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Spectral Element Approach for Forward Models of 3D Layered Pavement

Chun-Ying Wu1,3, Xue-Yan Liu2, A. Scarpas2, and Xiu-Run Ge3

Abstract: For the spectral analysis of the three-
dimensional multi-layered pavement, 3D layer spectral
element method is presented to solve the problems of
bounded layer system subjected to a transient load pulse.
In spectral element, each layer is treated as one spectral
element. The wave propagation inside each layer element
is achieved by the superposition of the incident wave and
the reflection wave. Fast Fourier transformation is used
to transform FWD datum from time domain to frequency
domain. The accuracy and efficiency of 3D layer spectral
element approach were verified by analyzing the Falling
weight deflectometer(FWD) testing model with the spec-
tral methods and the finite element method(FEM).

keyword: 3D layer spectral element, Falling weight
deflectometer, Fast Fourier transformation

1 Introduction

Both the analytical and numerical methods have been
extensively applied into solving dynamic problem rang-
ing from seismic wave propagation, soil-structure in-
teraction by vibrations, fluid-solid interface wave prop-
agation, as well as non-destruction testing problem.
Falling weight deflectometer(FWD) is a non-destructive
dynamic method widely used for the evaluation of pave-
ment structures. Most of the parameter identification
computer programs used today for analyzing FWD da-
tum are based on the static analysis, which often under-
estimates the strength of pavement subgrade. However,
when applying dynamic analysis for FWD study, the
computational efficiency is always a big concern in the
parameter identification of inverse calculation. For in-
stance, Lee(1998) employed two-dimensional, dynamic
finite element analysis using the ABAQUS program to
develop the deflection information for the FWD study.
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Bozkurt(2002) reconstructed 3-D finite element meshes
to analyze the airport pavement. It is known that finite
element method, an effective numerical method, can be
commonly used to analyze complicated models with dif-
ferent geometries and loading conditions. However, it is
not efficient in the forward and inverse calculation due
to discrete characteristics of element meshes. On the
other hand, analytical dynamic method, though very ef-
ficient, is usually cumbersome for the models with com-
plicated geometries and boundary conditions. Therefore,
semi-analytical dynamic method was proposed by the
combination of the analytical solution in solids with the
numerical technique of finite element. Thomson(1950)
and Haskell(1953) developed a propagator approach, in
which a propagator matrix combined with the known
displacements and forces can be transferred from one
interface to another. However, because the transform-
ing matrix is nonsymmetrical, this method is still not
efficient in the numerical calculation. Besides the effi-
ciency, the propagator approach has difficulty in dealing
with different boundary conditions. Kausel and Roes-
set(1981) modified the propagator matrix to a symmetric
transforming matrix by a series of function transforms
corresponding to different boundary conditions. Due to
the complicated transforms, the time consumption for the
calculation still remains a problem.

Spectral element method as one of the semi-analytical
methods was developed by Doyle, which describes
waveguides in the element as the superposition of inci-
dent waves and reflection waves. Following the theory,
Doyle(1997) applied spectral analysis mainly for the 1-
D waveguide, Rizzi(1992) focused the work on the re-
sponse of the wave propagation in 2-D layered solids,
and Al-Khoury(2001) utilized the spectral element to an-
alyze the dynamic impact of FWD load pulses on pave-
ments. On the basis of this forward model, an inverse
calculation by use of three minimization algorithms was
presented for the parameter identification of FWD datum.
Yongon(1998) employed Hankel transforms as a forward
model and an artificial neural network (ANN) for the in-
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version process. However, previous work only solved
problems in the 2-D or the semi-infinite multi-layered
system.

The objective of this study is to develop a new type
of spectral element for three-dimensional layer system.
The 3-D layer spectral element and the throw-off spec-
tral element are presented in the study. The stiffness
matrix for every element is derived by the exact solu-
tion of wave propagation in structure. The formula of
Lamb(1904) are applied for wave propagating solution in
three-dimensional solids. Thus, this method can be used
to solving more complicated dynamic problems such as
the pavements subjected to the FWD loading.

2 Governing Equations

When homogeneous isotropic elastic solid with constant
elastic material is subjected to dynamic loads, two types
of waves are generated: dilatational (P) wave and shear
(S) wave. Assuming the symmetry on the axis of z, the
equation of wave propagation for a three-dimensional el-
ement holds

µ∆u+(λ+µ)∇(∇ ·u) = ρ
∂2u
∂t2 (1a)

∆u = ∇(∇ ·u)−∇× (∇× ũ) (1b)

where u = {u(x,y, z, t),v(x,y, z,t),w(x,y,z,t)}is the dis-
placement, ρ is the mass density, λ and µ are the Lame’s
constants.

λ =
νE

(1+ν)(1−2ν)
, and µ =

E
2(1+ν)

(2)

E is Young’s modulus and νis Poisson’s ratio. ∇ = x0
∂
∂x +

y0
∂
∂y +z0

∂
∂z is set as an operator, ∆ = (∇ ·∇)= ∂2

∂x2 + ∂2

∂y2 +
∂2

∂z2 is the Laplacian operator. (·) and (×) are scalar and
vector products , respectively.

The displacement vectors are composed as the sum of the
gradient of a scalar potential ϕ and the curl of a vector
potential ψ,

u = ∇ϕ+∇×ψ, ∇ ·ψ = 0 (3)

where ϕ is related to dilatational wave and ψ is related to
shear wave.

From the article of Lamb(1904), the formula of displace-
ment are expressed by two potentials as below,

u =
∂ϕ
∂x

+
∂2ψ
∂x∂z

,v =
∂ϕ
∂y

+
∂2ψ
∂y∂z

, (4)

The potentials ϕ and ψ are written as dynamic equations,

∆ϕ =
1

C2
p

∂2ϕ
∂t2 (5a)

∆ψ =
1

C2
s

∂2ψ
∂t2 (5b)

with Cp =
√

(λ+2µ)/ρ, Cs =
√

µ/ρ
Here, Cp andCs are the wave velocities of P and S waves.
The relevant stresses expressed by potentials ϕ and ψ
hold

σzx = 2µ(
∂2ϕ
∂x∂z

+
∂3ψ

∂x∂z2 )−ρ
∂3ψ

∂x∂t2 (6a)

σzy = 2µ(
∂2ϕ
∂y∂z

+
∂3ψ

∂y∂z2 )−ρ
∂3ψ

∂y∂t2 (6b)

(λ+2µ)σzz = λρ
∂2ϕ
∂t2 +2µ(λ+2µ)

· (∂2ϕ
∂z2 +

∂3ψ
∂z3 )−2ρ(λ+2µ)

∂3ψ
∂z∂t2 (6c)

3 Forming Potentials

The partial differential equations (Eqs. 5) are trans-
formed from time domain to frequency domain through
Fourier transformation method. The potentials in
time domain equations are anticipated as conven-
tional exponential scattered wavefields with the form of
e−ikrxe−ikmye−ikzzeiωnt . In this exponential form, kr, km

and kz are the wavenumbers in three dimensions of x, y
and z, respectively. ωn is the discrete angular frequency.
By the method of the separation of variables, the poten-
tials are separated into three independent parts including
components x, y and z. The potentials become

ϕ̃ = ϕ̃(z) · e−ikrx · e−ikmy (7a)

ψ̃ = ψ̃(z) · e−ikrx · e−ikmy (7b)

Then the potentials ϕ and ψ in frequency domain are rep-
resented as ϕ̃ and ψ̃. The time factor eiωnt is omitted in
the preceding Fourier transforms. When taking Eqs. 7
into the government equation Eqs. 5, one obtains:

∂ϕ̃
∂x

= −ikrϕ̃,
∂ϕ̃
∂y

= −ikmϕ̃ (8)
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and

∂2ϕ̃
∂z2 +(

ω2
n

C2
p
−k2

r −k2
m)ϕ̃ = 0 (9a)

∂2ψ̃
∂z2 +(

ω2
n

C2
s
−k2

r −k2
m)ψ̃ = 0 (9b)

kzp and kzs are related to dilatational (P) waves and shear
(S) waves,

kzp = (
ω2

n

C2
p
−k2

r −k2
m)1/2 (10a)

kzs = (
ω2

n

C2
s
−k2

r −k2
m)1/2 (10b)

krand km are independent variables defined by the roots
of the plates.

kr =
π · r
lx

, km =
π ·m

ly
(r,m = 0,1,2...∞) (11)

lxand ly (Fig.1) represent the lengths from the center to x
and y side of plate, respectively.

Substituting Eqs. 8 into Eqs. 4, the displacements obtain

ũ = −ikrϕ̃(z)− ikr
∂ψ̃(z)

∂z
(12a)

ṽ = −ikmϕ̃(z)− ikm
∂ψ̃(z)

∂z
(12b)

w̃ =
∂ϕ̃(z)

∂z
+

∂2ψ̃(z)
∂z2 +

ω2
n

C2
s

ψ̃(z) (12c)

Taking Eqs. 8 into Eqs. 6, the stresses are expressed as

σ̃zx = −2µ · i · kr(
∂ϕ̃(z)

∂z
+

∂2ψ̃(z)
∂z2 )

−ρ · i · krω2
nψ̃(z) (13a)

σ̃zy = −2µ · i · km(
∂ϕ̃(z)

∂z
+

∂2ψ̃(z)
∂z2 )

−ρ · i · kmω2
nψ̃(z) (13b)

σ̃zz = − λ
C2

p
ω2ϕ̃(z)+2µ(

∂2ϕ̃(z)
∂z2

+
∂3ψ̃(z)

∂z3 )+2ρω2
n

∂ψ̃(z)
∂z

(13c)

Figure 1 : Structure of 3D layer pavement system

4 Spectral element formulation

The spectral analysis is introduced to solve the problems
of 3D layer pavement system(Fig. 1). According to the
principle of spectral element analysis (Doyle, 1997), the
kernel ϕ̃(z,kr,km,ωn) and ψ̃(z,kr,km,ωn) are the func-
tions of the wavenumbers with three indices of r,m and
n. The summation over discrete frequencies is achieved
by fast Fourier transformation method (FFT) (Brigham,
1988). krand km are corresponding to the rth and mth
vibration modes, respectively.

ϕ(x,y, z) = ∑
n

∑
m

∑
r

ϕ̃ · e−ikrx · e−ikmy · eiωnt (14a)

ψ(x,y, z) = ∑
n

∑
m

∑
r

ψ̃ · e−ikrx · e−ikmy · eiωnt (14b)

Substituting the exponential form A · e−ikzpzand C · e−ikzsz

into ϕ̃(z) and ψ̃(z), the potentials in frequency domain
become

ϕ̃(x,y, z) = A · e−ikzpz · e−ikrx · e−ikmy (15a)

ψ̃(x,y, z) = C · e−ikzsz · e−ikrx · e−ikmy (15b)

Here A and C are the coefficients.

4.1 Two-node layer spectral element

Each layer with two bounded interfaces is treated as a
two-node layer spectral element(Fig. 2) in which a cou-
ple of nodes are located in the centers of surface and bot-
tom, respectively. In the multi-layer system, the bottom
note of one layer and the surface note of the neighboring
layer are jointed together and numbered as one note in
the overall layer structure. Each note has three degrees



152 Copyright c© 2006 Tech Science Press CMES, vol.12, no.2, pp.149-157, 2006

Figure 2 : Two-node layer spectral element

of freedoms in x, y and z directions. Due to the lim-
ited depth of z direction in the two-node layer element,
the vertical response of wave at any note can be consid-
ered as the superposition of the incident wave and the
reflection wave. Applying the superposition method, the
potentials ϕ̃(x,y, z) and ψ̃(x,y, z) in the two-node layer el-
ement is the summation of the potentials in the positive z
direction and those in negative z directions,

ϕ̃(x,y, z) = (A · e−ikzpz +B · e−ikzp(h−z)) · e−ikrx · e−ikmy

(16a)

ψ̃(x,y, z) = (C · e−ikzsz +D · e−ikzs(h−z)) · e−ikrx · e−ikmy

(16b)

In these two equations, the first terms in the brackets rep-
resent the incident wave propagating from the upper sur-
face at z = 0 and the second terms represent the reflection
wave propagating from the boundary at z = h, where h is
the thickness of the layer element.

Substituting the potential equations Eqs.16 into the dis-
placement equations Eqs. 12, the x horizontal displace-
ments and the z vertical displacements can be obtained
as

ũ j(x,y, z) =

⎛
⎜⎜⎝

−A · i · kr · e−i·kzp·z

−i ·B · kr · e−i·kzp·(h−z)

−C · kr · kzs · e−i·kzsz

+D · kr · kzs · e−i·kzs(h−z)

⎞
⎟⎟⎠ · e−ikrx · e−ikmy

(17a)

w̃ j(x,y, z) =

⎛
⎜⎜⎝

−A · i · kzp · e−i·kzpz

+B · i · kzp · e−i·kzp(h−z)

C · k2 · e−i·kzs·z

+D · k2 · e−i·kzs(h−z)

⎞
⎟⎟⎠ · e−ikrx · e−ikmy

(17b)

in which

k =
√

k2
r +k2

m

Each displacement equation consists of coefficients A, B,
C and D. The subscription j in u j (x,y, z) and wj (x,y, z)
denotes the number of notes in the overall layer structure.
When taking the conditions of z = 0 at note 1 and z = h at
note 2 into Eqs. 17, the vector of x and z displacements of
each node [ũ1, w̃1, ũ2, w̃2] is linked with coefficients Amn,
Bmn, Cmn, Dmnin the non-linear equation as follows:
⎧⎪⎪⎨
⎪⎪⎩

ũ1

w̃1

ũ2

w̃2

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

−ikr −ikre1 −krkzs krkzse2

−ikzp ikzpe1 k2 k2e2

−ikre1 −ikr −krkzs · e2 krkzs

−ikzpe1 ikzp k2e2 k2

⎤
⎥⎥⎦ ·

·

⎧⎪⎪⎨
⎪⎪⎩

A
B
C
D

⎫⎪⎪⎬
⎪⎪⎭

(18)

Here e1 = e−ikzph, e2 = e−ikzsh. The matrix style of Eq.18
is expressed as

ũ = Ñ · ã (19)

where ũ represents the nodal displacement vector, ã rep-
resents the coefficient vector and Ñ is the square matrix.
When taking the inverse calculation, Eq. 19 becomes

ã =
M̃
∆
· ũ (20)

where the square matrix is defined as Ñ−1 = M̃/∆. ∆ is
the determinant of the matrix Ñ. Substituting Eqs. 16
into the stress equations (Eqs. 13), the stresses σxz and
σzz become

σxz j (x,y, z) =

⎛
⎜⎜⎝

2 ·A · kr · kzp · e−i·kzpz

−2 ·B · kr · kzp · e−i·kzp(h−z)

−i ·C ·R · kr · e−i·kzsz

−i ·D ·R · kr · e−i·kzs(h−z)

⎞
⎟⎟⎠

· e−ikrx · e−ikmy (21a)

σzz j(x,y, z) =

⎛
⎜⎜⎝

A ·R · e−i·kzpz

+B ·R · e−i·kzp(h−z)

2 · i ·C · k2 · kzs · e−i·kzsz

−2 · i ·D · k2 · kzs · e−i·kzs(h−z)

⎞
⎟⎟⎠

· e−ikrx · e−ikmy (21b)
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where

R =
ω2

c2
s
−2 · k2

Following the Cauchy stress principle, the tractions on
the two nodes of the element surfaces T̃x1, T̃z1, T̃x2 and
T̃z2 are corresponding to the normal and shear stresses
σ̃xz1, σ̃zz1, σ̃xz2 and σ̃zz2, respectively

T̃x1 = −σ̃xz1, Tz1 = −σ̃zz1 (22a)

T̃x2 = σ̃xz2, Tz2 = σ̃zz2 (22b)

The stresses Tx1, Tx2, Tz1 and Tz2 in each layer are derived
by taking Eqs.21 to Eqs.22. In the same way of displace-
ment equations, they become

⎧⎪⎪⎨
⎪⎪⎩

Tx1

Tz1

Tx2

Tz2

⎫⎪⎪⎬
⎪⎪⎭

= µ ·

⎡
⎢⎢⎣

2krkzp −2krkzpe1

R R · e1

−2 · krkzpe1 2krkzp

−R · e1 −R

−iRkr −iRkre2

2ik2kzs −2ik2kzse2

iRkre2 iRkr

−2ik2kzse2 2ik2kzs

⎤
⎥⎥⎦ ·

⎧⎪⎪⎨
⎪⎪⎩

A
B
C
D

⎫⎪⎪⎬
⎪⎪⎭

(23)

It can be written as

T̃ = µ · P̃ · ã = µ · P̃ · M̃
∆

· ũ = (µ/∆) · k̃ · ũ (24)

Here k̃ = P̃ · M̃. Neglecting of the skew tensors, k̃ is a
complex and symmetric 8×8 matrix corresponding to the
dynamic element stiffness in the conventional finite ele-
ment method.

k̃ =

⎡
⎢⎢⎣

k11 k12 k13 k14

k22 −k14 k24

k11 −k12

k22

⎤
⎥⎥⎦ (25)

4.2 One-node throw-off spectral element

The one-node throw-off spectral element(Fig. 3) is a
semi-infinite element. It assumed that wave propagates
only in the positive z direction. Due to the absence of re-
flection wave in the throw-off element, the potentials of
dilatational and shear waves can be simplified by equal-
izing the coefficients B and D zero. Therefore, the poten-
tials of this element have the same expression as Eqs. 15,

and the displacements are obtained as

ũ j = (−A · i · kr · e−i·kzp·z −C · kr · ks · e−i·kzsz) · e−ikrx · e−ikmy

(26a)

w̃ j = (−A · i · kp · e−i·kzpz +C · k2 · e−i·kzs·z) · e−ikrx · e−ikmy

(26b)

Coefficients A and C are derived from Eqs. 26. That is

{
A
C

}
= (1/∆)

[
ik2/kr ikzs

−kzp/kr 1

]{
ũ
w̃

}
(27)

where ∆ = k2 +kzpks

Following the Cauchy stress principle, the tractions of
the node are related to the stresses by

T̃x1 = −σ̃xz, T̃z1 = −σ̃zz (28)

Substituting Eqs. 15 into the stress equations Eqs. 13 and
Eq. 28, the stresses T̃x1 and T̃z1 can be expressed as

{
T̃x1

T̃z1

}
= µ

[
2krkzp −iRkr

R 2ik2kzs

]{
A
B

}
(29)

In the similar way of the two-node element, the stresses
become

{
T̃x1

T̃z1

}
= (µ/∆)

[
k11 k12

k21 k22

]{
ũ
w̃

}
(30)

Figure 3 : One-node throw-off spectral element
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5 Assemblage of the global stiffness matrix and
spectral structure

Under the condition that the displacements are compati-
ble between two elements, the global stiffness matrix is
assembled by the layer elements and one throw-off ele-
ment. The rule of assemblage is similar to the conven-
tional finite element method.

The global equation is expressed as:

[
K̃(z,kr,km,ωn)

] ·Ũ = P̃ (31)

[
K̃(z,kr,km,ωn)

]
, the global stiffness matrix, is a sym-

metric complex and banded matrix. Ũ is the global dis-
placement vector, and P̃ is the global force vector. These
two vectors in frequency domain can be evaluated by the
displacement and stress boundary conditions. The re-
lationship between the forces P̃ and tractions T̃ of the
neighboring two layer elements is:

P̃xi = A×(
T̃ i−1

x2 + T̃ i
x1

)
, P̃zi = A×(

T̃ i−1
z2 + T̃ i

z1

)
(32)

Here A is the area of the applied load. At the surface
node, that relationship above becomes

P̃xi = A× T̃ i
x1 , P̃zi = A× T̃ i

z1 (33)

Following the expression of Eqs. 14, the in-time dis-
placement at nodes can be displayed as follows:

ui = ∑
n

∑
m

∑
r

G̃·P̃ · F̃rm · e−ikrx · e−ikmy · F̃n · eiωnt (34)

G̃ is the inverse matrix of
[
K̃(z,kr,km,ωn)

]
. If P̃ only

includes the vertical displacement at the first node in the
whole layer structure, P̃ will become a unit vector. Then
the in-time displacement becomes:

ui = ∑
n

∑
m

∑
r

ũi · F̃rm · e−ikrx · e−ikmy · F̃n · eiωnt (35)

Here ũi is displacement vector calculated in the fre-
quency domain. The in-time displacement is achieved by
a double summation over the wavenumbers and Fourier
transforms over the angular frequencies. F̃rm is the coef-
ficient of the spatial distribution of the applied load. And
F̃n is the time variation coefficient that is determined by
the theory of Fast Fourier Transformation (FFT).

5.1 Determination of F̃rm

FWD load function can be separated into two indepen-
dent parts,

P[(x,y), t] = f (x,y) · F(t). (36)

f (x,y) is the spatial distribution function of the cubic
shape load and F(t) is the time variation function. If
FWD applied load is a cylindrical shape load, an equiv-
alent cubic shape load can be assumed with rectangular
2b×2b and amplitude q, which is

f (x,y) =
{

q f or−b ≤ x ≤ b,−b ≤ y ≤ b
0 another

(37)

The spatial distribution of the applied load f (x,y) can be
separated into two independent variables, f (x) and f (y),
shown as

f (x) = ∑
r

ar(x)·cos(krx) (38a)

f (y) = ∑
m

am(y)·cos(kmy) (38b)

Here, the coefficients of Fourier series are

ar,m(s) =

⎧⎪⎨
⎪⎩

1
ls

R ls
0 f (s)cos(kr,ms)ds r,m = 0

2
ls

R ls
0 f (s)cos(kr,ms)ds another

, (39)

Eq. 39 shows the results of ar(x) and am(y). And s de-
notes the coordinates x or y. Then, the method of double
Fourier transformation is utilized to determinate the spa-
tial distribution coefficient F̃rm.

f (x,y) = f (x) · f (y)
= ∑

r
∑
m

ar(x)am(y)cos(krx)cos(kmy)

= ∑
r

∑
m

F̃rm cos(krx)cos(kmy)

and, F̃rm = ar(x)am(y). (40)

6 Numerical Verification

The above-formulated three-dimensional layer spectral
element program(3DSEP) is evaluated through compar-
ing the calculated results with those of a 3D finite el-
ement method program and the axi-symmetric spectral
element program(LAMDA) developed by AL-Khoury.
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Table 1 : Geometrical and material properties

Thickness
(mm)

E
(MPa)

Poisson’s
ratio

Mass density
(kg/m3)

Asphalt 150 1000 0.35 2300
Subbase 250 200 0.35 2000
Subgrade 15000 100 0.35 1500

Figure 4 : Load pulse of FWD

A pavement is subjected to a vertical load pulse that is
distributed uniformly within a square of 133 ×133mm2.
The time history of the load pulse and its frequency spec-
trum are displayed in Fig. 4 and Fig. 5.

Three-dimensional finite element program CAPA-3D
(Scarpas, 1993) is implemented for the computational
analysis of the pavement structure displayed in Fig. 6,
which is composed of three typical layers asphalt, sub-
base and subgrade. The properties of the pavement ma-
terials are presented in Tab.1. Finite element meshes of
the pavement model are represented in Fig. 6. The upper
two layers, asphalt and subbase, have a surface area of
6m× 6m. The subgrade as soil foundation has a larger
surface area of 20m×20m.

The maximum of iteration coefficients r and m depends
on the property of the load pulse and the geometrical
magnitudes of the layers. In this case, r and m range
from zero to 30. The number of sampling data utilized in
FFT was N=2048. For such a load pulse in the example,
the analysis to the maximal frequency is 150Hz.

Figure 5 : Frequency spectrum

Figure 6 : Finite element meshes of the pavement struc-
ture
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(a) 3DSEP

(b) CAPA-3D

(c) LAMDA

Figure 7 : Results of the numerical example

Three kinds of method were employed to analyze the nu-
merical example. The curves in Fig.7 express vertical
displacement at different locations from 0 mm to 1500
mm. The three charts in Fig.7 show that results from
three methods are in good agreement at the first pulse
that occurs before 0.04 sec. Due to the model of the
axi-symmetric infinite layers, the result from program
LAMDA has no second pulse. The 3D layer spectral el-
ement method and the finite element method can simu-
late layers with boundaries, so the solutions of Fig. 7(a)
and (b) are similar in the whole histories of propagation.
However, for a 256MHz Intel PC, the time consumption
for 3DSEP Fig. 7(a) was 4 seconds, that for LAMDA
Fig. 7(c) was 8 seconds, whereas 1/2 hour was needed
for the 3D finite element method (Fig. 7(c)). It is clear
that the 3D layer spectral element method is more effi-
cient than axi-symmetric spectral element program and
much more efficient than the 3D finite element program.

7 Conclusions

The three-dimensional layer spectral element is devel-
oped in the study for the analysis of multi-layered pave-
ment system subjected to the dynamic load. Based on the
spectral analysis, one element is adequate to describe one
layer, so the number of the element meshes is equal to the
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number of the layers. The system is solved by the multi-
summation over the frequencies and the wavenumbers,
which alleviates the inconvenience of the numerical cal-
culation of infinite integration. The transformation from
time to frequency domain is achieved by using FFT(Fast
Fourier transforms), and procedures from frequency to
time domain are done by means of IFFT(Inverse FFT).

A numerical example was presented to compare the re-
sults from the proposed method in this paper with those
from finite element method and axi-symmetric spectral
element method(LAMDA). Because of its high efficiency
in computation, the 3D layer spectral element approach
can be widely used in the backcaculation of FWD test of
pavement system.

Acknowledgement: The authors would like to thank
Dr. R. Al-Khoury and C. Kasbergen for their cordial
help.

References

Al-Khoury, R.; Scarpas, A.; Kasbergen, C.;
Blaauwendraad, J. (2001a): Spectral element technique
for efficient parameter identification of layered media,
Part I: Forward calculation. International Journal of
Solids and Structures vol. 38, pp. 1605–1623.

Bozkurt, D.(2002): Three dimensional finite element
analyses to evaluate reflective cracking potential in as-
phalt concrete overlays. Thesis for PHD, University of
Illinois at Urbana-Champaign.

Brigham, E.O. (1988): The Fast Fourier Transform and
Its Applications. Prentice-Hall, Englewood Cli.s, NJ.

Doyle, J.F. (1997): Wave Propagation in Structures:
Spectral Analysis using Fast Discrete Fourier Trans-
forms. Springer-Verlag, New York.

Haskell, N.A.(1953):The dispersion of surface waves on
multilayered media. Bull. Seism. Soc. Am. vol. 43,
pp.17-34.

Kausel, E.; Roesset, J.M. (1981): Stiffness matrices for
layered soils. Bull. Seism. Soc. Am. vol.71, pp.1743-
1761.

Kim, Y. (1998): Prediction of layer moduli from falling
weight deflectometer and surface wave measurements
using artificial neural network Transportation Research
Record, vol. 1639, pp. 53-61

Lamb, H. (1904): On the propagation of tremors over

the surface of an elastic solid, philosophical transactions
of royal society, V. CCIII(1), pp.1-42

Lee, Y.C. ; Kim, Y. R. ; Ranjithan, S. R. (1998):
Dynamic analysis-based approach to determine flexible
pavement layer moduli using deflection basin parame-
ters. Transportation Research Record, vol. 1639, pp.
36-42

Rizzi, S.A.; Doyle, J.F. (1992): Spectral analysis of
wave motion in plane solids with boundaries, Journal of
Vibration and Acoustics, vol. 114, pp.133-140

Rizzi, S.A.; Doyle, J.F. (1992) : A spectral element ap-
proach to wave motion in layered solids, Journal of Vi-
bration and Acoustics, vol. 114, pp. 569-577

Thomson, W.T. (1950): Transmission of elastic waves
through a stratified solid media. J. Applied Phys, vol. 21,
pp. 89-93.

Scarpas, A. (1993). CAPA-3D Finite Elements System-
User’s Manual Parts , and . Section of Structural Me-
chanics, Faculty of Civil Engineering and Geosciences,
TU-Delft, The Netherlands.




