain and stress mixed-control.

The updated active stress is determined by Eq. (46) with
an incremental form:

ξξξ(�+1) = ξξξ(�)+kePe∆e+Ps∆s

− (ke +kb)∆λ(�+1)
ξ0

Peξξξ(�)− kb∆λ(�+1)
ξ0

Psξξξ(�).

(132)

From the above equation we can calculate ξξξ(� + 1) if
∆λ(�+1) is calculated.

In order to get ∆λ(�+1), let us insert the above equation
into the consistency condition ‖ξξξ(�+1)‖ = ξ2

0:

A[∆λ(�+1)]2 +B∆λ(�+1)+C = 0, (133)

where

A :=
(ke +kb)2

ξ2
0

‖Peξξξ(�)‖2 +
k2

b

ξ2
0

‖Psξξξ(�)‖2, (134)

B :=
−2(ke +kb)

ξ0
ξξξ(�) ·Peξξξ(�)− 2kb

ξ0
ξξξ(�) ·Psξξξ(�)

− 2ke(ke +kb)
ξ0

∆e ·Peξξξ(�)− 2kb

ξ0
∆s ·Psξξξ(�), (135)

C := ‖kePe∆e‖2 +‖Ps∆s‖2 +2keξξξ(�) ·Pe∆e

+2ξξξ(�) ·Ps∆s+‖ξξξ(�)‖2−ξ2
0. (136)

Because Eq. (133) is a quadratic equation we can solve it
to obtain

∆λ(�+1) =
−B−√

B2 −4AC
2A

. (137)

Inserting the above ∆λ(�+ 1) into Eq. (132) the updated
active stress can be determined. Then from Eqs. (51) and
(52) we obtain Pes and Pse, respectively. Inserting these
vectors into Eqs. (53) and (54) we thus obtain ααα and ep,
respectively.
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Figure 3 : The time histories of responses under a mixed-control.

8 Numerical examples

In the above three sections we have derived three
schemes, namely, group preserving scheme (GPS),
pseudo-Riemann method (PRM) and radial return
method (RRM). In this section numerical examples are
used to test these three numerical schemes.

In order to assess the performances of the above three
numerical methods we employ a numerical example with
Pe = diag [1,1,0,0,0], which means that the strain con-
trol components are e1 and e2 and the stress control com-
ponents are s3, s4 and s5. In Fig. 2 the time histories of

the mixed-controlled components are plotted. In all nu-
merical calculations the material constants are fixed to
be ke = 40000 MPa, ξ0 = 400 MPa, and kb = 2000 MPa.
The time step size used is ∆t = 0.01 sec.

Since the first mixed-control path used to testing is a
piecewise linear one, of which Peė and Psṡ are constant,
we can calculate the responses in the elastic phase by

Pes(t) = Pes(ti)+ke(t − ti)Peė, (138)

Peξξξ(t) = Peξξξ(ti)+ke(t− ti)Peė, (139)
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Figure 4 : The hysteretic loops of responses under a mixed-control.

Pse(t) = Pse(ti)+
1
ke

(t− ti)Psṡ, (140)

Psξξξ(t) = Psξξξ(ti)+(t − ti)Psṡ. (141)

The end time of an elastic phase is determined by
solving the following equation, obtained by substituting
Eq. (139) for Peξξξ and Eq. (141) for Psξξξ into Eq. (56):

A(t− ti)2 +B(t − ti)+C = 0, (142)

where

A = k2
e ė ·Peė + ṡ ·Psṡ, (143)

B = 2kePeξξξ(ti) ·Peė +2Psξξξ(ti) ·Psṡ, (144)

C = ξξξ(ti) ·Peξξξ(ti)+ξξξ(ti) ·Psξξξ(ti)−ξ2
0. (145)

We plot the time histories of responses in Fig. 3, includ-
ing active stress, back stress, stress and plastic strain. The
first row is the responses that correspond to the stres con-
trol of s3, while the second row is the responses that cor-
respond to the strain control of e1. For saving space we
do not plot the other components of responses, which are
similar to the above ones. In addition we also plot the
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Figure 5 : Comparing the errors by satisfying the consistency condition of (a) GPS, (b) PRM and (c) RRM.

control-based responses in Fig. 4, where different types
of hysteresis loops can be seen. The left-hand figures
display prominent relaxations of responses under cyclic
stress control.

In Fig. 5 we display the errors of satisfying the con-
sistency condition. It can be seen that PRM gives al-
most zero value of the error of the consistency condi-
tion defined by ERR1 := ‖ξξξ‖− s0, while RRM has the
error of the consistency condition within the order of

5× 10−13. Because GPS needs a numerical solution to
obtain ξe(�+1) by Eq. (99), the consistency error of GPS
is slightly larger than that of RRM and PRM within the
order of 3×10−12. Needless to say PRM is the best one
of these three numerical methods to satisfy the consis-
tency condition.

In order to give a more refined criterion to assess the per-
formance, let us introduce the following strain and stress
relative errors at a given discrete time t(m) for the above
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Figure 6 : Comparing (a) stress relative errors, (b) strain relative errors and (c) orientational errors for GPS, RRM
and PRM.

mixed loading case:

ERR2 :=
‖s(m)− s∗(m)‖

sup j∈{0,1,...,m}‖s∗(m)‖ , (146)

ERR3 :=
‖e(m)−e∗(m)‖

sup j∈{0,1,...,m}‖e∗(m)‖ , (147)

where e∗(m), e(m), s∗(m) and s(m) are strain and stress
vectors, containing respectively the “exact” and the nu-
merical solutions at time t(m). For the mixed-control
case it must consider both the effects of each strain and
stress control at the same time. For the considered model,

because of the lack of closed-form solution of the prob-
lem under investigation, we computed the numerical so-
lution with a finer time interval ∆t = 0.005 sec; the differ-
ences between such “exact” solution with other numeri-
cal solutions with more practical and larger time steps
were then used to assess the performance of numerical
schemes. In Figs. 6(a) and 6(b) we show the stress and
strain relative errors for GPS, RRM and PRM in the plas-
tic state by using a time step size with ∆t = 0.01 sec. The
good results obtained with PRM can be immediately ap-
preciated.
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e1 s2 

Figure 7 : The cyclic responses under a non-proportional circular mixed-control path are plotted in (a)-(h). The
consistency error induced by PRM is plotted in (i).

Let us further consider an orientational error defined by

ERR4 :=
ξξξ(m) ·ξξξ∗(m)

ξ2
0

−1. (148)

Fig. 6(c) shows the orientational errors for GPS, RRM

and PRM. It can be seen that the errors of PRM and GPS
are far less than that of RRM.

Next, we consider a non-proportional loading case with
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Figure 8 : Comparing (a) stress relative errors, (b) strain relative errors and (c) orientational errors for RRM and
PRM.

the input a two-dimensional circular path:

e1(t) = e0 cos t, s2(t) = s0 sint. (149)

In order to investigate the consistency conditions of these
numerical schemes, we let s1 = 0 MPa and s2 = 400 MPa
be located on the yield surface initially and let e0 = 0.02
and s0 = 30 MPa be large enough such that under the
above cyclic loading the material is always in the plastic
state. The material constants used are the same as that in
the above but with kb = 4000 MPa. In Figs. 7(a)-7(h) we
plot the cyclic responses under ten cycles of the above
loading. The consistency error induced by the numeri-
cal scheme of PRM is plotted in Fig. 7(i). As expected
this numerical scheme preserves the consistency condi-

tion very well; however, the nonzero values presented in
the figure are due to the machinery round off errors. In
Fig. 8 we compare the stress and strain relative errors and
the orientational errors of RRM and PRM.

9 Conclusions

Three consistency-preserving integrators of a plastic-
ity model with Prager’s kinematic hardening rule under
strain and stress mixed-controls were developed. The
group preserving algorithm results from our investigation
of the plasticity equations by a Lie group symmetry study
of the augmented quasi-linear differential equations sys-
tems and a twin-cone structure in the product space of
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M
m+1 ⊗M

n+1, where m and n are respectively the num-
bers of strain and stress control components.

Even though the constitutive equations are highly nonlin-
ear under mixed-controls, through an integrating factor
and a single cone structure they can be converted to a Lie
type system Ż = CZ in the 5+1-dimensional augmented
stress space of Z. In the augmented stress space an
internal spacetime structure of the pseudo-Riemannian
type is brought out. The control tensor C for the plastic
phase was proved to be an element of the real Lie alge-
bra sl(5,1,R) of the special orthochronous pseudo-linear
group SL(5,1,R). In addition the material hardening and
anisotropy, which cause the internal spacetime non-flat,
this study has also shown that the mechanism of mixed-
control may cause the non-flatness of internal spacetime.

According to these symmetry studies, numerical schemes
which preserve the group properties for every time incre-
ment were developed. These group preserving schemes
may be specifically called consistent schemes, since they
are capable of updating the stress point to be located on
the yield surface at the end of each time increment in the
plastic phase. Especially, the PRM algorithm is the best
one, which updates stress point on the yield surface with-
out needing for any iterations.

Numerical examples were used to assess the performance
of the new algorithms. In terms of the errors by satisfying
the consistency condition, strain and stress relative errors
and the orientational errors, we have shown that the new
algorithm of PRM provided good accuracy.

Acknowledgement: The financial support provided by
the National Science Council of Taiwan under the Grant
NSC 92-2212-E-019-006 is gratefully acknowledged.

References

Hong, H.-K.; Liu, C.-S. (1999a): Internal symmetry in
bilinear elastoplasticity. Int. J. Non-Linear Mech., vol.
34, pp. 279-288.

Hong, H.-K.; Liu, C.-S. (1999b): Lorentz group
SOo(5,1) for perfect elastoplasticity with large deforma-
tion and a consistency numerical scheme. Int. J. Non-
Linear Mech., vol. 34, pp. 1113-1130.

Hong, H.-K.; Liu, C.-S. (2000): Internal symmetry in
the constitutive model of perfect elastoplasticity. Int. J.
Non-Linear Mech., vol. 35, pp. 447-466.

Hong, H.-K.; Liu, C.-S. (2001): Some physical models

with Minkowski spacetime structure and Lorentz group
symmetry. Int. J. Non-Linear Mech., vol. 36, pp. 1075-
1084.

Klisinski, M. (1998): On constitutive relations for arbi-
trary stress-strain control in multi-surface plasticity. Int.
J. Solids Struct., vol. 35, pp. 2655-2678.
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