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Preserving Constraints of Differential Equations by Numerical Methods Based on
Integrating Factors

Chein-Shan Liu1

Abstract: The system we consider consists of two
parts: a purely algebraic system describing the manifold
of constraints and a differential part describing the dy-
namics on this manifold. For the constrained dynamical
problem in its engineering application, it is utmost im-
portant to developing numerical methods that can pre-
serve the constraints. We embed the nonlinear dynami-
cal system with dimensions n and with k constraints into
a mathematically equivalent n+k-dimensional nonlinear
system, which including k integrating factors. Each sub-
system of the k independent sets constitutes a Lie type
system of Ẋi = AiXi with Ai ∈ so(ni,1) and n1 + · · ·+
nk = n. Then, we can apply the exponential mapping
technique to integrate the augmented systems and use the
k freedoms to adjust the k integrating factors such that
the k constraints are satisfied. A similar procedure is also
applied to the case when one integrates the k augmented
systems by the fourth-order Runge-Kutta method. Since
all constraints are included in the newly developed inte-
grating schemes, it is guaranteed that all algebraic equa-
tions that describe the manifold are satisfied up to an
accuracy that is used to integrate these dynamical equa-
tions and hence a drift from the solution manifold can
be avoided. Several numerical examples, including dif-
ferential algebraic equations (DAEs), are investigated to
confirm that the new numerical methods are effective to
integrate the constrained dynamical systems by preserv-
ing the constraints.

keyword: Nonlinear dynamical system, Preserving
constraints, Integrating factors, Cones, Minkowski
space, Group preserving scheme

1 Introduction

Many practical engineering problems of interest can be
modeled by systems of differential equations whose so-
lutions satisfy some invariants, usually defined explic-
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itly by algebraic equations. In the past several decades
particular attention has been paid to developing numer-
ical methods which approximate the solution of such a
system while preserving invariants to a machinery preci-
sion; see, e.g., Baumgarte (1972), Führer and Leimkuh-
ler (1991), Ascher and Petzold (1991), März (1991,
2002), Ascher, Chin and Reich (1994), Campbell and
Moore (1995), Ascher (1997), Chan, Chartier and Murua
(2002), Arevalo, Campbell and Selva (2004), and refer-
ences therein.

Systems of coupled differential equations and algebraic
equations often occur as a set of differential equations
that are subject to constraints. The constraints may
be linear or nonlinear and may be imposed on partial
varables or on all variables. The constrained differen-
tial equations systems arise frequently as initial value
problems in the computer-aided design and modeling
of mechanical systems subject to constraints, for exam-
ple, multi-body system, circuit simulation, chemical pro-
cess modeling, material plasticity, friction system, and
in many other applications. The numerical integration
of constrained dynamical systems may be more compli-
cated than that of ordinary differential equations without
constraint.

In this paper we will provide an effective numerical
method to integrate the following nonlinear differential
equations system:

ẋ = f(x, t), x(0) = x0, x ∈ R
n, t ∈ R

+, (1)

which may subject to constraints. A superimposed dot
signifies a time differentiation with respect to t. For a
prescribing x0 at time t = 0, it constitutes an initial-value-
problem. We first assume that the solution x(t) of Eq. (1)
is subjected to a constraint:

ρ(x(t),x0) := H(x(t))−H(x0) = 0, (2)

where H(x) is an invariant of Eq. (1). After developing
the constraint preserved numerical integrating methods
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for Eqs. (1) and (2), we extend our methods to Eq. (1),
which is subjected to several constraints.

Without considering the constraint (2), Liu (2001) has
explored a Minkowski frame of the dynamical system (1)
by introducing

n :=
x

‖x‖ (3)

for x �= 0, where ‖x‖ :=
√

x ·x is the Euclidean norm of
x, and a dot between two vectors, say x · y, denotes their
inner product.

From Eqs. (1) and (3) it is verified mathematically equiv-
alent to the following dynamical system:

Ẋ = AX. (4)

In the augmented homogeneous coordinates

X =
[

Xs

X0

]
:=

[
X0n
X0

]
=

[
x

‖x‖
]
, (5)

X0 = ‖x‖ is an integrating factor, and

A :=
[

0n As
0

(As
0)

T 0

]
=

⎡
⎣ 0n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦ (6)

is a Lie algebra of the proper orthochronous Lorentz
group SOo(n,1) satisfying

ATg+gA = 0, (7)

where

g =
[

In 0n×1

01×n −1

]
(8)

is a Minkowski metric. In the above, In is an identity
matrix of order n, and the superscript T denotes the trans-
pose.

It is obvious that the first equation is the same as the
original equation (1), but the introduction of the second
equation in the new formulation leads to a Minkowskian
structure for the augmented nonlinear system (4). In the
later it would be clear that this new formulation with an
extra integrating factor X0 has the advantage to fit the
constraint equation by adjusting the length X0 = ‖x‖ of
state variables.

2 Group preserving scheme by exponential map-
ping

The numerical scheme would provide a medium to cal-
culate the value of X at time t = t�+1 when X is al-
ready known at time t = t�. The evolution of X is gov-
erned by the dynamical law (4) with matrix A given by
Eq. (6). However, due to the presence of X0 = ‖x‖ and
X0n = x, A is not a constant matrix, and we may approxi-
mate the solution of the dynamical law (4) by considering
X0 = ‖x‖ and X0n = x constant in each single time step
with stepsize ∆t = t�+1 − t�. Under such additional hy-
potheses, the matrix A is constant, and so the evolution
of Eq. (4) is known to be

X(�+1) = G(�)X(�), (9)

where

G(�) := exp[∆tA(�)]

=

⎡
⎣ In + a(�)−1

‖As
0(�)‖2 As

0(�)(As
0)

T(�) b(�)
‖As

0(�)‖As
0(�)

b(�)
‖As

0(�)‖(As
0)

T(�) a(�)

⎤
⎦ ,

(10)

in which

a(�) := cosh(∆t‖As
0(�)‖), (11)

b(�) := sinh(∆t‖As
0(�)‖). (12)

A numerical algorithm is called a group preserving
scheme (GPS) if for every time increment the mapping
G(�) from X(�) to X(� + 1) preserves the following
group properties (Liu, 2001):

GTgG = g, (13)

detG = 1, (14)

G0
0 ≥ 1, (15)

where det is the shorthand of determinant, and G0
0 is the

00-th mixed component of G.
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3 Modified group preserving scheme by considering
constraint

From Eqs. (9), (10) and (5) it follows a numerical scheme
for n:

n(�+1) =

‖As
0(�)‖2n(�)+[(a(�)−1)(As

0)
T(�)n(�)

+b(�)‖As
0(�)‖]As

0(�)
b(�)‖As

0(�)‖(As
0)T(�)n(�)+a(�)‖As

0(�)‖2 .

(16)

It is easy to check that

‖n(�)‖= 1 =⇒ ‖n(�+1)‖= 1, (17)

which means that scheme (16) preserves the unit length
of n. Corresponding to the symmetry G ∈ SOo(n,1),
the symmetry preserved by scheme (16) is denoted by
PSOo(n,1), a projection of SOo(n,1).

Xs(�)

X0(�)
� G(�) �

Xs

X0
� n = Xs

X0
�
Xs(� + 1)=

X0(� + 1)n

�

ρ(X0n)=0

�

X0(� + 1)

�

X0(� + 1)

�

Xs(� + 1)

Figure 1 : Instead of the open-loop scheme to cal-
culate (Xs(� + 1),X0(� + 1)) from (Xs(�),X0(�)) by
left-multiplying G(�), in the modified group preserving
scheme we use a closed-loop method to enhance the
preservation of constraint.

In order to match the constraint exactly, we impose the
condition (2) on the numerical solutions of X(� + 1),
which by Eq. (5) leads to

ρ(X0(�+1)n(�+1),x0) = 0, (18)

where n(� + 1) is already calculated by scheme (16).
Substituting n(� + 1) into the above equation and solv-
ing it by the Newton-Raphson method we may obtain a
new ‖x(�+1)‖= X0(�+1). With this new ‖x(�+1)‖=
X0(�+1) we update x(�+1) = Xs(�+1) to a new x(�+

1)= Xs(�+1) = X0(�+1)n(�+1) = ‖x(�+1)‖n(�+1),
which satisfies the constraint (2) within a specified error
tolerance. Here we will call such a scheme the modified
group preserving scheme (MGPS), which preserves the
symmetry PSOo(n,1) as well as retains the constraint (2).
Figure 1 shows the numerical processes by a closed-loop
diagram.

In order to increase the accuracy we can apply the fourth-
order Runge-Kutta method (RK4) to the augmented non-
linear system (4), instead of to the nonlinear system (1),
such that we can calculate (x,‖x‖) for each assigned time
step. Then we can calculate the orientation vector n in
Eq. (3), and substitute the result of ‖x‖n into the con-
straint (2) to solve ‖x‖. Upon returning to ‖x‖n = x we
obtain the numerical solution of x, which satisfies the
constraint (2) within a specified error tolerance. In the
later we will call this scheme a modified RK4 (MRK4).

The above technique to satisfy the constraint is originated
from the idea of introducing an extra variable of integrat-
ing factor X0 = ‖x‖ in the new augmented system. Such
that we obtain an extra degree of freedom to adapt the
factor of X0 = ‖x‖ by enhancing the constraint.

4 Numerical examples of one constraint

4.1 Example 1

Now, let us apply the above MGPS method to a cer-
tain example, which is a two-dimensional predator-prey
equation of Lotka-Volterra type:

ẋ = −x+xy, (19)

ẏ = y−xy, (20)

where x is the population of predator and y is the pop-
ulation of prey. A prime feature of the above system is
that its fixed point (x,y) = (1,1) is neutral stable, and the
conserved constraint of the above system is

ρ(x,y,x0,y0) = H(x,y)−H(x0,y0)
= lnx−x+ ln y−y− (ln x0 −x0 + ln y0 −y0)
= 0, (21)

where x0 > 0 and y0 > 0 are the initial values prescribed
at time t = 0, and after that x > 0 and y > 0 for all t > 0
are direct results of Eqs. (19) and (20).
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It is very difficult to construct finite difference schemes
that give the proper periodic solutions behavior about
the fixed point; see, for example, Sanz-Serna (1994).
The conventional schemes almost give numerical solu-
tion points that either spiral in towards the fixed point or
spiral out of the fixed point.

For example, substituting Eq. (10) for G(�) into Eq. (9)
and taking its first row by considering Eq. (5), we obtain

x(�+1) = x(�)+η(�)f(�), (22)

where the adaptive factor

η(�) :=
[a(�)−1]f(�) ·x(�)+b(�)‖x(�)‖‖f(�)‖

‖f(�)‖2
(23)

is varying step-by-step. Applying scheme (22) to
Eqs. (19) and (20), we obtain a Jacobian matrix of the
numerical mapping as follows:

J :=
∂x(�+1)

∂x(�)
= I2 + f(�)

(
∂η(�)
∂x(�)

)T

+η(�)
∂f(�)
∂x(�)

. (24)

At the fixed point f(�) = 0 and η(�) = ∆t, and thus we
have

J =
[

1 ∆t
−∆t 1

]
. (25)

The two eigenvalues of J are λ = 1± i∆t, both of which
have the magnitude of |λ| =

√
1+(∆t)2 �= 1. The prop-

erty of the fixed point is altered by the mapping (22).
More precisely, the mapping (22) does not have the same
neutral-type stability as the original system of Eqs. (19)
and (20) has. Owing to this defect, the long term behav-
ior of the original system is destroyed by this numerical
scheme. In Figs. 2 and 3 we display the numerical results
by applying scheme (22) to Eqs. (19) and (20) with time
stepsizes of ∆t = 0.001 sec and ∆t = 0.01 sec, respec-
tively, but with the same initial values of x0 = y0 = 0.5.
As expected, the orbits of (x,y) as shown in Figs. 2(c) and
3(c) spiral out of the fixed point gradually. Figures 4(a)
and 4(b) show the errors of invariant defined by |ρ(x,x0)|
when utilizing ∆t = 0.001 sec and ∆t = 0.01 sec, respec-
tively. When the above quantity is zero for numerical so-
lutions we obtain an invariant-preserving scheme which
preserves the constraint exactly. Obviously, scheme (22)
gives the errors of invariant in the order of 10−2 for
∆t = 0.001 sec and in the order of 10−1 for ∆t = 0.01
sec. For the latter case the orbit of numerical solutions

spirals out from the closed curve very quickly as shown
in Fig. 3(c).

In order to reduce the error of invariant we apply the
MGPS in Section 3 to Eqs. (19) and (20), where the er-
ror tolerance for applying the Newton-Raphson method
to solve Eq. (18) is 10−4 for ∆t = 0.001 sec and 10−3

for ∆t = 0.01 sec. Under the same conditions as in the
above, the numerical results obtained by this scheme
were shown in Figs. 2-4 with dashed lines. It can be
seen that the errors of invariant are greatly reduced to
the orders of 10−11 − 10−5 for ∆t = 0.001 sec and of
10−7−10−3 for ∆t = 0.01 sec. The MGPS can produce
solution points that stay on the closed curves as shown in
Figs. 2(d) and 3(d).

Kahan has considered the following unconventional
scheme for Eqs. (19) and (20):

x(�+1)−x(�)
∆t

=
−1
2

[x(�+1)+x(�)]

+
1
2
[x(�+1)y(�)+x(�)y(�+1)], (26)

y(�+1)−y(�)
∆t

=
1
2
[y(�+1)+y(�)]

− 1
2
[x(�+1)y(�)+x(�)y(�+1)]. (27)

Some properties about this scheme have been demon-
strated by Sanz-Serna (1994), who showed that Kahan’s
method is symplectic with respect to a noncanonical
symplectic structure.

Due to the linearity, we can solve Eqs. (26) and (27) to
obtain

x(�+1) =

(1−τ)2x(�)+(1−τ)τx2(�)
+(1+τ)τx(�)y(�)

1−τ2 +(1+τ)τx(�)− (1−τ)τy(�)
, (28)

y(�+1) =

(1+τ)2y(�)− (1+τ)τy2(�)
−(1−τ)τx(�)y(�)

1−τ2 +(1+τ)τx(�)− (1−τ)τy(�)
, (29)

where τ := ∆t/2. After a lengthy calculation, the Jaco-
bian matrix of the above mapping at the fixed point is
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Figure 2 : Compare the numerical results of Example 1 calculated by GPS and MGPS with time stepsize ∆t = 0.001:
(a) the time history of x, (b) the time history of y, (c) the orbit of (x,y) calculated by GPS, and (d) the orbit of (x,y)
calculated by MGPS.

found to be

J =

⎡
⎣ 1−τ2

1+τ2
2τ

1+τ2

−2τ
1+τ2

1−τ2

1+τ2

⎤
⎦ . (30)

The two eigenvalues of J are λ = (1−τ2±2τi)/(1+τ2),
both of which have the magnitude |λ| = 1. Thus, the
property of the fixed point is not altered by the mappings
(28) and (29). More precisely, the mappings (28) and
(29) have the same neutral-type stability as the system
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Figure 3 : Compare the numerical results of Example 1 calculated by GPS and MGPS with time stepsize ∆t = 0.01:
(a) the time history of x, (b) the time history of y, (c) the orbit of (x,y) calculated by GPS, and (d) the orbit of (x,y)
calculated by MGPS.

of Eqs. (19) and (20) has. Numerical results computed
by the above scheme coincide with that calculated by the
MGPS as shown with dashed lines in Figs. 2(a) and 2(b).
The error of invariant as shown in Fig. 4(a) is smaller
than that of the MGPS in the orders of 10−13−10−7. In

Section 5 we will provide a more accurate scheme than
Kahan’s method.
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Figure 4 : Compare the errors of invariant for Example 1 by different numerical methods with time stepsizes of (a)
∆t = 0.001 and (b) ∆t = 0.01.

4.2 Example 2

Let us consider the following example:

ẋ = −2y−xsin(xy), (31)

ẏ = 2x+ysin(xy). (32)

A prime feature of the above system is that its fixed point
(x,y) = (0,0) is neutral stable, and the conserved quan-

tity of the above system is

ρ(x,y,x0,y0) = H(x,y)−H(x0,y0)
= x2 +y2 −cos(xy)−x2

0 −y2
0 +cos(x0y0)

= 0. (33)

Starting from the initial conditions of (x0,y0) = (2,0) at
t = 0 we apply the MGPS to the above system within
the time of 10 seconds, where the time stepsize is taken
to be ∆t = 0.005 sec and the error tolerance used in
the Newton-Raphson method to solve Eq. (18) with the
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Figure 5 : Displaying the results for Example 2 calculated by MGPS and RK4: (a) the orbit of (x,y), (b) the error
of invariant by MGPS, and (c) the error of invariant by RK4.

above ρ is 10−5. Figure 5(a) shows the orbit of (x,y) and
Fig. 5(b) shows the error of invariant. It can be seen that
the error is smaller than 2×10−15. At the same time we
apply the RK4 method to integrate Eqs. (31) and (32),
whose error of invariant is shown in Fig. 5(c). It can be
seen that the error induced by RK4 is much larger than

that by our method and is increasing with time gradually.

4.3 Example 3

The constraints of Examples 1 and 2 are of the constraint
that imposed on all variables. In this example we con-
sider a constraint on partial variables. The following sys-
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tem:

ẋ = y, (34)

ẏ = − 1
m

(kx+cy+r−p) , (35)

ṙ = kdy− kd

r2
y

r ·yr (36)

describes the sliding phase motion of a two-dimensional
Coulomb friction oscillator with mass m subjecting to ex-
ternal excitation p ∈ R

2 [Liu, Hong and Liou (2003)].

In above, x,y,r ∈ R
2 are respectively the displacement,

velocity and friction force vectors. Especially, r is sub-
jecting to the following constraint:

‖r‖2 = r2
1 + r2

2 = r2
y . (37)

Eqs. (34)-(36) constitute a six-dimensional cubic non-
linear system with a partial constraint (37) on r. Here
we let p1 = p0 cosωdt and p2 = p0 sinωdt and fix
m = 22500/π2 kN s2/m, c = 600/π kN s/m, kd =
50000 kN/m, k = 10000 kN/m, ry = 50 kN, p0 = 500 kN,
and ωd = 4π rad/s. Figure 6(a) shows the orbit of (r1, r2)
which tracing a circle with radius ry and Fig. 6(b) shows
the error of invariant. It can be seen that the error is
smaller than 10−12. At the same time we apply the RK4
method to integrate Eqs. (34)-(36), whose error of invari-
ant is shown in Fig. 6(c). It can be seen that the error
induced by RK4 is much larger than that by our method
and has some peaks. In Fig. 7 we show the path of the
two components of displacement, and phase portraits of
(x1,y1) and (x2,y2).

4.4 Example 4

We consider an index 2 differential algebraic equation
given by Maerz and Tischendorf (1994) and Rheinboldt
(1997):

u̇1 +
√

1−u2
1 −

1

u2
1
+w2 +1 = 0, (38)

u̇2 +w = 0, (39)

u2− lnu1 = 0. (40)

For (u1(0),u2(0)) = (1,0), w(0) = 0, the exact solution
is u1(t) = cos t, u2(t) = lncos t and w(t) = tant.

Before applying the new schemes to the above equations
we transform them to the following differential equa-
tions:

u̇1 =
1

u2
1
−

√
1−u2

1 −w2 −1, (41)

ẇ =
u1

u1 −2w

[(
u̇1

u1

)2

+
2u̇1

u4
1

− u̇1√
1−u2

1

]
, (42)

subjecting to a constraint:

w2 −u1w− 1

u2
1
+1+

√
1−u2

1 = 0. (43)

When u1 and w are calculated by the above system, u2 is
calculated by u2 = lnu1.

Maerz and Tischendorf (1994) and Rheinboldt (1997)
have integrated the above system from t = 0.5 sec to
t = 1.5 sec using accurate starting values with a fixed
time stepsize of 10−5 sec by BEF-solver of order 2 and
DAEN2, respectively. The resulting errors at t = 1.5 sec
are compared in Table 1. Under the same accurate start-
ing values and same stepsize, it can be seen that the
MRK4 method proposed in Section 3 is accurate two
orders than that calculated by Maerz and Tischendorf
(1994) and Rheinboldt (1997). In Fig. 8 we show the
numerical errors of u1, u2 and w by MGPS and MRK4.

4.5 Example 5

We consider an index 3 differential algebraic equations
example given by Arévalo and Lotstedt (1995) and Sand
(2002), which describes the position of a particle on a
circular track:

ü1 = 2u2 +λu1, (44)

ü2 = −2u1 +λu2, (45)

u2
1 +u2

2 = 1. (46)

For (u1(0),u2(0)) = (0,1), λ(0) = 0, the exact solution
is u1(t) = sint2, u2(t) = cos t2 and λ(t) = −4t2.
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Figure 6 : Displaying the results for Example 3 calculated by MGPS and RK4: (a) the orbit of (r1, r2), (b) the error
of invariant by MGPS, and (c) the error of invariant by RK4.

Table 1 : Errors of Example 4 for an index 2 problem by using different numerical schemes.

method Error(u1) Error(u2) Error(w)
Maerz and Tischendorf (1994) 0.560×10−9 0.791×10−8 0.112×10−6

Rheinboldt (1997) 2.734×10−10 3.115×10−9 5.476×10−8

MRK4 3.738×10−12 5.212×10−11 7.286×10−10
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Figure 7 : Displaying the results for Example 3 calculated by MGPS: (a) the orbit of (x1,x2), (b) the orbit of (x1,y1)
and, (c) the orbit of (x2,y2).

If we let x1 = u1, x2 = u̇1, x3 = u2 and x4 = u̇2, then
through some derivations we find that the above system
can be transformed to

ẋ1 = x2, (47)

ẋ2 = 2x3 −x1(x2
2 +x2

4), (48)

ẋ3 = x4, (49)
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Figure 8 : Comparing the numerical errors for Example 4 calculated by MGPS and MRK4: (a) the error of u1, (b)
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ẋ4 = −2x1 −x3(x2
2 +x2

4), (50) subjecting to a constraint on (x1,x3):

x2
1 +x2

3 = 1, (51)
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and the Lagrange multiplier λ is calculated by

λ = −x2
2 −x2

4. (52)

In Fig. 9 we show the numerical errors of u1, u2 and λ
by MGPS and MRK4 with a fixed time stepsize of ∆t =
0.005 sec.

5 Numerical scheme for generalized Hamiltonian
system

It is well known that any autonomous system (1), sub-
jected to the constraint (2), can be written in a skew-
gradient form:

ẋ = J∇xH, (53)

where H is a generalized Hamiltonian function of x, ∇x

denotes the gradient with respect to x, and J is an n×
n skew-symmetric matrix function; see, e.g., Iserles and
Zanna (2000) and Liu (2002). For example, Eqs. (19)
and (20) can be written as

d
dt

[
x
y

]
=

[
0 −xy
xy 0

]⎡
⎣ ∂H

∂x

∂H
∂y

⎤
⎦ , (54)

with H(x,y) = lnx−x+ ln y−y and a noncanonical sym-
plectic metric:

J :=
[

0 −xy
xy 0

]
. (55)

After developing numerical scheme for Eq. (53) we will
return to this example again.

Theorem 1. For the generalized Hamiltonian system
(53) with its H not dependent on t and being a regular
and strictly convex function of x, we can obtain a nonlin-
ear Lorentzian system as follows:

Ẋ = AX, (56)

where A ∈ so(n,1) is a matrix function of X, which
satisfying the cone condition XTgX = 0.

Proof. Let us introduce a unit n-dimensional orientation
vector,

n :=
∇xH

‖∇xH‖ , (57)

which is well-defined according to the assumption of the
regularity of H. Because ∇xH is a strictly monotonic
operator by the assumption of H strictly convex, i.e.,

H(x) := ∇2
xH(x) > 0, (58)

there exists a homeomorphism F between x and ∇xH =
‖∇xH‖n, such that

x = F(∇xH) = F(‖∇xH‖n). (59)

In the following a methodology will be developed to em-
bed the pair (n,‖∇xH‖) into the Minkowski space, and a
system of equations to calculate (n,‖∇xH‖) will be de-
rived.

Taking the time differential of Eq. (57) we obtain

ṅ =
Hẋ

‖∇xH‖ −
(n ·Hẋ)n
‖∇xH‖ . (60)

Applying the operator H/‖∇xH‖ to Eq. (53), leads to

Hẋ
‖∇xH‖ = As

0, (61)

where

As
0 := HJn =: Kn. (62)

The inner product of Eq. (61) with n generates

n · (Hẋ)
‖∇xH‖ = As

0 ·n, (63)

which renders obviously

n · (Hẋ)
‖∇xH‖ n = (As

0 ·n)n. (64)

Substituting Eqs. (64) and (61) into Eq. (60) we obtain

ṅ = As
0− (As

0 ·n)n. (65)

Upon defining the integrating factor

X0(t) := ‖∇xH(x(0))‖exp

[Z t

0
[As

0(ξ) ·n(ξ)]dξ
]
, (66)

Eqs. (65) and (66) become, respectively,

d
dt

(X0n) = X0As
0, (67)
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Figure 9 : Comparing the numerical errors for Example 5 calculated by MGPS and MRK4: (a) the error of u1, (b)
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d
dt

X0 = X0As
0 ·n. (68) In terms of the homogeneous coordinates

X =
[

Xs

X0

]
:= X0

[
n
1

]
, (69)
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Eqs. (67) and (68) together leads to Eq. (56) with

A :=
[

0n As
0

(As
0)

T 0

]
(70)

satisfying the Lie algebra condition (7).

Substituting Eq. (62) into Eq. (68) it follows that

Ẋ0

X0 = n ·Kn. (71)

On the other hand, with the aid of Eqs. (57) and (58) we
obtain

d
dt
‖∇xH‖ = n ·Hẋ, (72)

which, via Eqs. (53) and (62), becomes

d
dt
‖∇xH‖ = n ·K∇xH. (73)

Dividing the above equation by ‖∇xH‖, using Eq. (57)
and comparing the resultant with Eq. (71) we obtain

Ẋ0

X0 =
d‖∇xH‖/dt
‖∇xH‖ . (74)

Integrating and using the initial condition X0(0) =
‖∇xH(x(0))‖ derived from Eq. (66), gives us a mean-
ingful relation,

X0 = ‖∇xH‖. (75)

With this and Eqs. (57) and (69) the following identity is
verified:

Xs = ∇xH. (76)

If X is available from Eq. (56) then using Eq. (57) and
the strict convexity of the Hamiltonian function one can
obtain x through the homeomorphism between Xs and x
as shown in Eq. (59). In summary, we have a nonlinear
equations system (56) with

X =
[

Xs

X0

]
=

[
∇xH
‖∇xH‖

]
, (77)

and the following As
0:

As
0 =

K∇xH
‖∇xH‖ , (78)

which is obtained from Eq. (62) to replace n by
∇xH/‖∇xH‖, and K is a function of ∇xH through the
homeomorphism (59).

From the definition (69) it is very natural to endow a cone
in the Minkowski space,

XTgX = 0. (79)

Furthermore, in terms of (∇xH,‖∇xH‖) through the
identification (77), the following condition is obvious

∇xH ·∇xH −‖∇xH‖2 = ‖∇xH‖2−‖∇xH‖2 = 0, (80)

which is a natural condition that we can impose on sys-
tem (53). The above ends the proof. �
Similarly, we can apply scheme (16) to the n defined by
Eq. (57) but with As

0 calculated from Eq. (62). If n(�+1)
is available, which together with Eqs. (59) and (75) be-
ing substituted into the constraint (2) leads to a nonlinear
equation for X0:

ρ(F(X0(�+1)n(�+1)),x0) = 0. (81)

Substituting n(�+1) into the above equation and solving
it by the Newton-Raphson method we may obtain X0(�+
1). With the new X0(�+1) we update Xs(�+1) to a new
Xs(�+1)= X0(�+1)n(�+1), such that by Eqs. (59) and
(76) we can calculate x(�+ 1). As

0 defined in Eq. (62)
can be calculated, and then use scheme (16) to calculate
the next n and Eq. (81) the next X0. Here we call such
a scheme the Hamiltonian MGPS, which preserves the
Hamiltonian function invariant. This technique has been
applied by Liu and Chang (2004) to the computation of a
convex plasticity equation.

For demonstration let us return to Example 1 in Section
4.1 again, of which we have

x =
[

x
y

]
=

⎡
⎣ 1

1+X0n1

1
1+X0n2

⎤
⎦ ,

∇xH =

⎡
⎣ 1

x −1

1
y −1

⎤
⎦ =

[
X0n1

X0n2

]
, (82)

K =

⎡
⎣ 0 1+X0n1

1+X0n2

−1+X0n2
1+X0n1

0

⎤
⎦ ,

As
0 =

⎡
⎢⎣

(1+X0n1)n2

1+X0n2

−(1+X0n2)n1

1+X0n1

⎤
⎥⎦ . (83)
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If n1 and n2 are calculated we need to solve the following
equation for X0:

ln(1+X0n1)+
1

1+X0n1
+ ln(1+X0n2)

+
1

1+X0n2
+ lnx0 −x0 + lny0 −y0 = 0. (84)

In order to reduce the error of invariant we apply the
Hamiltonian MGPS to Eqs. (19) and (20), where the er-
ror tolerance for applying the Newton-Raphson method
to solve Eq. (84) is taken to be 10−8. Under the same
conditions as that given in Section 4.1, the numerical er-
rors of invariant by this scheme were shown in Figs. 4(a)
and 4(b). It can be seen that the errors of invariant are
greatly reduced to the order 10−16 for ∆t = 0.001 sec and
the order 10−15 for ∆t = 0.01 sec.

6 Multiple-constraint preserving schemes

There are many physical systems that are subjected to
multiple constraints; for example, the Euler equations of
rigid body dynamics (Example 6):

d
dt

⎡
⎣ Π1

Π2

Π3

⎤
⎦ =

⎡
⎢⎢⎢⎣

0 Π3
I3

−Π2
I2

−Π3
I3

0 Π1
I1

Π2
I2

−Π1
I1

0

⎤
⎥⎥⎥⎦

⎡
⎣ Π1

Π2

Π3

⎤
⎦ , (85)

where I1, I2, I3 > 0 are the three principal moments of in-
ertia of the rigid body, and Π1,Π2,Π3 are the three com-
ponents of the rigid body angular momentum.

We know that the system of Euler equations possesses
two invariants; the first is the momentum, a Casimir func-
tion:

C :=
1
2
‖ΠΠΠ‖2, (86)

and the second is the energy, a Hamiltonian:

H :=
1
2

ΠΠΠ ·J−1ΠΠΠ, (87)

where J is the inertia tensor of the body:

J :=

⎡
⎣ I1 0 0

0 I2 0
0 0 I3

⎤
⎦ . (88)

Figures 10(a) and 10(b) show the errors for the above
two invariants due to the difference between the results

calculated by applying the MGPS to Eq. (85) and the ex-
act values. Since in the modified scheme we are solved
Eq. (2) for X0 by substituting the H of Eq. (87), it can
be seen that the energy error is in the order of 10−16 (due
to a machinery round-off error), but that the momentum
error is rather large in the order of 10−4, and is gradu-
ally increasing. At the same time we also applied RK4
to this example, and the errors of invariants were also
plotted in Figs. 10(a) and 10(b). Due to its high accu-
racy RK4 gave very small errors. However, it does not
truly preserve the constaints. In order to genuinely re-
tain the constaints, let us extend the single-constraint pre-
serving numerical methods developed in Section 3 to the
multiple-constraint dynamical systems.

6.1 Scheme one: the group-preserving method

In order to obtain a much better scheme to calculate the
dynamical system (1) which subjecting to k constraints,
2 ≤ k < n:

ρi(x(t),x0) = 0, i = 1,2, . . .,k, (89)

let us first divide the variables x into k independent sets,
such that Eq. (1) can be written as:

ẋ1 = f1(x1, . . .,xk, t),
...

ẋk = fk(x1, . . .,xk, t), (90)

with x1 ∈ R
n1, . . ., xk ∈ R

nk , 1 ≤ ni < n, i = 1, . . .,k,
and n1 + . . .+nk = n. Correspondingly, the constraints in
Eq. (89) are written as

ρ1(x1, . . . ,xk,x0) = 0,

...

ρk(x1, . . .,xk,x0) = 0. (91)

For xi, i = 1, . . .,k, we introduce the orientation vectors
and integrating factors by:

ni :=
xi

‖xi‖ , i = 1, . . .,k, (92)

X0
i := ‖xi‖, i = 1, . . . ,k, (93)

such that we have k mathematically equivalent dynamical
systems:

Ẋi = AiXi, i = 1, . . .,k (i not summed) (94)
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Figure 10 : Comparing the errors of invariants for Example 6 calculated by different numerical methods: (a) the
error of energy, and (b) the error of momentum.

with

Xi =
[

Xs
i

X0
i

]
:=

[
X0

i ni

X0
i

]
, i = 1, . . . ,k (i not summed),

(95)

and

Ai :=

⎡
⎣ 0ni

fi(x1,...,xk,t)
‖xi‖

fTi (x1,...,xk,t)
‖xi‖ 0

⎤
⎦ . (96)

It can be seen that Ai is a Lie algebra of the proper or-
thochronous Lorentz group SOo(ni,1) satisfying

AT
i gi +giAi = 0, (97)

with

gi =
[

Ini 0ni×1

01×ni −1

]
. (98)

Therefore, for the dynamical system with k constraints
we observe that the internal symmetry group is the di-
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rect product of the k groups with SOo(n1,1)⊗ . . . ⊗
SOo(nk,1), which left acts on the totally k cones:

XT
1 g1X1 = 0, . . .,XT

k gkXk = 0 (99)

in the product Minkowski space of M
n1+1⊗ . . .⊗M

nk+1.

Now, by applying the modified group preserving scheme
for each dynamical equation in Eq. (94), and each ni, i =
1, . . .,k, being calculated from the scheme and then sub-
stituting the resultants into the k constraints in Eq. (91)
we obtain

ρ1(X0
1 n1, . . . ,X

0
k nk,x0) = 0,

...

ρk(X0
1 n1, . . . ,X0

k nk,x0) = 0. (100)

Simultaneously solving the above k algebraic equations
for X0

i , i = 1, . . . ,k, then returning to xi = X0
i ni, i =

1, . . .,k, we obtain the solutions of x which satisfy the
k constraints exactly.

6.2 Scheme two: the fourth-order Runge-Kutta
method

When dynamical system (1) is subjecting to k constraints
as shwon in Eq. (89) we first embed the n-dimensional
system to an n+k-dimensional system by introducing the
k lengths of k independent sets of variables: (x1, . . . ,xk)
as shown in Eq. (93), such that

ẋ1 = f1(x1, . . .,xk, t),

Ẋ0
1 =

1

X0
1

x1 · f1(x1, . . . ,xk, t),

...

ẋk = fk(x1, . . .,xk, t),

Ẋ0
k =

1

X0
k

xk · fk(x1, . . . ,xk, t). (101)

The above differential equations constitute an augmented
differential equations system for the n + k augmented
variables of (x1,X0

1 , . . . ,xk,X0
k ).

Applying the fourth-order Runge-Kutta scheme to the
system in Eq. (101), instead of to the system (1), we can
calculate (x1,X0

1 , . . . ,xk,X0
k ) for each assigned time step.

Then we can calculate the orientation vectors by

ni :=
xi

X0
i

, i = 1, . . .,k. (102)

For each xi we substitute the results of X0
i ni into the

k constraints to obtain the k simultaneous equations as
shown in Eq. (100) for the k extra variables of X0

i , i =
1, . . .,k. Similarly, solving the k algebraic equations for
X0

i , i = 1, . . . ,k, then returning to xi = X0
i ni, i = 1, . . .,k,

we obtain the solutions of x which satisfy the k con-
straints exactly.

7 Numerical examples with multiple-constraint

7.1 Example 6

In order to assess the performance of the newly devel-
oped schemes let us return to Example 6. For this ex-
ample we divide the three independent variables into two
independent sets: {Π1,Π2} and {Π3}, and solve the con-
straints equations to obtain

X0
1 =

√
I1I2(2HI3−2C)

n2
1(I2I3 − I1I2)+n2

2(I1I3 − I1I2)
, (103)

X0
2 =

√
2C− (X0

1 n1)2 − (X0
1 n2)2

n2
3

, (104)

where n1 = Π1/X0
1 , n2 = Π2/X0

1 and n3 = Π3/X0
2 .

For the special case of I1 = I2 > I3, the closed-form solu-
tion of the Euler equations is available [see, e.g., Marsden
and Ratiu (1994)]:

Π1(t) = Π1(0)cos
(I3− I1)Π3(0)

I1I3
t

−Π2(0) sin
(I3 − I1)Π3(0)

I1I3
t, (105)

Π2(t) = Π2(0)cos
(I3− I1)Π3(0)

I1I3
t

+Π1(0) sin
(I3 − I1)Π3(0)

I1I3
t, (106)

Π3(t) = Π3(0). (107)

In Fig. 10, the results calculated by using the new
schemes were compared with the closed-form solutions
while the momentum and energy errors were shown in
Figs. 10(a) and 10(b). It can be seen that the multiple-
constraint preserving schemes provide more accurate
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Figure 11 : Comparing the numerical errors for Example 6 calculated by different numerical methods: (a) the error
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results for the energy and momentum than does the
single-constraint GPS. At the same time, as shown in

Figs. 11(a)-11(c), the errors of Π1(t), Π2(t) and Π3(t) are
also greatly reduced by the multiple-constraint MGPS
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and MRK4.

7.2 Example 7

This example is a batch reactor model given by the Dow
Chemical Company [Caracotsios and Stewart (1985),
Biegler and Damiano (1986), Becerra, Roberts and Grif-
fiths (2001)]:

u̇1 +k2u2w2 = 0, (108)

u̇2 +k1u2u6 −k−1w4 +k2u2w2 = 0, (109)

u̇3−k2u2w2 −k3u4u6 +k−3w3 = 0, (110)

u̇4 +k1u4u6 −k−3w3 = 0, (111)

u̇5−k1u2u6 +k−1w4 = 0, (112)

u̇6 +k1u2u6 +k3u4u6 −k−1w4 −k−3w3 = 0, (113)

u6−w1 +w2 +w3 +w4 −a = 0, (114)

w2 − K2u1

K2 +w1
= 0, (115)

w3 − K3u3

K3 +w1
= 0, (116)

w4 − K1u5

K1 +w1
= 0, (117)

where

k1 = 21.893, k−1 = 2.14×109, k2 = 32.318,

k3 = 21.893, k−3 = 1.07×109,

K1 = 7.65×10−18, K2 = 4.03×10−11,

K3 = 5.32×10−18, a = 0.0131.

The initial conditions are

u(0) = (1.5776,8.32,0.01,0,0.01,a),
w(0) = (0.79735161×10−5,0.79735161×10−5,0,0).

Taking the time derivatives of the last three constraints in
Eqs. (115)-(117) we obtain

ẇ2 =
K2u̇1

K2 +w1
− K2u1ẇ1

(K2 +w1)2 , (118)

ẇ3 =
K3u̇3

K3 +w1
− K3u3ẇ1

(K3 +w1)2 , (119)

ẇ4 =
K1u̇5

K1 +w1
− K1u5ẇ1

(K1 +w1)2 , (120)

which together with the time derivative of the first con-
straint in Eq. (114) leads to

ẇ1 =
[

1+
K2u1

(K2 +w1)2 +
K3u3

(K3 +w1)2 +
K1u5

(K1 +w1)2

]−1

[
u̇6 +

K2u̇1

K2 +w1
+

K3u̇3

K3 +w1
+

K1u̇5

K1 +w1

]
. (121)

Eqs. (108)-(113), (121), (118)-(120) constitute a ten-
dimensional differential equations system with four con-
straints in Eqs. (114)-(117).

For this example we divide the ten independent variables
into four independent sets: {u2,u4,u6,w1,w2,w3,w4},
{u1}, {u3} and {u5}, and solve the constraints equations
to obtain

X0
1 =

a
n3 −n4 +n5 +n6 +n7

, (122)

X0
2 =

w2(K2 +w1)
K2n8

, (123)

X0
3 =

w3(K3 +w1)
K3n9

, (124)

X0
4 =

w4(K1 +w1)
K1n10

, (125)

where n1 = u2/X0
1 , n2 = u4/X0

1 , n3 = u6/X0
1 , n4 = w1/X0

1 ,
n5 = w2/X0

1 , n6 = w3/X0
1 , n7 = w4/X0

1 , n8 = u1/X0
2 , n9 =

u3/X0
3 and n10 = u5/X0

4 .

In Fig. 12, the results calculated by using the new scheme
were shown by the errors of the above four constraints
with a time stepsize of 0.001 sec. It can be seen that the
multiple-constraint MRK4 provides very accurate results
of the four constraints.
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Figure 12 : Displaying the errors of invariants for Example 7 calculated by the multi-constraint MRK4 method.

7.3 Example 8

In many applications the Kepler potential has to be mod-
ified in various ways. Kirchgraber (1988) has proposed
the following Hamiltonian for the modified Kepler prob-

lem:

H =
p2

1 + p2
2

2
− 1

r
− ε

2r3 , (126)
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Figure 13 : Displaying the tori for Example 8 of the modified Kepler problem calculated by the RK4, symplectic
RK4 and multi-constraint MRK4 methods.

where ε is a small perturbation parameter, and r =√
q2

1 +q2
2.

The modified Kepler problem is a standard test problem
for numerical methods that are constraints preservation
[e.g., Ascher (1997) and Ascher, Chin and Reich (1994)].
According to the above Hamiltonian the differential sys-

tem is:

q̇1 = p1, (127)

q̇2 = p2, (128)
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ṗ1 = −
(

q1

r3
+

3εq1

2r5

)
, (129)

ṗ2 = −
(

q2

r3 +
3εq2

2r5

)
. (130)

For this problem there are two invariants:

ρ1 =
[

p2
1(t)+ p2

2(t)
2

− 1
r(t)

− ε
2r3(t)

]

−
[

p2
1(0)+ p2

2(0)
2

− 1
r(0)

− ε
2r3(0)

]
= 0, (131)

ρ2 = M(t)−M(0)
= [q1(t)p2(t)−q2(t)p1(t)]
− [q1(0)p2(0)−q2(0)p1(0)]
= 0. (132)

In addition H the angular momentum M is also an in-
variant. In the following numerical test the initial values
are

q1(0) = 1−c, q2(0) = 0, p1(0) = 0, p2(0) =

√
1+c
1−c

.

Since there are two constraints we divide the four inde-
pendent variables into two independent sets: {q1,q2} and
{p1, p2}, and solve the constraints equations to obtain

n2
3 +n2

4

2
(X0

2 )2− 1

X0
1

√
n2

1 +n2
2

− ε

2(X0
1 )3 3

√
n2

1 +n2
2

−H(0) = 0, (133)

X0
1 X0

2 (n1n4 −n2n3)−M(0) = 0, (134)

where n1 = q1/X0
1 , n2 = q2/X0

1 , n3 = p1/X0
2 and n4 =

p2/X0
2 . Substituting Eq. (134) for 1/X0

1 into Eq. (133)
we obtain a third degree algebraic equation for X0

2 , which
can be solved exactly. Then X0

1 can be solved from
Eq. (134).

To compare the numerical results in Table 2, we add the
results obtained by Ascher (1997), Ascher, Chin and Re-
ich (1994) and Ascher and Petzold (1991), which include
midpoint scheme, second-order RK2, post-stabilization

midpoint scheme, post-stabilization RK2, projected mid-
point scheme, as well as a symplectic RK4 method
[Sanz-Serna and Calvo (1994)]. This scheme is designed
to preserve the symplectic structure of Hamiltonian sys-
tems. Our method is denoted by multi-constraint MRK4
(mul-cons MRK4). All runs were with uniform time
stepsizes of ∆t = 0.01π and 0.001π, ε = 0 and c = 0.6.
Because of ε = 0 the theoretical solution has a period
2π, and the errors in the numerical solutions can be mea-
sured at the integer multiples of 2π. From Table 2 it
can be seen that both the projected midpoint scheme
and the multi-constraint MRK4 retain the first constraint,
and that both the symplectic RK4 scheme and the multi-
constraint MRK4 retain the second constraint.

Table 2 demonstrates that a drastic improvement can be
obtained when using the multi-constraint MRK4. It is ac-
curate in the periodic solutions with three orders than the
projected midpoint scheme when ∆t = 0.01π, and four
orders when ∆t = 0.001π, and is also accurate than RK4
with two orders when ∆t = 0.01π, and one order when
∆t = 0.001π.

In Fig. 13 we compare the computed results of the mod-
ified Kepler problem with ε = 0.01 and c = 0.6 in the
phase plane of (q1,q2) within the interval of 0 < t <
500 seconds. The discretizations to be compared all
use the time step ∆t = 0.1 sec. The RK4 gave a noisy
data and the features of the torus are somewhat blurred
as shown in Fig. 13(a). The errors in the Hamiltonian
and momentum are about 0.15 and 0.29× 10−1. The
symplectic RK4 led to a typically symplectic behavior
as shown in Fig. 13(b) but is not accurate enough with
the error in the Hamiltonian about 0.28× 10−2 and the
radius of the torus about 1.32 (the exact value is about
1.313). The multi-constraint MRK4 also led to a rather
well-structured torus as shown in Fig. 13(c) and is very
accurate, of which the errors in the Hamiltonian and mo-
mentum are both zero, and the radius with 1.311 of the
torus is much better approximated to 1.313. Through the
discussions above, the superiority of the multi-constraint
MRK4 method is clear.

8 Conclusions

This paper has presented a new form of the n-
dimensional nonlinear dynamical system endowed with
k constraints, by converting it into an augmented
n + k-dimensional differential equation system in the
Minkowski space. In this space, k cone conditions are
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Table 2 : Errors of Example 8 for Kepler problem by using different numerical schemes.

method ∆t |q2(2π)| |q2(4π)| |q2(20π)| |q2(50π)| |ρ1|∞ |ρ2|∞
midpt 0.01π 0.16 0.30 0.72 0.10 0.42×10−2 ×
RK2 0.01π 0.12 0.18 0.67 0.52 0.36×10−1 ×

post-stab-midpt 0.01π 0.54×10−2 0.11×10−1 0.54×10−1 0.13 0.81×10−7 ×
post-stab-RK2 0.01π 0.40×10−2 0.81×10−2 0.40×10−1 0.10 0.15×10−6 ×

proj-midpt 0.01π 0.14×10−2 0.28×10−2 0.14×10−1 0.34×10−1 0 ×
RK4 0.01π 0.18×10−3 0.49×10−3 0.74×10−2 0.42×10−1 0.84×10−4 0.15×10−4

symp-RK4 0.01π 0.76×10−3 0.15×10−2 0.76×10−2 0.19×10−1 0.20×10−4 0
mul-cons MRK4 0.01π 0.16×10−5 0.33×10−5 0.16×10−4 0.41×10−4 0 0

midpt 0.001π 0.16×10−2 0.32×10−2 0.16×10−1 0.40×10−1 0.42×10−4 ×
RK2 0.001π 0.15×10−2 0.29×10−2 0.12×10−1 0.20×10−1 0.41×10−4 ×

post-stab-midpt 0.001π 0.54×10−4 0.11×10−3 0.54×10−3 0.14×10−2 0.83×10−13 ×
post-stab-RK2 0.001π 0.40×10−4 0.81×10−4 0.40×10−3 0.10×10−2 0.86×10−13 ×

proj-midpt 0.001π 0.14×10−4 0.29×10−4 0.14×10−3 0.36×10−3 0 ×
RK4 0.001π 0.12×10−7 0.26×10−7 0.18×10−6 0.69×10−6 0.11×10−8 0.15×10−9

symp-RK4 0.001π 0.78×10−7 0.16×10−6 0.78×10−6 0.16×10−5 0.20×10−8 0
mul-cons MRK4 0.001π 0.22×10−8 0.45×10−8 0.22×10−7 0.56×10−7 0 0

deduced for the augmented states. For the resulting sys-
tems Ẋi = AiXi, i = 1, . . .,k, Ai ∈ so(ni,1) is a local
Lie algebra of the proper orthochronous Lorentz group
SOo(ni,1), and thus the internal symmetry of the nonlin-
ear dynamical system with k constraints was revealed.

According to the inherent symmetry of the augmented
system, we have applied the exponential mapping tech-
nique to integrate the augmented system and use the ex-
tra k freedoms of the system to adjust the k integrating
factors such that the k constraints are satisfied. A simi-
lar procedure was also applied to the case when one in-
tegrates these augmented subsystems by the fourth-order
Runge-Kutta method. Since all constraints were included
in the newly developed integrating schemes it is guaran-
teed that all algebraic equations that describe the man-
ifold of solutions are satisfied up to an accuracy that is
used to integrate these dynamical equations and hence
a drift from the solution manifold is avoided. Several
numerical examples were investigated to confirm that
the new numerical methods are effective to integrate the
constrained dynamical systems and to preserve the con-
straints.

Since the new schemes are easy to implement numeri-
cally and have high computational efficiency and accu-
racy, they may be used for physical and engineering ap-

plications which particularly emphasized the constraints.
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