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Analysis of Circular Torsion Bar with Circular Holes Using Null-field Approach

Jeng-Tzong Chen 1, Wen-Cheng Shen 2, Po-Yuan Chen 2

Abstract: In this paper, we derive the null-field inte-
gral equation for a circular bar weakened by circular cav-
ities with arbitrary radii and positions under torque. To
fully capture the circular geometries, separate forms of
fundamental solution in the polar coordinate and Fourier
series for boundary densities are adopted. The solution
is formulated in a manner of a semi-analytical form since
error purely attributes to the truncation of Fourier series.
Torsion problems are revisited to demonstrate the validity
of our method. Torsional rigidities for different number
of holes are also discussed.
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1 Introduction

Boundary value problems always involve several holes
or more than one important reference point. It is con-
venient to be able to expand the solutions in alternative
ways, each way referring to different specific coordinate
set describing the same solution. According to the idea,
we develop a systematic approach including the adaptive
observer system and degenerate kernel for fundamental
solution in the polar coordinate and employ Fourier se-
ries to approximate the boundary data.

In the past, multiply connected problems have been car-
ried out either by conformal mapping or by special tech-
niques. Ling [Ling C. B. (1947)] solved the torsion
problem of a circular tube with several holes. Muskhel-
ishvili [Muskhelishvili N. I. (1953)] solved the problem
of a circular bar reinforced by an eccentric circular in-
clusion. Chen and Weng [Chen T.; Weng I. S. (2001)]
have introduced conformal mapping with a Laurent se-
ries expansion to analyze the Saint-Venant torsion prob-
lem. They concerned with a eccentric bar of different ma-
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terials with an imperfect interface under torque. Based
on the CVBEM (complex variable boundary element
method), Shams-Ahmadi and Chou [Shams-Ahmadi M.;
Chou S. I. (1997)] have investigated the torsion prob-
lem of composite shafts with any number of inclusions
of different materials. Recently, Ang and Kang [Ang
W. T.; Kang I. (2000)] developed a general formulation
for solving the second-order elliptic partial differential
equation for a multiply-connected region in a different
version of CVBEM. To avoid mesh generation for finite
element or boundary element, meshless formulation is
a promising direction [Jin B. (2004), Sladek V.; Sladek
J.; Tanaka M. (2005), Wordelman C. J.; Aluru N. R.;
Ravaioli U. (2000)]. The present formulation can be
seen as one kind of meshless methods, since it belongs
to boundary collocation methods. Because the confor-
mal mapping is limited to the doubly connected region,
an increasing number of researchers have paid more at-
tentions on special solutions. However, the extension
to multiple circular holes may encounter difficulty. It
is not trivial to develop a systematic method for solv-
ing the torsion problems with several holes. Crouch and
Mogilevskaya [Crouch S. L.; Mogilevskaya S. G. (2003)]
utilized Somigliana’s formula and Fourier series for elas-
ticity problems with circular boundaries. Mogilevskaya
and Crouch [Mogilevskaya S. G.; Crouch S. L. (2001)]
have solved the problem of an infinite plane containing
arbitrary number of circular inclusions based on the com-
plex singular integral equation. In their analysis pro-
cedure, the unknown tractions are approximated by us-
ing the complex Fourier series. However, for calculat-
ing an integral over a circular boundary, they didn’t ex-
press the fundamental solution using the local polar co-
ordinate. By moving the null-field point to the bound-
ary, the boundary integral can be easily determined us-
ing series sums in our formulation due to the introduc-
tion of degenerate kernels. Mogilevskaya and Crouch
[Mogilevskaya S. G.; Crouch S. L. (2001)] have used the
Galerkin method to approach boundary density instead
of collocation approach. Our approach can be extended
to the Galerkin formulation only for the circular and an-
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nular cases. However, it may encounter difficulty for the
eccentric case. Two requirements are needed: degenerate
kernel expansion must be available and distinction of in-
terior and exterior expression must be separated. There-
fore, the collocation angle of φ is not in the range 0 to
2π in our adaptive observer system. This is the reason
why we can not formulate in terms of Galerkin formula-
tion using orthogonal properties twice. Free of worrying
how to choose the collocation points, uniform collocation
along the circular boundary yields a well-posed matrix.
On the other hand, Bird and Steele [Bird M. D.; Steele
C. R. (1991)] have also used separated solution proce-
dure for bending of circular plates with circular holes in
a similar way of the Trefftz method and addition theorem.

In this paper, the null-field integral equation is utilized
to solve the Saint-Venant torsion problem of a circular
shaft weakened by circular holes. The mathematical for-
mulation is derived by using degenerate kernels for fun-
damental solution and Fourier series for boundary den-
sity in the null-field integral equation. Then, it reduces
to a linear algebraic equation. After determining the un-
known Fourier coefficients, series solutions for the warp-
ing function and torsional rigidity are obtained. Numeri-
cal examples are given to show the validity and efficiency
of our formulation.

2 Formulation of the problem

What is given in Figure 1 is a circular bar weakened by
N circular holes placed on a concentric ring of radius b.

Figure 1 : Cross section of bar weakened by
N (N = 3) equal circular holes

The radii of the outer circle and the inner holes are R
and a, respectively. The circular bar twisted by couples
applied at the ends is taken into consideration. Follow-
ing the theory of Saint-Venant torsion [Timoshenko S. P.;
Goodier J. N. (1970)], we assume the displacement field
to be

u = −αyz, v = αxz, w = αϕ(x,y), (1)

where α is the angle of twist per unit length along the z
direction and ϕ is the warping function. According to the
displacement field in Eq. (1), the strain components are

εx = εy = εz = γxy = 0, (2)

γxz =
∂w
∂x

+
∂u
∂z

= α(
∂ϕ
∂x

−y), (3a)

γyz =
∂w
∂y

+
∂v
∂z

= α(
∂ϕ
∂y

+x), (3b)

and their corresponding components of stress are

σx = σy = σz = σxy = 0, (4)

σxz = µα(
∂ϕ
∂x

−y), σyz = µα(
∂ϕ
∂y

+x), (5)

where µ is the shear modulus. There is no distortion in
the planes of cross sections since εx = εy = εz = γxy = 0.
We have the state of pure shear at each point defined by
the stress components σxz and σyz. The warping function
ϕ must satisfy the equilibrium equation

∂2ϕ
∂x2 +

∂2ϕ
∂y2 = 0 in D , (6)

where the body force is neglected and D is the domain.
Since there are no external forces on the cylindrical sur-
face, we have tx = ty = tz = 0. By substituting the normal
vector, the only zero tz becomes

tz = σxznx +σyzny = 0 on B. (7)

By substituting (5) into (7) and rearranging, the boundary
condition is

∂ϕ
∂x

nx +
∂ϕ
∂y

ny = ynx −xny = ∇ϕ ·n =
∂ϕ
∂n

on B, (8)
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where B is the boundary. In Figure 1, we introduce the
expressions for the position vector (xk,yk) of the bound-
ary point on the kth circular hole

xk = acosθk +bcos(
2πk
N

), k = 1, 2, · · · , N,

0 < θk < 2π, (9)

yk = asinθk +bsin(
2πk
N

), k = 1, 2, · · · , N,

0 < θk < 2π, (10)

and the unit outward normal vector n = (nx,ny) =
(−cosθ,−sinθ) for the inner circular boundaries, we
have

∂ϕ
∂n

= bcos(
2πk
N

) sinθk −bsin(
2πk
N

)cosθk on Bk,

(11)

where Bk (k = 1, 2, · · · , N) is the kth boundary of the
inner hole, θk is the polar angle with respect to the origin
of the kth hole. For the outer boundary, the traction-free
condition is specified. Thus, the problem of torsion is
reduced to find the warping function ϕ which satisfies
Laplace equation of Eq. (6) and the Neumann boundary
conditions of Eq. (11) for the inner boundary and zero
traction on the outer boundary.

3 Method of solution

3.1 The dual boundary integral equations and null-
field integral equations

We apply the Fourier series expansions to approximate
the potential u and its normal derivative on the boundary

u(sk) = ak
0 +

∞

∑
n=1

(ak
n cosnθk +bk

n sinnθk),

sk ∈ Bk, k = 1, 2, · · · , N, (12)

t(sk) = pk
0 +

∞

∑
n=1

(pk
n cosnθk +qk

n sinnθk),

sk ∈ Bk, k = 1, 2, · · · , N, (13)

where t(sk) = ∂u(sk)/∂ns, ak
n, bk

n, pk
n and qk

n (n =
0, 1, 2, · · ·) are the Fourier coefficients and θk is the po-
lar angle. The integral equation for the domain point can

be derived from the third Green’s identity [Chen, J. T.;
Hong, H. -K. (1999)], we have

2πu(x) =
Z

B
T (s,x)u(s)dB(s)−

Z
B

U(s,x)t(s)dB(s),

x ∈ D, (14)

2π
∂u(x)
∂nx

=
Z

B
M(s,x)u(s)dB(s)−

Z
B

L(s,x)t(s)dB(s),

x ∈ D, (15)

where s and x are the source and field points, respectively,
D is the domain of interest, ns and nx denote the outward
normal vectors at the source point s and field point x,
respectively, and the kernel function U(s,x) = lnr, (r ≡
|x− s|), is the fundamental solution which satisfies

∇2U(s,x) = 2πδ(x− s), (16)

in which δ(x− s) denotes the Dirac-delta function. The
other kernel functions, T (s,x), L(s,x) and M(s,x), are
defined by

T (s,x)≡ ∂U(s,x)
∂ns

, L(s,x)≡ ∂U(s,x)
∂nx

,

M(s,x)≡ ∂2U(s,x)
∂ns∂nx

, (17)

By collocating x outside the domain (x ∈ Dc), we obtain
the dual null-field integral equations as shown below

0 =
Z

B
T (s,x)u(s)dB(s)−

Z
B

U(s,x)t(s)dB(s),

x ∈ Dc, (18)

0 =
Z

B
M(s,x)u(s)dB(s)−

Z
B

L(s,x)t(s)dB(s),

x ∈ Dc, (19)

where Dc is the complementary domain. Based on the
separable property, the kernel function U(s,x) can be ex-
panded into degenerate form by separating the source
points and field points in the polar coordinate [Chen J.
T.; Chiu Y. P. (2002)]:

U(s,x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ui(R,θ;ρ,φ)= lnR

− ∞
∑

m=1

1
m( ρ

R)m cosm(θ−φ), R ≥ ρ

Ue(R,θ;ρ,φ) = lnρ

−
∞
∑

m=1

1
m(R

ρ )m cosm(θ−φ), ρ > R

(20)
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where the superscripts “i” and “e” denote the interior
(R > ρ) and exterior (ρ > R) cases, respectively. In Eq.
(20), the origin of the observer system for the degenerate
kernel is (0,0) for simplicity. It is noted that degenerate
kernel for the fundamental solution is equivalent to the
addition theorem which was similarly used by Bird and
Steele [Bird M. D.; Steele C. R. (1992)]. Figure 2 shows
the graph of separate expressions of fundamental solu-
tions where source point s located at R = 10.0, θ = π/3.

Figure 2 : Graph of the separate form of fundamental
solution (s = (10,π/3))

By setting the origin at o for the observer system, a circle
with radius R from the origin o to the source point s is
plotted. If the field point x is situated inside the circular
region, the degenerate kernel belongs to the interior case
Ui; otherwise, it is the exterior case. After taking the
normal derivative ∂

∂R with respect to Eq. (20), the T (s,x)
kernel can be derived as

T (s,x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T i(R,θ;ρ,φ)= 1
R

+
∞
∑

m=1
( ρm

Rm+1 )cosm(θ−φ), R > ρ

T e(R,θ;ρ,φ) =

−
∞
∑

m=1
(Rm−1

ρm )cosm(θ−φ), ρ > R

,

(21)

and the higher-order kernel functions, L(s,x) and M(s,x),

are shown below

L(s,x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Li(R,θ;ρ,φ) =

−
∞
∑

m=1
(ρm−1

Rm )cosm(θ−φ), R > ρ

Le(R,θ;ρ,φ)= 1
ρ

+
∞
∑

m=1
( Rm

ρm+1 )cosm(θ−φ), ρ > R

,

(22)

M(s,x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mi(R,θ;ρ,φ)=
∞
∑

m=1
(mρm−1

Rm+1 )cosm(θ−φ), R ≥ ρ

Me(R,θ;ρ,φ) =
∞
∑

m=1
(mRm−1

ρm+1 )cosm(θ−φ), ρ > R

. (23)

Since the potential resulted from T (s,x) and L(s,x) ker-
nels are discontinuous across the boundary, the potentials
of T (s,x) for R → ρ+ and R → ρ− are different. This is
the reason why R = ρ is not included in expressions of
degenerate kernels for T (s,x) and L(s,x) in Eqs. (21)
and (22).

3.2 Adaptive observer system

After moving the point of Eq. (18) to the boundary,
the boundary integrals through all the circular contours
are required. Since the boundary integral equations are
frame indifferent, i.e. objectivity rule, the observer sys-
tem is adaptively to locate the origin at the center of cir-
cle in the boundary integral. Adaptive observer system
is chosen to fully employ the property of degenerate ker-
nels. Figures 3 and 4 show the boundary integration for
the circular boundaries in the adaptive observer system.

It is noted that the origin of the observer system is located
on the center of the corresponding circle under integra-
tion to entirely utilize the geometry of circular bound-
ary for the expansion of degenerate kernels and boundary
densities. The dummy variable in the circular integration
is angle (θ) instead of radial coordinate (R).

3.3 Linear algebraic system

By moving the null-field point xk to the kth circular
boundary in the sense of limit for Eq. (18) in Fig. 3,
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Figure 3 : Sketch of the null-field integral equation in
conjunction with the adaptive observer system

Figure 4 : Sketch of the boundary integral equation for
domain point inconjunction with the adaptive observer
system

we have

0 =
NC

∑
k=1

Z
Bk

T (sk,x j)u(sk)dBk(s)

−
NC

∑
k=1

Z
Bk

U(sk,x j)t(sk)dBk(s), x ∈ Dc, (24)

where NC is the number of circles including the outer
boundary and the inner circular holes. In the real com-
putation, we select the collocation point on the boundary.

If the domain is unbounded, the outer boundary B0 is a
null set and NC = N. It is noted that the integration path
is counterclockwise for the outer circle. Otherwise, it
is clockwise. For the Bk integral of the circular bound-
ary, the kernels of U(s,x) and T (s,x) are respectively
expressed in terms of degenerate kernels of Eqs. (20)
and (21), and u(s) and t(s) are substituted by using the
Fourier series of Eqs. (12) and (13), respectively. In the
Bk integral, we set the origin of the observer system to
collocate at the center ck to fully utilize the degenerate
kernels and Fourier series. By collocating the null-field
point on the boundary, a linear algebraic system is ob-
tained

[U]{t}= [T]{u} , (25)

where [U] and [T] are the influence matrices with a di-
mension of NC(2M +1) by NC(2M +1), {u} and {t} de-
note the column vectors of Fourier coefficients with a di-
mension of NC(2M + 1) by 1 in which [U], [T], {u} and
{t} can be defined as follows:

[U] =

⎡
⎢⎢⎢⎣

U00 U01 · · · U0N

U10 U11 · · · U1N
...

...
. . .

...
UN0 UN1 · · · UNN

⎤
⎥⎥⎥⎦ ,

[T] =

⎡
⎢⎢⎢⎣

T00 T01 · · · T0N

T10 T11 · · · T1N
...

...
. . .

...
TN0 TN1 · · · TNN

⎤
⎥⎥⎥⎦ , (26)

{u} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

u1

u2
...
uN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, {t} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t0

t1

t2
...
tN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (27)

where the vectors {uk} and {tk} are in the

form of
{

ak
0 ak

1 bk
1 · · · ak

M bk
M

}T
and{

pk
0 pk

1 qk
1 · · · pk

M qk
M

}T
, respectively; the

first subscript “ j” ( j = 0, 1, 2, · · · , N) in
[
U jk

]
and[

T jk
]

denotes the index of the jth circle where the
collocation point is located and the second subscript
“k” (k = 0, 1, 2, · · · , N) denotes the index of the kth
circle where boundary data {uk} or {tk} are specified,
N is the number of circular holes in the domain and
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Table 1 : Comparisons of the present method and conventional BEM
Boundary density
discretization

Auxiliary
system

Formulation Observer
system

Singularity

Present
method

Fourier series Degenerate
kernel

Null-field
integral
equation

Adaptive ob-
server system

No principal value

Conventional
BEM

Constant element Fundamental
solution

Boundary
integral
equation

Fixed observer
system

Principal value
(CPV , RPV and
HPV)

Table 2 : Torsional rigidity of circular cylinder with an eccentric hole (a/R = 1/3)

Table 3 : Torsional rigidity of a circular cylinder with a ring of N holes (a/R = 1/4,b/R = 1/2)

M indicates the truncated terms of Fourier series. The
influence coefficient matrix of the linear algebraic
system is partitioned into blocks, and each off-diagonal

block corresponds to the influence matrices between
two different circular holes. The diagonal blocks are
the influence matrices due to itself in each individual



Analysis of Circular Torsion Bar 115

hole. After uniformly collocating the point along the kth
circular boundary, the submatrix can be written as

[
U jk

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0c
jk (φ1) U1c

jk (φ1) U1s
jk (φ1)

U0c
jk (φ2) U1c

jk (φ2) U1s
jk (φ2)

U0c
jk (φ3) U1c

jk (φ3) U1s
jk (φ3)

...
...

...
U0c

jk (φ2M) U1c
jk (φ2M) U1s

jk (φ2M)
U0c

jk (φ2M+1) U1c
jk (φ2M+1) U1s

jk (φ2M+1)

· · · UMc
jk (φ1) UMs

jk (φ1)
· · · UMc

jk (φ2) UMs
jk (φ2)

· · · UMc
jk (φ3) UMs

jk (φ3)
. . .

...
...

· · · UMc
jk (φ2M) UMs

jk (φ2M)
· · · UMc

jk (φ2M+1) UMs
jk (φ2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

[
T jk

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 0c
jk (φ1) T 1c

jk (φ1) T 1s
jk (φ1)

T 0c
jk (φ2) T 1c

jk (φ2) T 1s
jk (φ2)

T 0c
jk (φ3) T 1c

jk (φ3) T 1s
jk (φ3)

...
...

...
T 0c

jk (φ2M) T 1c
jk (φ2M) T 1s

jk (φ2M)
T 0c

jk (φ2M+1) T 1c
jk (φ2M+1) T 1s

jk (φ2M+1)

· · · T Mc
jk (φ1) T Ms

jk (φ1)
· · · T Mc

jk (φ2) T Ms
jk (φ2)

· · · T Mc
jk (φ3) T Ms

jk (φ3)
. . .

...
...

· · · T Mc
jk (φ2M) T Ms

jk (φ2M)
· · · T Mc

jk (φ2M+1) T Ms
jk (φ2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Although the matrices in Eqs. (28) and (29) are not
sparse, they are diagonally dominant. It is found that
the influence coefficient for the higher-order harmonics
is smaller. It is noted that the superscript “0s” in Eqs.
(28) and (29) disappears since sinθ = 0. The element of[
U jk

]
and

[
T jk

]
are defined respectively as

Unc
jk (φm) =

Z
Bk

U(sk,xm) cos(nθk) Rkdθk,

n = 0, 1, 2, · · · , M, m = 1, 2, · · · , 2M +1, (30)

Uns
jk (φm) =

Z
Bk

U(sk,xm) sin(nθk) Rkdθk,

n = 1, 2, · · · , M, m = 1, 2, · · · , 2M +1, (31)

T ns
jk (φm) =

Z
Bk

T (sk,xm) cos(nθk) Rkdθk,

n = 0, 1, 2, · · · , M, m = 1, 2, · · · , 2M +1, (32)

T ns
jk (φm) =

Z
Bk

T (sk,xm) sin(nθk) Rkdθk,

n = 1, 2, · · · , M, m = 1, 2, · · · , 2M +1, (33)

where k is no sum and φm is the polar angle of the collo-
cating points xm along the boundary. The explicit forms
of all the boundary integrals for U ,T ,L and M kernels are
listed in the Appendix. Besides, the limiting case across
the boundary (R− < ρ < R+) is also addressed. The con-
tinuous and jump behavior across the boundary is also
described. By rearranging the known and unknown sets,
the unknown Fourier coefficients are determined. Equa-
tion (18) can be calculated by employing the relations
of trigonometric function and the orthogonal property in
the real computation. Only the finite M terms are used
in the summation of Eqs. (12) and (13). After obtaining
the unknown Fourier coefficients, the origin of observer
system is set to ck in the Bk integration as shown in Fig.
4 to obtain the interior potential by employing Eq. (14).
The differences between the present formulation and the
conventional BEM are listed in Table 1.

4 Illustrative examples and discussions

In this section, we deal with the torsion problems which
have been solved by Caulk in 1983 [Caulk D. A. (1983)].
The contours of the axial displacement are plotted in
three cases. The torsional rigidity of each example is
calculated after determining the unknown Fourier coef-
ficients.

Case 1: A circular bar with an eccentric hole

A circular bar of radius R with an eccentric circular holes
removed is under torque T at the end. The torsional rigid-
ity G of cross section can be expressed by

G
µ

=
Z

D
r2dD−

N

∑
k=1

Z
Bk

ϕ
∂ϕ
∂n

dBk, (34)

The results of torsional rigidity for each case are shown
in Table 2. The exact solution derived by Muskhelishvili
is listed in Table 2 for comparison.

Our solution is better than that of Caulk obtained by BIE
when the hole is closely spaced.
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Figure 5 : Axial displacement for the circular bar
weakened by two holes

Figure 6 : Caulk’s data (Solid lines indicate results
from the first-order solution and dashed lines from
the numerical solution of the exact boundary integral
equation) [Caulk D. A. (1983)]
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Figure 7 : Axial displacement for the circular bar
weakened by three holes

Figure 8 : Caulk’s data (Solid lines indicate results
from the first-order solution and dashed lines from
the numerical solution of the exact boundary integral
equation) [Caulk D. A. (1983)]

Case 2: A circular bar with two circular holes

A circular bar of radius b with two equal circular holes re-
moved is under torque T at the end. The boundary curve
of kth inner cavity is described by using the parametric
form of (xk,yk) in Eqs. (9) and (10). What is brought out
is the problem subject to zero traction on the outer bound-

ary and Neumann boundary condition defined in Eq. (11)
on all the inner circles. Figures 5 and 6 show the results
using the present method and those from the first-order
approximation solution and the exact boundary integral
equation derived by Caulk [Caulk D. A. (1983)].

Twenty-one collocating points are selected on all the cir-
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Figure 9 : Axial displacement for the circular bar weak-
ened by four holes

Figure 10 : Caulk’s data (Solid lines indicate results
from the first-order solution and dashed lines from the
numerical solution of the exact boundary integral equa-
tion) [Caulk D. A. (1983)]

cular boundaries in the numerical implementation. After
being compared with the results of Figure 6, the numer-
ical results are consistent with those of the boundary in-
tegral equation.

Case 3: A circular bar with three circular holes

Unlike Case 2, a circular bar weakened by three circular

holes of equal radii is regarded as the third example. In a
similar way, the contour plot of the axial displacement is
shown in Figure 7. Good agreement is made after com-
paring with the Caulk’s data in Figure 8.

Case 4: A circular bar with four circular holes

The fourth problem is a circular bar weakened by four
equal circular holes under torque. In Figure 9, our result
of axial displacement agrees well with the values in the
dashed line of Figure 10 which are solved by using the
boundary integral equation. Results obtained by using
the present method for Case 2, Case 3 and Case 4 are
listed in Table 3. After comparison, our results agree well
with Caulk’s data obtained by BIE formulation.

Case 5: Ling’s examples [Ling C. B. (1947) ]

Table 4 shows a comparison of the torsional rigidities of
three cases with different geometries of circular holes
computed from the present method, BIE formulation
[Caulk D. A. (1983)] and first-order approach [Caulk D.
A. (1983)].

We have not only calculated the torsional rigidity but also
tested the rate of convergence of Fourier terms of the case
with seven cavities as shown in Fig 11. Test of Parseval’s
sum for boundary densities was also implemented to en-
sure the convergence.

The present solutions are an improvement over Ling’s re-
sults in every case. The large difference in the second
example in Table 4 may ascribe to Ling’s lengthy cal-
culation in error as pointed out by Caulk [Caulk D. A.
(1983)].

5 Conclusions

The torsion problems of circular shaft weakened by sev-
eral holes have been successfully solved by using the
present formulation. Our solutions match well with the
exact solution and other solutions by using the boundary
integral equation for the three Caulk’s cases. There are
only 41 collocation points uniformly distributed on each
boundary for more accurate results of torsional rigidity
with error less than 1 % after comparing with the known
exact solution. Regardless of the number of circles,
the proposed method has great accuracy and generality.
Through the solution for several problems, our method
was successfully applied to cases of multiple holes. Fur-
thermore, our method presented here can be used to prob-
lems which satisfy the Laplace operator.
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Table 4 : Torsional rigidity of Ling’s [Ling C. B. (1947) ] examples
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Figure 11 : Torsion rigidity versus the number of Fourier
terms
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Appendix A: Appendix

Analytical evaluation of the integrals and their limits.

The degenerate kernels are described in Eqs. (20), (21),
(22) and (23), and orthogonal process is shown below:
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U(s,x) and
R

BU (s,x) t (s)dB(s)

Orthogonal
process

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R 2π
0 Ui cos (nθ)Rdθ = π 1

n
ρn

Rn−1 cos(nφ) , R ≥ ρR 2π
0 Ui sin(nθ)Rdθ = π 1

n
ρn

Rn−1 sin(nφ) , R ≥ ρR 2π
0 Ue cos (nθ)Rdθ = π 1

n
Rn+1

ρn cos (nφ) , R < ρR 2π
0 Ue sin(nθ)Rdθ = π 1

n
Rn+1

ρn sin(nφ) , R < ρ

Limit ρ → R

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π 1
n

ρn

Rn−1 cos (nφ) = π 1
nRcos (nφ) , R ≥ ρ

π 1
n

ρn

Rn−1 sin(nφ) = π 1
n Rsin(nφ) , R ≥ ρ

π 1
n

Rn+1

ρn cos (nφ) = π 1
nRcos (nφ) , R < ρ

π 1
n

Rn+1

ρn sin(nφ) = π 1
n Rsin(nφ) , R < ρ

(Continuous for R− < ρ < R+)

T (s,x) and
R

B T (s,x)u(s)dB(s)

Orthogonal
process

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R 2π
0 T i cos (nθ)Rdθ = π

(ρ
R

)n
cos (nφ) , R > ρR 2π

0 T i sin(nθ)Rdθ = π
( ρ

R

)n
sin(nφ) , R > ρR 2π

0 T e cos(nθ)Rdθ = −π
(

R
ρ

)n
cos(nφ) , R < ρ

R 2π
0 T e sin(nθ)Rdθ = −π

(
R
ρ

)n
sin(nφ) , R < ρ

Limit ρ → R

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π
( ρ

R

)n
cos(nφ) = πcos (nφ) , R > ρ

π
( ρ

R

)n
sin(nφ) = πsin(nφ) , R > ρ

−π
(

R
ρ

)n
cos (nφ) = - πcos(nφ) , R < ρ

−π
(

R
ρ

)n
sin(nφ) = - πsin(nφ) , R < ρ

(jump for R− < ρ < R+)

L(s,x) and
R

B L(s,x)t (s)dB(s)

Orthogonal
process

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R 2π
0 Li cos(nθ)Rdθ = −π

( ρ
R

)n−1 cos (nφ) , R > ρR 2π
0 Li sin(nθ)Rdθ = −π

( ρ
R

)n−1 sin(nφ) , R > ρR 2π
0 Le cos (nθ)Rdθ = π

(
R
ρ

)n+1
cos (nφ) , R < ρ

R 2π
0 Le sin(nθ)Rdθ = π

(
R
ρ

)n+1
sin(nφ) , R < ρ

Limit ρ → R

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−π
( ρ

R

)n−1 cos (nφ) = - πcos (nφ) , R > ρ
−π

( ρ
R

)n−1 sin(nφ) = −πsin(nφ) , R > ρ

π
(

R
ρ

)n+1
cos(nφ) = πcos (nφ) , R < ρ

π
(

R
ρ

)n+1
sin(nφ) = πsin(nφ) , R < ρ

(jump for R− < ρ < R+)

M(s,x) and
R

B M (s,x)u(s)dB(s)

Orthogonal
process

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R 2π
0 Mi cos (nθ)Rdθ = nπ ρn−1

Rn cos(nφ) , R ≥ ρR 2π
0 Mi sin(nθ)Rdθ = nπ ρn−1

Rn sin(nφ) , R ≥ ρR 2π
0 Me cos (nθ)Rdθ = nπ Rn

ρn+1 cos (nφ) , R < ρR 2π
0 Me sin(nθ)Rdθ = nπ Rn

ρn+1 sin(nφ) , R < ρ

Limit ρ → R

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nπ ρn−1

Rn cos (nφ) = nπ 1
R cos (nφ) , R ≥ ρ

nπ ρn−1

Rn sin(nφ) = nπ 1
R sin(nφ) , R ≥ ρ

nπ Rn

ρn+1 cos (nφ) = nπ 1
R cos (nφ) , R < ρ

nπ Rn

ρn+1 sin(nφ) = nπ 1
R cos (nφ) , R < ρ

(Continuous for R− < ρ < R+)


