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Past Cone Dynamics and Backward Group Preserving Schemes for Backward
Heat Conduction Problems

C.-S. Liu 1, C.-W. Chang 2, J.-R. Chang 2

Abstract: In this paper we are concerned with the
backward problems governed by differential equations.
It is a first time that we can construct a backward time dy-
namics on the past cone, such that an augmented dynam-
ical system of the Lie type Ẋ = B(X, t)X with t ∈ R

−,
X ∈ M

n+1 lying on the past cone and B ∈ so(n,1), was
derived for the backward differential equations system
ẋ = f(x, t), t ∈ R

−,x ∈ Rn. These two differential equa-
tions systems are mathematically equivalent. Then we
apply the backward group preserving scheme (BGPS),
which is an explicit single-step algorithm formulated by
an exponential mapping to preserve the group preperties
of SOo(n,1), on the backward heat conduction problem
(BHCP). It can retrieve all the initial data with high order
accuracy. Several numerical examples of the BHCP were
work out, and we show that the BGPS is applicable to the
BHCP, even those of strongly ill-posed ones. Under the
noisy final data the BGPS is also robust to against the
disturbance. The one-step BGPS effectively reconstructs
the initial data from a given final data, with a suitable
grid length resulting into a high accuracy never seen be-
fore. The results are very significant in the computations
of BHCP.

keyword: Past cone dynamics, Backward group pre-
serving scheme, Backward heat conduction problem,
Strongly ill-posed problem.

1 Introduction

Time has two directions: past and future. The time dy-
namics that goes to future is known as a forward problem,
and that goes to past is called a backward problem. For
the forward problem which governed by ordinary differ-
ential equations (ODEs), Liu (2001) has derived a Lie
group transformation for the augmented dynamics on the
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future cone, and developed group preserving scheme for
an effective numerical calculation of nonlinear differen-
tial equations. Recently, the group preserving scheme is
also proved to be very effective to deal with ODEs with
special structures as shown by Liu (2005a) for stiff equa-
tions and by Liu (2005b) for ODEs with constraints.

Group-preserving scheme (GPS) can preserve the in-
ternal symmetry group of the considered system. Al-
though we do not know previously the symmetry group
of nonlinear differential equations systems, Liu (2001)
has embedded them into the augmented dynamical sys-
tems, which concern with not only the evolution of state
variables but also the evolution of the magnitude of state
variables vector. That is, for an n ODEs system:

ẋ = f(x, t), x ∈ R
n, t ∈ R

+, (1)

we can embed it to the following n+1-dimensional auge-
mented dynamical system:

d
dt

[
x

‖x‖
]

=

[
0n×n

f(x,t)
‖x‖

fT (x,t)
‖x‖ 0

][
x

‖x‖
]
. (2)

Here we assume ‖x‖ > 0 and hence the above system is
well-defined.

It is obvious that the first row in Eq. (2) is the same as
the original equation (1), but the inclusion of the second
row in Eq. (2) gives us a Minkowskian structure of the
augmented state variables of X := (xT ,‖x‖)T satisfying
the cone condition as shown in Fig. 1:

XT gX = 0, (3)

where

g =
[

In 0n×1

01×n −1

]
(4)

is a Minkowski metric, In is the identity matrix of order
n, and the superscript T stands for the transpose. In terms
of (x,‖x‖), Eq. (3) becomes

XT gX = x ·x−‖x‖2 = ‖x‖2 −‖x‖2 = 0, (5)
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Figure 1 : The construction of deleted cones in the
Minkowski space for forward and backward problems
signifies a conceptual breakthrough. The trajectory ob-
served in the state space x is a parallel projection of the
trajectory in the null cones along the ‖x‖ or −‖x‖-axis.

where the dot between two n-dimensional vectors de-
notes their Euclidean inner product. The cone condition
is thus the most natural constraint that we can impose on
the dynamical system (2).

Consequently, we have an n + 1-dimensional augmented
system:

Ẋ = AX (6)

with a constraint (3), where

A :=

[
0n×n

f(x,t)
‖x‖

fT (x,t)
‖x‖ 0

]
, (7)

satisfying

AT g+gA = 0, (8)

is a Lie algebra so(n,1) of the proper orthochronous
Lorentz group SOo(n,1). This fact prompts us to de-
vise the so-called group-preserving scheme, whose dis-
cretized mapping G exactly preserves the following
properties:

GT gG = g, (9)

det G = 1, (10)

G0
0 > 0, (11)

where G0
0 is the 00th component of G. Such G is a proper

orthochronous Lorentz group denoted by SOo(n,1).

Remarkably, the original n-dimensional dynamical sys-
tem (1) in E

n can be embedded naturally into an
augmented n + 1-dimensional dynamical system (6) in
M

n+1. That two systems are mathematically equivalent.
Although the dimension of the new system is raising one
more, it has been shown that under the Lipschitz condi-
tion of

‖f(x, t)− f(y, t)‖≤ L‖x−y‖, ∀ (x, t), (y,t)∈ D, (12)

where D is a domain of R
n ×R, and L is known as a

Lipschitz constant, the new system has the advantage of
devising group-preserving numerical scheme as follows
[Liu (2001)]:

X�+1 = G(�)X�, (13)

where X� denotes the numerical value of X at the discrete
time t�, and G(�) ∈ SOo(n,1) is the group value at time
t�.

In this paper we attempt to develop group-preserving
scheme for backward problems. It is an extension of the
work by Liu (2004) by taking the time backward of equa-
tions into account on the construction of backward group
theory. Numerical schemes adopted for backward prob-
lems are usually implicit. The explicit schemes that have
been applied to solving the backward problems are ap-
parently not very effective up to now. As mentioned by
Mera (2005) the backward problem is ill-posed that is im-
possible to solve using classical numerical methods and
requires special techniques to be employed.

The new method would provide us an explicit single-
step algorithm, and renders a more compendious numer-
ical implementation than other schemes to solve back-
ward problems. The main motivation is placed on an
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effective numerical solution of the backward heat con-
duction problem (BHCP). The BHCP is one of the in-
verse problem, which is different from the sideways heat
conduction problem recently reviewed and calculated by
Chang, Liu and Chang (2005) with the GPS method. The
degree of the ill-posedness of BHCP is over other in-
verse heat conduction problems including the the side-
ways heat conduction problem, which is dealed with the
reconstruction of unknown boundary conditions.

The BHCP is an ill-posed problem in the sense that the
solution is unstable for a given final data uF. For exam-
ple, u(x, t) = exp[α2(T − t)] sinαx is the solution of

∂u
∂t

=
∂2u
∂x2 , (14)

subjecting to the final data u(x,T) = sinαx. Thus, by
taking α arbitrarily large u(x,0) = exp[α2T ] sinαx can
become unbounded.

In order to calculate the BHCP, there appears certain
progress in this issue, including the boundary element
method [Han, Ingham and Yuan (1995)], the itera-
tive boundary element method [Mera, Elliott, Ingham
and Lesnic (2001); Mera, Elliott and Ingham (2002)],
the regularization technique [Muniz, de Campos Velho
and Ramos (1999); Muniz, Ramos and de Campos
Velho (2000)], the operator-splitting method [Kirkup
and Wadsworth (2002)], the lattice-free high-order finite
difference method [Iijima (2004)], and the contraction
group technique [Liu (2004)]. A recent review of the nu-
merical BHCP was provided by Chiwiacowsky and de
Campos Velho (2003).

Through our study in this paper, it would be clear that the
new method greatly reduces the computational time and
is very easy to implement on the calculation of backward
problems, including the BHCP as special case. This is
an important contribution for calculating the backward
problems.

2 GPS for differential equations system

2.1 The Cayley transform

The Lie group generated from A ∈ so(n,1) is known as
a proper orthochronous Lorentz group. One of which is
the Cayley transform

Cay(τA) = (In+1−τA)−1(In+1 +τA), (15)

a mapping from A to an element of SOo(n,1) for τ ∈ R

and τ2 < ‖x‖2/‖f‖2. Substituting Eq. (7) for A(�), which
denotes the value of A at the discrete time t�, into the
above equation yields

Cay[τA(�)] =

⎡
⎢⎣ In + 2τ2

‖x�‖2−τ2‖f�‖2 f�fT
�

2τ‖x�‖
‖x�‖2−τ2‖f�‖2 f�

2τ‖x�‖
‖x�‖2−τ2‖f�‖2 fT

�
‖x�‖2+τ2‖f�‖2

‖x�‖2−τ2‖f�‖2

⎤
⎥⎦ .

(16)

Inserting the above Cay[τA(�)] for G(�) into Eq. (13) and
taking its first row, we obtain

x�+1 = x� +η�f� = x� +
‖x�‖2 +τf� ·x�

‖x�‖2−τ2‖f�‖2 hf�. (17)

In the above x� denotes the numerical value of x at the
discrete time t�, τ is one half of the time increment, i.e.,
τ := h/2, f� denotes f(x�, t�) for saving notation, and η�

is an adaptive factor.

In order to meet the property (11), we require the time
stepsize used in the scheme (17) being constrained by
h < 2‖x�‖/‖f�‖. Under this condition we have

h <
2‖x�‖
‖f�‖ ⇐⇒ G0

0 > 0 =⇒ η� > 0. (18)

Some properties of preserving the fixed point behavior of
the above numerical scheme (17) have been investigated,
and applying it to some non-backward problems has re-
vealed that it is easy to implement numerically and has a
high computational efficiency and accuracy as discussed
by Liu (2001).

2.2 Exponential mapping

An exponential mapping of A(�) admits a closed-form
representation:

exp[hA(�)] =

⎡
⎢⎣ In + (a�−1)

‖f�‖2 f�fT
�

b�f�
‖f�‖

b�fT
�

‖f�‖ a�

⎤
⎥⎦ , (19)

where

a� := cosh

(
h‖f�‖
‖x�‖

)
, b� := sinh

(
h‖f�‖
‖x�‖

)
. (20)

Substituting the above exp[hA(�)] for G(�) into Eq. (13)
and taking its first row, we obtain

x�+1 = x� +η�f�, (21)
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where

η� :=
(a�−1)f� ·x� +b�‖x�‖‖f�‖

‖f�‖2 (22)

is the adaptive factor. From f� · x� ≥ −‖f�‖‖x�‖ we can
prove that

η� ≥ ‖x�‖
‖f�‖

[
1−exp

(
−h‖f�‖

‖x�‖
)]

> 0, ∀h > 0. (23)

This scheme is group properties preserved for all h > 0,
and does not endure the same shortcoming as that for
scheme (17).

3 Backward problems and BGPS

3.1 Dynamics on past cone

Corresponding to the initial value problems (IVPs) gov-
erned by Eq. (1) with a specified initial value x(0) at
zero time, for many systems in engineering applications,
the final value problems (FVPs) may happen due to one
wants to retrieve the past histories of states exhibited in
the physical models. These time backward problems can
be described as

ẋ = f(x, t), x ∈ R
n, t ∈ R

−. (24)

With a specified final value x(0) at t = 0, we intend to
recover the past values of x in the past time of t < 0.

We can embed Eq. (24) into the following n + 1-
dimensional augemented dynamical system:

d
dt

[
x

−‖x‖
]

=

[
0n×n − f(x,t)

‖x‖
− fT (x,t)

‖x‖ 0

][
x

−‖x‖
]
. (25)

It is obvious that the first equation in Eq. (25) is the same
as the original equation (24), but the inclusion of the sec-
ond equation gives us a Minkowskian structure of the
augmented state variables of X := (xT ,−‖x‖)T satisfy-
ing the cone condition:

XT gX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0. (26)

Here, we should stress that the cone condition imposed
on the dynamical system (2) is a future cone as shown in
Fig. 1, and that for the dynamical system (25) the im-
posed cone condition (26) is a past cone as shown in
Fig. 1. The so-called future and past are due to the fact
that in Eq. (2) the last component of the augmented state

vector X is ‖x‖ > 0, while that in Eq. (25) the last com-
ponent of the augmented state vector X is −‖x‖< 0.

Consequently, we have an n + 1-dimensional augmented
system:

Ẋ = BX (27)

with a constraint (26), where

B :=

[
0n×n − f(x,t)

‖x‖
− fT (x,t)

‖x‖ 0

]
(28)

satisfying

BT g+gB = 0, (29)

is a Lie algebra so(n,1) of the proper orthochronous
Lorentz group SOo(n,1). The term orthochronous used
in the special relativity theory is referred to the preser-
vation of time orientation. However, it should be under-
stood here as the preservation of the sign of −‖x‖.

According to the above Lie algebra property of B we can
derive a backward group-preserving scheme as Eq. (13)
for Eq. (6):

X�−1 = G(�)X�. (30)

However, the above one is a backward single-step nu-
merical scheme, which is different from the forward one
in Eq. (13). Below we derive two group-preserving
schemes for Eq. (27).

3.2 The Cayley transform

The Cayley transform generated from B ∈ so(n,1) is

Cay(τB) = (In+1−τB)−1(In+1 +τB). (31)

Substituting Eq. (28) for B(�) into the above equation
yields

Cay[τB(�)] =

⎡
⎢⎣ In + 2τ2

‖x�‖2−τ2‖f�‖2 f�fT
� − 2τ‖x�‖

‖x�‖2−τ2‖f�‖2 f�

− 2τ‖x�‖
‖x�‖2−τ2‖f�‖2 fT

�
‖x�‖2+τ2‖f�‖2

‖x�‖2−τ2‖f�‖2

⎤
⎥⎦ .

(32)

Inserting the above Cay[τB(�)] for G(�) into Eq. (30) and
taking its first row, we obtain

x�−1 = x� +η�f� = x� +
−‖x�‖2 +τf� ·x�

‖x�‖2−τ2‖f�‖2 hf�. (33)
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In order to meet the property (11), the time stepsize is
constrained by h < 2‖x�‖/‖f�‖. Under this condition we
have

h <
2‖x�‖
‖f�‖ ⇐⇒ G0

0 > 0 =⇒ η� < 0. (34)

3.3 Exponential mapping

An exponential mapping of B(�) admits a closed-form
representation:

exp[hB(�)] =

⎡
⎢⎣ In + (a�−1)

‖f�‖2 f�fT
� − b�f�

‖f�‖

−b�fT
�

‖f�‖ a�

⎤
⎥⎦ , (35)

where a� and b� were defined by Eq. (20).

Substituting the above exp[hB(�)] for G(�) into Eq. (30)
and taking its first row, we obtain

x�−1 = x� +η�f�, (36)

where

η� :=
(a�−1)f� ·x�−b�‖x�‖‖f�‖

‖f�‖2 . (37)

From f� ·x� ≤ ‖f�‖‖x�‖ it follows that

η� ≤ ‖x�‖
‖f�‖

[
exp

(
−h‖f�‖

‖x�‖
)
−1

]
< 0, ∀h > 0. (38)

This scheme is group properties preserved for all h > 0,
and does not endure the same shortcoming as that for
scheme (33).

Comparing Eqs. (33) and (17) it is interesting to note that
these two numerical schemes have the same form in ad-
dition that the sign before ‖x�‖ in the numerators. Simi-
larly, Eqs. (37) and (22) have the same form in addition
that the sign before b�‖x�‖‖f�‖ in the numerators. In the
Appendix we derive the above two numerical schemes by
a different approach. In the later we will call these nu-
merical schemes the backward group preserving scheme
(BGPS), in order to differentiate them from the group
preserving scheme (GPS) introduced in Section 2 for the
forward differential dynamics. On the other hand, in the
whole calculations of the BHCP in Section 5 we will em-
ploy the exponential mapping BGPS, for the above rea-
son of group properties preserved for all h > 0 of this
numerical method.

4 Numerical examples of backward ODEs

In this section we apply schemes (33) and (36) to back-
ward ODEs, which have closed-form solutions. Our pur-
pose is to test the performance of the newly-developed
numerical methods.

4.1 Example 1

Consider the following planar dynamical system:

ẋ1 = −x1 +
2x2

ln(x2
1 +x2

2)
, ẋ2 = −x2 − 2x1

ln(x2
1 +x2

2)
, t ≥ 0,

(39)

whose solution, in terms of the polar coordinates (r,θ),
can be expressed as

r(t) = r0e−t , θ(t) = θ0 + ln

(
1− t

lnr0

)
,

where r0 = r(0) and θ0 = θ(0) are initial values.

This example is not a backward problem; however, we
use it to demonstrate the accuracy of schemes (33) and
(36) by specifying terminal conditions at t = T :

x1(T) = r0e−T cos

(
θ0 + ln

[
1− T

lnr0

])
, (40)

x2(T ) = r0e−T sin

(
θ0 + ln

[
1− T

lnr0

])
. (41)

Applying schemes (33) and (36) to Eq. (39) in the time
interval of 2 ≥ t > 0 sec with a time stepsize of h =
0.001 sec, and under the above terminal conditions with
r0 = 10 and θ0 = π/6, the numerical results indicate that
the accuracy of both schemes is in the order of 10−2 for
x1 and 10−3 for x2 as shown in Fig. 2(a) and (b). The
errors were obtained by taking the absolute of the differ-
ences between exact solutions and numerical solutions.
We also plotted η/h in Fig. 2(c), from which it can be
seen that the values of η/h for these two schemes are
slightly different.

4.2 Example 2

In this example, we consider the Euler equations of rigid
body dynamics:

d
dt

⎡
⎣ Π1

Π2

Π3

⎤
⎦ =

⎡
⎢⎢⎢⎣

0 Π3
I3

−Π2
I2

−Π3
I3

0 Π1
I1

Π2
I2

−Π1
I1

0

⎤
⎥⎥⎥⎦

⎡
⎣ Π1

Π2

Π3

⎤
⎦ , (42)
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Figure 2Figure 2 : Applying schemes (33) and (36) to Example
1: (a) the errors of x1, (b) the errors of x2, and (c) the time
histories of η/h.

where I1, I2, I3 > 0 are the three principal moments of in-
ertia of the body, and Π1,Π2,Π3 are the three compo-
nents of body angular momentum.

For the special case I1 = I2 > I3, the closed-form solution
of Euler equations is available [see, e.g., Marsden and
Ratiu (1994)]:

Π1(t) = Π1(0)cos
(I3 − I1)Π3(0)

I1I3
t

−Π2(0) sin
(I3− I1)Π3(0)

I1I3
t,

Π2(t) = Π2(0)cos
(I3− I1)Π3(0)

I1I3
t

+Π1(0) sin
(I3− I1)Π3(0)

I1I3
t,

Π3(t) = Π3(0). (43)

We use this example to demonstrate the accuracy of
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Figure 3 : Applying scheme (36) to Example 2: (a) the
error of Π1, (b) the error of Π2, and (c) the error of Π3.

schemes (33) and (36) by specifying terminal conditions
at T = 50 sec calculated from above equations. We fix
I1 = I2 = 5 and I3 = 3 and Π1(0) = Π2(0) = Π3(0) = 1
in the calculation. Applying scheme (36) to Eq. (42) in
the time interval of 50 ≥ t ≥ 0 sec with a time stepsize
of h = 0.02 sec, the numerical results as shown in Fig. 3
indicate that the accuracy of BGPS is in the order of 10−2

for Π1, 10−3 for Π2 and no error for Π3.

5 Backward heat conduction problems

5.1 The governing equation

The BHCP we consider is

∂u
∂t

= ν	u in Ω, (44)

u = uB on ΓB, (45)

u = uF on ΓF, (46)
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Figure 4 : Applying scheme (36) to Example 3: (a) com-
paring one-step and two-step BGPS solutions with exact
solution, and (b) the numerical errors of u(0,x).

where u is a scalar temperature field of heat distribu-
tion and ν is the heat diffusion coefficient. We take
a bounded domain D in R

k and a spacetime domain
Ω = D× (0,T) in Rk+1 for a final time T > 0, and write
two surfaces ΓB = ∂D× [0,T ] and ΓF = D×{T} of the
boundary ∂Ω. 	 denotes the k-dimensional Laplacian
operator. Eqs. (44)-(46) constitute a k-dimensional back-
ward heat conduction problem for a given boundary data
uB : ΓB 
→ R and a final data uF : ΓF 
→ R.

It is well known that the approach of ill-posed problems
by numerical method is rather difficult [Han, Ingham and
Yuan (1995); Mera, Elliott, Ingham and Lesnic (2001);
Mera, Elliott and Ingham (2002); Kirkup and Wadsworth
(2002); Liu (2002); Chiwiacowsky and de Campos Velho
(2003); Iijima (2004); Liu (2004); Mera (2005)]. For ex-
ample, for any time stepsize h > 0 and for any lattice
spacing lengths ∆x1 > 0, . . .,∆xk > 0, it is known that
the finite-difference scheme for Eq. (44) is unstable even
under the von Neumann condition, which is a necessary
numerical stability condition for the forward finite differ-
ence scheme of initial-value problem.

Here we are going to calculate the BHCP by a semi-
discretization method, which replaces Eq. (44) by a set

of ODEs:

∂u(x1, . . . ,xk, t)
ν∂t

=

{u(x1 +∆x1, . . .,xk, t)−2u(x1, . . . ,xk, t)
+u(x1 −∆x1, . . . ,xk, t)}/(∆x1)2 + · · ·
+{u(x1, . . . ,xk +∆xk, t)−2u(x1, . . . ,xk, t)
+u(x1, . . . ,xk −∆xk, t)}/(∆xk)2 (47)

at the interior grid points in the domain D, together with
the backward group preserving schemes (BGPS) devel-
oped in Section 3 for the resulting backward ODEs.

5.2 Example 3

In order to compare our numerical results with those ob-
tained by Lesnic, Elliott and Ingham (1998), Mera, El-
liott, Ingham and Lesnic (2001), Mera, Elliott and Ing-
ham (2002) and Mera (2005), let us first consider a one-
dimensional benchmark BHCP:

ut = uxx, 0 < x < 1, 0 < t < T, (48)

with the boundary conditions

u(0, t) = u(1, t) = 0, (49)

and the final time condition

u(x,T) = sin(πx)exp(−π2T ). (50)

The data to be retrieved is given by

u(x, t) = sin(πx)exp(−π2t), T > t ≥ 0. (51)

The one-dimensional spatial domain [0,1] is discretized
by N = n + 2 points including two end points, at which
the two boundary conditions u0(t) = un+1(t) = 0 are
imposed on the totally n differential equations obtained
from Eq. (47) by considering k = 1. We apply the
BGPS developed in Section 3.3 for this backward prob-
lem of n differential equations with the final data given
by Eq. (50).

When T = 0.5 sec, we compare two computations in
Fig. 4: one with n = 99, i.e. ∆x = 1/100, and h =
0.25 sec, and another one with n = 199, i.e. ∆x = 1/200,
and h = 0.5 sec. The first computation with two steps and
the latter one with only a one-step. From Fig. 4(a) it can
be seen that the computed data at the grid points are al-
most located on the sine curve obtained from Eq. (51)
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Figure 5 : The maximum error as a function of the num-
ber of grid points for the final times of T = 1 sec and
T = 0.5 sec.

with t = 0. It is hardly to see the difference of these
two numerical solutions with the exact solution. There-
fore, we plot the numerical error defined by taking the
absolute of the difference of numerical results with ex-
act data in Fig. 4(b). After viewing the output data we
were seen that the error is rather smaller with a maxi-
mum 0.000405776 for the two-step BGPS, and encour-
agingly small for the one-step BGPS with a maximum
0.000101462, where the maximum error is defined as

Maximum Error := Maxi∈{1,...,N}|ui− sinπxi|,

where N is the total grid point, and ui denotes the numer-
ical value of u at the i-th grid point with a position x = xi.
Even under the same ∆x = 1/100, the one-step BGPS is
accurate as that uses two-step.

The computational results strongly support us to use a
one-step BGPS with a finer grid length to compute the
BHCP of this example. On the other hand, there are five
reasons for a one-step BGPS: (a) as mentioned in Section
3.3 the BGPS is group properties preserved for all h > 0;
(b) when the number of grid points increases the BGPS
with multiple steps may cause instability of the numer-
ical solution; (c) a one-step computation is much time
saving; (d) there has no error propagation of the one-step
computation; (e) it can increase the spatial resolution by
increasing the number of grid points.
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Figure 6 : The comparison of exact solutions and nu-
merical solutions for Example 3 were made in (a) with
different final times of T = 0.5,0.7,0.725,0.75 sec, and
(b) the errors of numerical solutions.

Next we investigate the influence of the number of grid
points on the accuracy for two cases T = 0.5 sec and
T = 1 sec in Fig. 5. It can be seen that more grid points
can increase the accuracy. However, it was found that
even for small numbers of grid point the one-step BGPS
can produce a rather accurate numerical solution.

In Fig. 6 we show the numerical results and nu-
merical errors for different final times of T =
0.5,0.7,0.725,0.75 sec. They are also calculated by
BGPS with one step but keeping ∆x = 1/200. Upon
compared with the numerical results computed by Mera
(2005) with the method of fundamental solution (MFS)
together with Tikhonov regularization technique (see
Figure 5 of the above cited paper), we can say that BGPS
is much accurate than MFS.

Let us further investigate some very severely ill-
posed cases of this benchmark BHCP, where T =
1.5,2,2.2,2.4 sec were employed, such that when the fi-
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Figure 7 : The comparison of exact solutions and nu-
merical solutions for Example 3 were made in (a) with
different final times of T = 1.5,2,2.2,2.4 sec, and (b)
the errors of numerical solutions.

nal data are in the order of O(10−7)−O(10−11) we want
to use BGPS to retrieve the desired initial data sinαx,
which is in the order of O(1). For this very difficult prob-
lem, the method proposed by Lesnic, Elliott and Ingham
(1998) was instable when T > 1 sec. However, the re-
sults given by BGPS with ∆x = 1/200 and one step, i.e.
h = T , in the calculations are free of such difficulty and
we were able to retrieve the desired initial data rather ac-
curately as shown in Fig. 7. Even for the severe case up
to T = 2.4 sec, our computation is stable, and the maxi-
mum error occurring at x = 0.5 is about 0.008.

To the authors’ best knowledge, there has no report that
the numerical methods for this severely ill-posed BHCP
can provide more accurate results than us.

In the case when the input final measured data are con-
taminated by random noise, we are concerned with the
stability of BGPS, which is investigated by adding the
different levels of random noise on the final data. We use
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Figure 8 : The comparison of numerical solutions for
Example 3 were made in (a) with different levels of noise
s = 0,0.001,0.0003,0.0005, and (b) the corresponding
numerical errors.

the function RANDOM−NUMBER given in Fortran to
generate the noisy data R(i), where R(i) are random num-
bers in [−1,1]. The numerical results with T = 0.25 sec
were compared with the numerical result without con-
sidering random noise in Fig. 8. The noise is obtained
by multiplying R(i) by a factor s. It can be seen that
the noise levels with s = 0.0003,0.0005,0.001 disturb
the numerical solutions deviating from the exact solution
small.

5.3 Example 4

Let us consider the one-dimensional BHCP:

ut = νuxx, 0 < x < 1, 0 < t < T, (52)

with the boundary conditions

u(0, t) = u(1, t) = 0, (53)
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Figure 9 : For Example 4 we compare one-step and
multi-step BGPS solutions with exact solution with T =
0.5 sec in (a), and multi-step BGPS solution with exact
solution with T = 0.01 sec in (b).

and the initial condition

u(x,0) =
{

2x, for 0 ≤ x ≤ 0.5,
2(1−x), for 0.5 ≤ x ≤ 1.

(54)

The exact solution is given by

u(x, t) =
∞

∑
k=0

8
π2(2k +1)2 cos

(2k +1)π(2x−1)
2

×

exp[−π2ν(2k +1)2t]. (55)

The backward numerical solution is subjected to the final
condition at time T :

u(x,T) =
∞

∑
k=0

8
π2(2k +1)2 cos

(2k +1)π(2x−1)
2

×

exp[−π2ν(2k +1)2T ]. (56)

In practice, the data is obtained by taking the sum of

the first two hundred terms, which guarantees the con-
vergence of the series.
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Figure 10 : The comparison of BGPS solutions with and
without random noise effect for Example 4 were plotted
in (a), and the corresponding errors of u(0,x) were plot-
ted in (b).

The difficulty of this problem is originated from that we
use a smooth final data to retrieve a non-smooth initial
data. In the literature, this one-dimensional BHCP is
called a triangular test [Muniz, de Campos Velho and
Ramos (1999); Muniz, Ramos and de Campos Velho
(2000); Chiwiacowsky and de Campos Velho (2003)].

For this computational example we have taken ν = 0.1,
n = 19, T = 0.5 sec, h = 0.05 sec and ∆x = 1/20. The
accuracy as can be seen from Fig. 9(a) is rather good be-
sides that at the turning point x = 0.5. We also calculate
this example by the one-step BGPS, i.e. h = 0.5 sec, and
with ∆x = 1/40. It is very interesting that the one-step
solution is very near to the multi-step solution.

Muniz, de Campos Velho and Ramos (1999) and Mu-
niz, Ramos and de Campos Velho (2000) have calcu-
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Figure 11 : For Example 5 we compare BGPS solution
with exact solution with T = 1 sec in (a), and the numer-
ical error of u(0,x) in (b).

lated this example by different regularization techniques.
They have shown that the explicit inversion method does
not give satisfactory results even with a small terminal
time with T = 0.008 sec [Muniz, de Campos Velho and
Ramos (1999)]. Muniz, Ramos and de Campos Velho
(2000) have calculated the initial data with a terminal
time T = 0.01 sec by Tikhonov regularization, maximum
entropy principle and truncated singular value decompo-
sition, and good results were obtained as shown in Fig-
ures 4 and 5 of the above cited paper. However, when we
apply BGPS to this problem with ν = 1, T = 0.01 sec,
h = 0.0005 sec and ∆x = 1/40, more accurate result can
be seen from Fig. 9(b). The maximum error occurring at
x = 0.5 is 0.0619522.

For this example with T = 0.25 sec, the comparison of
BGPS solutions with and without considering random
noise effect were also plotted in Fig. 10(a), and the cor-
responding errors of u(0,x) were plotted in Fig. 10(b).

5.4 Example 5

Let us consider the third example of one-dimensional
BHCP:

ut = uxx, −π < x < π, T > t > 0, (57)
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Figure 12:Figure 12 : For Example 5 we compare the BGPS solu-
tions with different levels of noise s = 0,0.0001,0.0002
for T = 0.25 sec.

with the boundary conditions

u(−π, t) = u(π, t) = 0, (58)

and the final time condition

u(x,T) = e−α2T sinαx. (59)

The exact solution is given by

u(x, t) = e−α2t sinαx, (60)

where α ∈ N is a positive integer.

We can demonstrate this ill-posed problem further by
considering the L2-norms of u and its final data:

‖u(x, t)‖2
L2 =

Z T

0

Z π

−π
(e−α2t sinαx)2dxdt

=
1

2α2 (e2α2T −1)
Z π

−π
(e−α2T sinαx)2dx. (61)

Since for any C > 0 there exists α ∈ N such that√
e2α2T −1/(

√
2α) > C, an inequality ‖u(x, t)‖L2 >

C‖uF‖L2 holds for any C > 0. This means that the so-
lution does not depend on the final data continuously.
Therefore, the BHCP is unstable for a given final data
with respect to the L2-norm. Larger α is, more worse is



78 Copyright c© 2006 Tech Science Press CMES, vol.12, no.1, pp.67-81, 2006

-4.00 -2.00 0.00 2.00 4.00

x, y

0E+0

2E-4

4E-4

6E-4

8E-4

E
rr

o
r 

o
f 
n
u
m

er
ic

a
l 
so

lu
ti

o
n
s

-4.00 -2.00 0.00 2.00 4.00

x, y

0.00

0.01

0.02

0.03

E
rr

o
r 

o
f 
n
u
m

er
ic

a
l 
so

lu
ti

o
n
s

(a) T=1 sec, =1

(b) T=2 sec, =3

Figure 13:
Figure 13 : The errors of BGPS solutions for Example
6 are plotted in (a) with T = 1 sec and α = 1, and in (b)
with T = 2 sec and α = 3.

the final data dependence on the solution. In other words,
the problem is more ill-posed when α is larger.

In Fig. 11 we show the numerical results which being
compared with the exact solution (60) at time t = 0 for
the case of α = 3 and T = 1 sec. In the calculation, the
grid length was taken to be ∆x = 2π/90 and the time step-
size was taken to be h = 1 sec.

Due to the rather small final data in the order of O(10−4)
when comparing with the desired initial data sinαx of or-
der O(1) to be retrieved, Mera (2005) has mentioned that
it is impossible to solve this strongly ill-posed problem
by using classical numerical methods and requires spe-
cial techniques to be employed. However, by using the
one-step BGPS method we can treat this problem very
good as shown in Fig. 11(a), and the numerical error is
very small in the order O(10−2) as shown in Fig. 11(b).
In Fig. 12 we calculate this example with T = 0.25 sec
under the noise level of s = 0.0001 by using the grid
length ∆x = 2π/72 and under s = 0.0002 by using the

grid length ∆x = 2π/52. It can be seen that the numerical
method of one-step BGPS is robust to against the noise
disturbance.
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Figure 14 : The numerical errors of BGPS solutions
with and without random noise effect for Example 6 were
plotted in (a) with respect to x at fixed y = 2π/3, and in
(b) with respect to y at fixed x = π/2.

5.5 Example 6

Let us consider the first example of two-dimensional
BHCP:

ut = uxx +uyy, −π < x < π, −π < y < π, T > t > 0,

(62)

with the boundary conditions

u(−π,y, t)= u(π,y, t)= u(x,−π, t) = u(x,π, t)= 0, (63)

and the final time condition

u(x,y,T) = e−2α2T sinαxsinαy. (64)
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The exact solution is given by

u(x,y, t) = e−2α2t sinαxsinαy, (65)

where α ∈ N is a positive integer.

In Fig. 13(a) we show the errors of numerical solutions
obtained from the BGPS for the case of α = 1. T = 1 sec
was used in this comparison, where the grid lengths were
taken to be ∆x = ∆y = 2π/90, and the time stepsize was
taken to be h = 1 sec. At the point x = −π + 134π/90
the error is plotted with respect to y by a dashed line,
and at the point y = −π + 148π/90 the error is plotted
with respect to x by a solid line. The latter one is smaller
than the former one because the point y = −π+148π/90
is near to the boundary. The errors however are much
smaller than that calculated by Liu (2004) as shown in
Figure 4 therein.

Clearly, if T in Eq. (64) is chosen sufficiently large, such
that the order of u(x,y,T) decreases below our computer
machine precision then the BCHP of this example will
become uncomputable. In order to give a stringent test
of the BGPS when applied it on this example, we let
α = 3 and T = 2 sec. The final data is very small in
the order of O(10−16), which is almost uncomputable
by our PC. However, we can use the BGPS to retrieve
the desired initial data sinαxsinαy, which is in the or-
der of O(1). The errors of numerical solutions calculated
by BGPS with ∆x = ∆y = 2π/200 and one step in the
calculation were shown in Fig. 13(b), where at the point
x = −π+300π/200 the error is plotted with respect to y
by a dashed line, and at the point y = −π+332π/200 the
error is plotted with respect to x by a solid line. For this
very difficult problem, the BGPS method proposed here
is also good with a maximum error 0.026288.

In Fig. 14 we compare the numerical errors with T =
0.25 sec for two cases: one without random noise and an-
other one with random noise in the level of s = 10−5. The
exact solution and numerical solutions were plotted in
Fig. 15(a)-(c) sequentially. Even under the noise the nu-
merical solution displayed in Fig. 15(c) is a good approx-
imation to the exact initial data as shown in Fig. 15(a).

5.6 Example 7

Let us consider the second example of two-dimensional
BHCP [Mera (2005)]:

ut =
1
2
[uxx +uyy], 0 < x < 1, 0 < y < 1, T > t > 0, (66)

Figure 15 : The exact solution for Example 6 of two-
dimensional BHCP were plotted in (a), in (b) the BGPS
solution without random noise effect, and in (c) the
BGPS solution with random noise.

with the time varying boundary conditions

u(0,y, t)= e−π2t sinπ(y−1), u(1,y, t)= e−π2t sinπy, (67)

u(x,0, t) = e−π2t sinπ(x−1), u(x,1, t) = e−π2t sinπx, (68)
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Figure 16 : The errors of BGPS solutions with and with-
out random noise effect for Example 7 were plotted in (a)
with respect to x at fixed y = 0.8, and in (b) with respect
to y at fixed x = 0.1.

and the final time condition

u(x,y,T) = e−π2T sinπ(x+y−1). (69)

The exact solution is given by

u(x,y, t) = e−π2t sinπ(x+y−1). (70)

In Fig. 16 we compare the numerical errors with T =
0.1 sec for two cases: one without random noise and an-
other one with random noise in the level of s = 10−5,
where the grid lengths were taken to be ∆x = ∆y = 1/50,
and the time stepsize was taken to be h = 0.1 sec. At the
point y = 0.8 the errors were plotted with respect to x in
Fig. 16(a), and at the point x = 0.1 the errors were plotted
with respect to y in Fig. 16(b).

6 Conclusions

The heat conduction problems are calculated by the for-
mulation with a semi-discretization of heat conducting
equations in conjuction with the group preserving numer-
ical integration scheme. As well known, in the backward

numerical integration of the heat conduction equations a
simple employment of the finite difference or finite ele-
ment method with negative time steps is numerically un-
stable. In this paper we were concerned with this numer-
ical integration problem, in which the key point was the
construction of a past cone and a backward group pre-
serving scheme. It is a first time that we could construct
a geometry (past cone), algebra (Lie algebra) and group
(Lie group) description of the backward problems gov-
erned by differential equations.

By employing the BGPS we can recover all initial data
with high order accuracy. Several numerical examples of
the BHCP were work out, which show that our numeri-
cal integration methods are applicable to the BHCP, even
for the very strongly ill-posed ones. Under the noised
final data the BGPS was also robust enough to retrieve
the initial data. In the most computations of the BHCP, a
one-step BGPS was applicable to recover the initial data,
having a higher accuracy with a suitable finer grid length.
This is especially true when the initial data to be retrieved
are smooth. The efficiency of one-step BGPS was rooted
in the closure property of the Lie group that we used it to
construct the numerical method for BHCP.
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Appendix A:

In this appendix we derive Eqs. (33) and (36) by an-
other method. For the backward problem (24) we usually
search a backward scheme, such that Eq. (13) is rewritten
as

X� = G(�)X�−1, (A.1)

that is, we use the state at the �-th step to calculate G(�),
instead of the state at the �−1-th step to calculate G(�−
1).

Taking the inverse of Eq. (A.1) we get a backward
scheme:

X�−1 = G−1(�)X�. (A.2)

By using the group property (9) we have

G−1(�) = gGT (�)g. (A.3)

Inserting Eq. (4) for g and Eq. (16) for G(�) into the
above equation we obtain

G−1(�)=

⎡
⎢⎣ In + 2τ2

‖x�‖2−τ2‖f�‖2 f�fT
� − 2τ‖x�‖

‖x�‖2−τ2‖f�‖2 f�

− 2τ‖x�‖
‖x�‖2−τ2‖f�‖2 fT

�
‖x�‖2+τ2‖f�‖2

‖x�‖2−τ2‖f�‖2

⎤
⎥⎦ .

(A.4)

Substituting Eq. (A.4) into Eq. (A.2) and taking the first
row we obtain the numerical scheme in Eq. (33).

Similarly, inserting Eq. (4) for g and Eq. (19) for G(�)
into Eq. (A.3) we obtain

G−1(�) =

⎡
⎢⎣ In + (a�−1)

‖f�‖2 f�fT
� − b�f�

‖f�‖

−b�fT
�

‖f�‖ a�

⎤
⎥⎦ . (A.5)

Substituting Eq. (A.5) into Eq. (A.2) and taking the first
row we obtain the numerical scheme in Eq. (36).




