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A Time Adaptive Scheme for the Solution of the Advection Equation in the
Presence of a Transient Flow Velocity

A.P.S. Selvadurai1 and Wenjun Dong

Abstract: A Fourier analysis conducted on both the
spatial and the temporal discretizations of the govern-
ing partial differential equation shows that the Courant
number as well as the time marching scheme have sig-
nificant influences on the numerical behaviour of a Mod-
ified Least Squares (MLS) method for the solution of the
advection equation. The variations of the amplification
factor and the relative phase velocity with the Courant
number and the dimensionless wave number indicate that
when Courant number is equal to unity, the MLS method
with the specified time-weighting and upwind function
gives accurate results. This conclusion is confirmed by
the numerical computation of the problem of the one-
dimensional advective transport with constant flow ve-
locity, carried out with different Courant numbers. Based
on this observation, a time-adaptive scheme is developed
to examine the problem where the advective transport
has a time-dependent velocity. The time step is selected
adaptively using the Courant number criterion Cr = 1.
The time-adaptive scheme is applied to analyze the ad-
vective transport problem in which the flow velocity is
governed by a pressure transient, resulting from the con-
sideration of the compressibilities of the pore fluid and
the porous skeleton, as well as the transient hydraulic
boundary conditions.

keyword: Modified Least Squares method, Fourier
analysis, advection equation, Courant number, time-
adaptive scheme.

1 Introduction

The advection-diffusion equation can be used to model
a wide range of problems in the engineering sciences.
Examples of these include, waves in shallow water, heat
transfer in fluids, salt movement in the oceans, flow of
vehicular traffic, movement of charged particles such
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as electrons, gas dynamics, biological processes, tu-
mor growth, sediment contamination of aquifers, and the
transport of chemicals and other contaminants in porous
geological media [Selvadurai (2000; 2002a; 2003)].
In general, the equations governing advective-diffusive
transport are non-linear; the nonlinearities resulting
largely from the modeling of the transport processes. The
analytical solution of these equations is rarely possible.
Therefore, it is necessary to employ computational meth-
ods to solve such transport problems of particular inter-
est to engineering applications. In general, the computa-
tional solution of problems involving both advection and
diffusion presents less computational difficulties than
those that involve purely advective processes. Therefore,
the development of reliable computational schemes that
address the advective transport problem has been a chal-
lenging area of research in computational fluid dynamics.
To date many studies have been made to develop stable
numerical schemes with high accuracy for the solution
of the advection equation, particularly in the presence of
sharp gradients or discontinuities of the dependent vari-
able [LeVeque (1992); Morton (1996); Quarteroni and
Valli (1997); Ganzha and Vorozhtsov (1998); Wang and
Hutter (2001); Atluri (2004)].

Many finite element methods, referred to as stabilized
techniques, have been developed for the solution of the
advection equation [Codina (1998)]. The main drawback
of stabilized finite element methods, however, lies on
their reliance on the well-established mesh discretization
of the entire domain for the calculation of integral quanti-
ties. Such a limitation can be overcome by methods such
as the Meshless Local Petrov-Galerkin (MLPG) method
[Atluri and Zhu (1998); Atluri et al (2004)]. Recently,
the MLPG technique has been applied to the solution of
convection-diffusion problems [Lin and Atluri (2000)].

Most stabilized finite element methods satisfy the von
Neumann stabilization condition, and based on Lax’s
equivalence theorem, the numerical solution will con-
verge to a correct solution, provided consistent stability is
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observed. Since different stabilized methods use differ-
ent weighting strategies, they are bound to have perfor-
mances with varied accuracy for advective transport in-
volving either discontinuities or a shock-structure in the
solution. These differences in the numerical performance
raise the question as to how rapidly the numerical solu-
tions obtained by these stabilized schemes will converge
to the true solution.

A Fourier analysis shows that a square wave is com-
posed of waves of different frequencies, and the high
frequency components can be considered as fine scale
measures for which a simple polynomial space is in-
adequate. Therefore, the standard finite element space
should be augmented by a space of functions (bubble
functions) that take into consideration the effect of dis-
continuous fronts. The bubble functions should be spe-
cially constructed via a certain element-level homoge-
neous Dirichlet boundary value problem [Franca and
Hwang (2002)], and therefore they are referred to as the
residual-free bubbles [Brezzi, et al (1992); Franca and
Farhat (1995)]. Another approach is to consider the ef-
fect of the unresolvable fine scale (or subgrid scale) on a
resolvable coarse scale in the normal polynomial space
by means of the elemental Green’s function. This is
the basic concept underlying the variational multi-scale
model [Hughes (1995)]. Brezzi et al (1997) showed the
equivalence of the residual-free bubbles approach and the
variational multi-scale model for advection-dominated
transport phenomena, and both approaches add a stabi-
lization term to the weak form of the advection-diffusion
operator [Codina (1998)].

Since the Fourier analysis can reflect a property of nu-
merical schemes in the frequency domain, it has be-
come one of the common ways to investigate the behav-
ior of computational methods, particularly those that uti-
lize the finite difference form of the advection equation
[Morton, 1980; Pereira and Pereira, 2001]. Richtmeyer
and Morton (1967) and Yu and Heinrich (1986) have
used the amplitude ratio to investigate the stability of the
space-time Petrov-Galerkin method; Shakib and Hughes
(1991) presented a Fourier stability and accuracy analy-
sis of the space-time Galerkin/least-squares method ap-
plied to the time-dependent advective-diffusive transport
problem. Tezduyar and Ganjoo (1986) used the algo-
rithmic damping ratio (ADR) and algorithmic frequency
ratio (AFR) procedures to develop and test the weight-
ing functions, which were used in an improved Petrov-

Galerkin method. Codina (1993) used techniques involv-
ing both ADR and AFR to examine the stability of the
forward-Euler scheme in the Streamline Upwind Petrov-
Galerkin (SUPG) for the advection-diffusion equation.
Cardle (1995) used a similar idea to determine the tem-
poral weighting function, which is different from the spa-
tial one utilized in the Petrov-Galerkin method. Recently,
Hauke and Doweidar (2005) performed a Fourier anal-
ysis on a transient subgrid scale stabilized method for
the advection-diffusion-reaction equation. These inves-
tigations suggest that the Fourier analysis provides con-
siderable insight into the numerical behavior of stabi-
lized methods for the solution of the advection equation.
The overall behavior of stabilized finite element meth-
ods depends not only on temporal and spatial discretiza-
tion schemes, but also on the form of the artificial diffu-
sion and artificial convection introduced into the scheme
through the numerical modeling. Therefore it is of in-
terest to conduct Fourier analysis on all the discretiza-
tion procedures simultaneously to examine the accuracy
of the various numerical methods.

The main purpose of this paper is therefore to investi-
gate the performance of stabilized semi-discrete Eule-
rian finite element methods via a Modified Least Squares
scheme. Such an investigation is performed in terms of a
Fourier analysis which is conducted on the discretization
of both temporal and spatial derivatives of the advection
equation. The trapezoidal time-weighting rule is consid-
ered in such a Fourier analysis and the influence of time-
weighting on the numerical behavior of stabilized semi-
discrete methods is identified by the distribution of algo-
rithmic amplitude and relative phase velocity as a func-
tion of the dimensionless wave number and the Courant
number. The upwind parameter and the time-weighting
in the Modified Least Squares method are determined by
means of a Fourier analysis to provide a greater accuracy
in the amplification factor and relative phase velocity in
terms of dimensionless wave number. The Fourier anal-
ysis also shows that the Courant number has a signifi-
cant influence on the numerical performance of the above
stabilized method, and therefore a time-adaptive scheme
should be combined with the stabilized method to solve
advective transport problems with a transient flow veloc-
ity. Finally, the time-adaptive Modified Least Squares
method is used to examine the advective transport pro-
cess in a porous medium, in which the flow is controlled
by a transient flow potential.
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Table 1 : The definition of upwind function for different methods

Methods α1 α2

PG 1√
15

h 1√
15

h

LS θ |u|∆t θ |u|∆t
TG2 0 1

2 |u|∆t
TG3 1

6 |u|2 ∆t2 d
dx

1
2 |u|∆t

where h is the element length, ∆t is time step and Cr = |u|∆t
/

h is the elemental Courant
number

2 The Modified Least Squares Method

The basic concept underlying stabilized methods for
examining computational modeling of the advection-
dominated transport problem is to introduce artificial dif-
fusion near the discontinuities of the dependent vari-
able. The origins of such stabilized methods can be
traced back to the combining of two basic finite dif-
ference methods: the central-difference scheme and the
upwind-scheme. In this combination, the weighting of
the upwind scheme should be increased near locations
where the dependent variable has high gradients and in
other regions the weighting of the central scheme should
dominate. Therefore this method is referred to as an ‘op-
timal’ or ‘smart’ upwind method. Such smart upwind
schemes can be introduced into finite element methods to
develop the so-called stabilized semi-discrete Eulerian fi-
nite element methods, using asymmetric weighting func-
tions [Christie et al (1976)]. The general weak form of
the stabilized finite element method for the homogeneous
advection equation

∂C
∂t

+u
∂C
∂x

= 0 (1)

in a one-dimensional domain Ω(= [0, l]) can be written
as follows:
Z

Ω

[
w+α1sign(u)

dw
dx

]
∂C
∂t

dx

+
Z

Ω

[
w+α2 sign(u)

dw
dx

]
(u

∂Cn+θ

∂x
)dx = 0 (2)

where Cn+θ=(1-θ)Cn+ θ Cn+1, θ ∈(0, 1] is time weight-
ing, w is the standard Galerkin weighting function, αi

(i=1,2) are perturbation parameters referred to as the
upwind functions or the intrinsic time of the stabilized

methods [Oñate et al. (1997)]. The upwind func-
tions should be determined on the basis of either the
Least Squares method (LS) [Carey & Jiang (1988); Jiang
(1998)] such that the artificial convection term has the ad-
joint form of the convection term in the equation which
gives rise to symmetric computational schemes for the
advection equation [Wendland & Schmid (2000)]; or
be based on a Fourier analysis to ensure that numerical
modelling can give an “optimal” solution of the tran-
sient advection-diffusion equation [Raymond & Garder
(1976)], such as the Streamline Upwind Petrov-Galerkin
Method (SUPG) [Hughes & Brooks (1982)]. Further-
more, the upwind functions can also take different val-
ues to generate different stabilized methods, such as the
Taylor-Galerkin method (TG) [Donea et al. (1984)].
The expressions for the upwind functions, αi (i=1,2),
for several stabilized finite element methods, the Petrov-
Galerkin method (PG), the Least Squares method (LS),
the second- and the third-order Taylor-Galerkin methods
(TG2 and TG3), are listed in Table 1.

Since a Least Squares Method can generate a symmetric
matrix form for the advection equation, the method has
significant potential for the examination of the non-linear
problem. Wendland and Schmid (2000) proposed a so-
called 3S (Symmetrical Streamline Stabilization) scheme
for advection-dominated transport, in which a parameter
was introduced into the upwind term to obtain a better
performance. This is equivalent to using different pertur-
bation parameters for the temporal and spatial terms of
the advection equation in the LS method: i.e.

Z

Ω

[
w+θu∆t

dw
dx

]
Cn+1−Cn

∆t
dx

+
Z

Ω

[
w+ αθu∆t

dw
dx

]
u

∂Cn+θ

∂x
dx = 0 (3)
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Figure 1 : The amplification factor for the MLS method for the advection equation with α=1; variation with ωh and
Cr.
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Figure 2 : The relative phase velocity for the MLS method for the advection equation with α=1; variation with ωh
and Cr.

and this scheme can therefore be referred to as the Mod-
ified Least Squares method. The parameter α in (3) ac-
counts for the upwind effect, which can be determined
from a Fourier analysis to obtain the better numerical per-
formance of the MLS method for the advection equation.

3 Fourier Analysis

The finite difference stencil for a Modified Least
Squares method with a trapezoidal time-rule for the one-
dimensional pure advection equation (1) can be written
as

Cn+1
j = Cn

j +∆t[θACn+1
j +(1−θ)ACn

j ] (4)

where A = A−1
1 ·A2 and Ai(i = 1, 2) are discrete opera-

tors defined by

A1(Cj) =
1
6
(Cj−1 +4Cj +Cj+1)+

θu∆t
2h

(Cj−1−Cj+1)

(5a)

A2(Cj) =
u

2h
(Cj+1−Cj−1)− αθ∆t u2

h2 (Cj−1−2Cj+Cj+1)

(5b)

The sinusoidal form of the solution of (4) can be written
as

Cn
j = C(x j, tn) = exp[iωx j −νhtn]
= exp[−ξhtn]exp[iω(x j − Ωh

ω tn)]
(6)

where h = x j+1 −x j , ∆t = tn+1− tn, ω is the spatial wave
number, νh = ξh + iΩh determines the temporal evolution
of the solution, ξh and Ωh are, respectively, the numerical
damping coefficient and the wave frequency correspond-
ing to the spatial increment h. Substituting (6) into (4)
gives

[ζhe−iΩh∆t ]Cn
j = z(ω)Cn

j (7)

where ζh is the amplification factor for the numerical op-
erator in (4) defined by

ζh =

∣∣∣∣∣C
n+1
j

Cn
j

∣∣∣∣∣= exp[−ξh∆t] (8)
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Figure 3 : The amplification factor and the relative phase velocity for the MLS method for the advection equation
with α=3/2 and θ =1/3; variation with ωh and Cr.

and

z(ω) =
1+∆t(1−θ)Â(ω)

1−∆tθ Â(ω)

=

{
[2+cos(ωh)]−6αCr2θ(1−θ) [1−cos(ωh)]

−i3Cr sin(ωh)

}
[2+cos(ωh)]+6αCr2θ2[1−cos(ωh)]

(9)

In (9), Â(ω) is the spectral function of the operator A
[Vichnevetsky and Bowles (1982)].

From (7), (8) and (9), we can determine the amplification
factor ζh and relative phase velocity u∗/u of the MLS
method as follows:

ζh = |z(ω)|

=

√
[2+cos(ωh)−6αCr2θ(1−θ)(1−cos(ωh))]2

+9Cr2 sin2(ωh)

2+cos(ωh)+6αCr2θ2(1−cos(ωh))
(10)

u∗

u
=

Ωh

ω
= −arg(z(ω))

ω∆t

=
1

Cr ωh
arctan

⎛
⎜⎜⎝ 3Cr sin(ωh)

2+cos(ωh)
−6αCr2θ(1−θ)(1−cos(ωh))

⎞
⎟⎟⎠

(11)

Figures 1 and 2 illustrate, respectively, the variations in
the amplification factor and the relative phase velocity

with the dimensionless wave number ωh and the Courant
number Cr, corresponding to α=1 and different time-
weightings, θ = 0,0.5, 1.0. It is evident that the Courant
number and the time integration scheme have an influ-
ence on the numerical behavior of the MLS scheme for
advection equation.

Expanding (10) and (11) in powers of ωh, we have

ζh = 1+
1
2

Cr2(1−2αθ )(ωh)2

− 1
24

Cr2 [2αθ+3Cr2(1−4αθ(1−2θ)−8α2θ3)](ωh)4

+O
(
(ωh)6) (12)

u∗

u
= 1− 1

3
Cr2[1−3αθ(1−θ)](ωh)2

+
1

180
[−1+15αCr2θ(1−θ)

+36Cr4(1−5αθ(1−θ)+5α2θ2(1−θ)2)](ωh)4

+O
(
(ωh)6) (13)

From (12) and (13), we note that the accuracy of ζh and
u∗/u can reach at least 4th-order in ωh, if α and θ satisfy
the following criteria simultaneously:

⎧⎨
⎩

1−2αθ = 0

1−3αθ(1−θ) = 0
(14)



46 Copyright c© 2006 Tech Science Press CMES, vol.12, no.1, pp.41-53, 2006

or alternatively⎧⎨
⎩

α = 3/2

θ = 1/3
(15)

Figure 3 shows the variations in amplification factor ζh

and relative phase velocity u∗/u of the MLS method cor-
responding to the values of α and θ defined by (15) as
a function of ωh and Cr. We note from Figure 3 that
when Cr =1, both the amplification factor and the rel-
ative phase velocity are equal to unity for all values of
the dimensionless wave number ωh. Keeping Cr =1 and
substituting (15) into (10) and (11) gives

ζh
∣∣
α= 3

2 ,θ= 1
3 ,Cr=1 = 1 (16a)

u∗

u

∣∣∣∣
α= 3

2 ,θ= 1
3 ,Cr=1

= 1 (16b)

We should also note from (11) that u∗ = u , even when
Cr=1/2 and with the values of α and θ determined by
(15); i.e.

u∗

u

∣∣∣∣
α= 3

2 ,θ= 1
3 ,Cr= 1

2

= 1 (17)

It follows from (16) that when Cr =1 and α and θ are
determined by (15), there is no amplification and phase
errors in MLS for all ωh, and all wave components in-
cluded in the square wave will travel at the same speed
giving rise to square wave without distortion. The MLS
method with α and θ determined by (15) therefore can
generate an accurate solution for the advection equation
when Cr is kept at unity. This conclusion is confirmed
by the numerical results presented in the ensuing section.

4 Numerical Analysis and Time-Adaptive Scheme

4.1 Advective Transport with Constant Flow Velocity

A one-dimensional advective transport problem involv-
ing a steep front with a constant flow velocity of
u =0.5m/s, applicable to a region occupying [0, l]
(where l=30m) is considered. The computational domain
is discretized into 60 elements with a uniform elemen-
tal mesh of 0.5m. The initial concentration is zero ev-
erywhere in the domain, and the domain is subjected to

boundary conditions C|x=0 = 1 and ∂C
∂x

∣∣∣
x=l

= 0 at the left

and the right boundaries of domain, respectively. Two
time steps are chosen such that the Courant number is
equal to 1/2 and 1, corresponding to the mesh size and
flow velocity. Figure 4 illustrates the computational re-
sults for the normalized concentration as a function of the
spatial and temporal coordinates obtained from the MLS
scheme with the time-weighting and the upwind func-
tion defined by (15), and corresponding to two different
Courant numbers; i.e. Cr=1/2 and Cr=1.0. From these re-
sults it is evident that the MLS scheme introduces oscil-
lations in the vicinity of the discontinuity in the solution
for Cr=1/2 , due to the deviation of the amplification fac-
tor from unity. The MLS scheme with α=3/2 and θ=1/3
can generate an accurate solution for the advection equa-
tion under the condition Cr=1.0 because of the criteria
(16).

4.2 The Time-Adaptive Scheme

Since the Courant number has an important influence on
the numerical performance of the MLS method, either a
time-adaptive or a mesh-refining adaptive algorithm can
be combined with the MLS method to obtain an accu-
rate solution to the advective transport of a steep front in
the presence of a transient flow velocity. In the adaptive
scheme, either the time step ∆t or size hie of the elements
where a steep front is located should be determined on
the basis of the magnitude of flow velocity, such that the
Courant number satisfies

(Cr)ie =
|u|ie ∆t

hie
= 1 (18)

where ie indicates the elements that are located at the
steep front and, hie and |u|ie are respectively the char-
acteristic length and flow velocity of an element, Nie is
the total number of selected elements ie. Such a time-
adaptive MLS method is used to simulate the advective
transport process induced by a flow velocity with a time-
dependency of the form

u = u0 exp(−k
l

t) (19)

where k is the Dupuit-Forchheimer hydraulic conductiv-
ity (which is related to the conventional area-averaged
hydraulic conductivity k̃ by the relation k = k̃

/
n∗ and n∗

is the porosity) and l is a length parameter corresponding
to the size of the domain. Figure 5 shows the compu-
tational results for such an advective transport problem
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(a) t = 0.25,  Cr = 0. 5    (b) t = 0.5,  Cr = 1.0 

Figure 4 : Computational results for the one-dimensional advective transport problem obtained from the MLS
method with α=3/2 and θ =1/3.

(a) time-adaptive     (b) non time-adaptive  

Figure 5 : Computational results for the one-dimensional advective transport problem with an exponential decaying
flow velocity obtained from the MLS method with α =3/2 and θ =1/3.

with k=0.03m/day, l=30m and u0=0.5m/s obtained from
the MLS method, both with and without a time-adaptive
technique. The initial time step is taken as ∆t =1.0s, such
that Cr=1 at the start of the transport process. With time,
the flow velocity defined by (19) becomes smaller and
the Courant number deviates from unity. With the time-
adaptive scheme (18), which ensures that the elemental
Courant number is always equal to unity during the com-
putations, the MLS method generates a very accurate so-
lution for the advective transport problem with the decay-
ing flow velocity given by (19). Without a time-adaptive
scheme, the MLS method gradually introduces oscilla-
tions in the vicinity of the discontinuity of the numerical
solution, due to the deviation of the Courant number from
the optimum value of unity.

5 Advective Transport in the Presence of a Hy-
draulic Transient

5.1 Governing Equation

In this section, we apply the time-adaptive scheme to the
study of a one-dimensional advective transport problem
related to a fluid-saturated porous medium. The advec-
tive flow velocity in the porous medium is governed by
Darcy’s law, which for an isotropic porous medium is
given by

u = −k
∂φ
∂x

(20)

where k is the Dupuit-Forchheimer hydraulic conductiv-
ity, φ is the hydraulic potential inducing flow, which con-
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sists of the datum potential φD and the pressure potential
φp, (i.e. φ = φD +φp). Considering the compressibilities
of the pore fluid and the porous skeleton and the mass
conservation during flow, the partial differential equation
governing the advective flow potential can be reduced to
the following classical piezo-conduction equation for φp

[Selvadurai (2000, 2002b)],

Dp
∂2φp

∂x2 =
∂φp

∂t
(21)

subject, respectively, to the boundary condition and the
regularity condition

φp(0, t) = φ0H(t); φp(∞, t)→ 0 (22)

as well as the initial condition

φp(x,0) = 0; x ∈ [0,∞) (23)

where H(t) is the Heaviside step function and φ0 is a con-
stant. We also note that, for the purposes of examining
the pressure transients, the domain is assumed to be semi-
infinite. This reduction is equivalent to assuming that the
pressure head which initiates the flow is much larger than
the datum head. The pressure diffusion coefficient Dp in
(21) is given by

Dp =
k
Ss

=
k

γw[n∗Cf +Cs]
(24)

where Ss is referred to as the storativity of the system,
Cf is the compressibility of the pore fluid, and Cs is the
compressibility of the porous skeleton.

Considering mass conservation of the chemical within a
control volume, we obtain the following continuity equa-
tion for the advective transport process:

∂C
∂t

+u
∂C
∂x

+C
∂u
∂x

= 0 (25)

The third term on the LHS of (25) is non-zero if the fluid
is considered to be compressible. It is evident that the
governing PDEs (21) and (25) are weakly coupled, in the
sense that the velocity field is assumed to be uninfluenced
by the chemical transport process. The solution of the
problem can be obtained in exact closed form through
consideration of the appropriate solution applicable to
the diffusion problem determined using a Laplace trans-
form technique. The resulting solution takes the form

φp(x, t) = φ0erfc

(
x

2
√

Dpt

)
(26)

where erfc(x) is the complimentary error function de-
fined by

erfc(x) = 1− 2√
π

xZ

0

e−ζ2
dζ (27)

Therefore, the velocity in the porous medium of semi-
infinite extent is given by

u(x, t)=−k
∂φp

∂x
= kφ0

(
1√

πDpt
exp

(
− x2

4Dpt

))
(28)

Using (28) in (25) we obtain the following PDE govern-
ing the advective transport:

∂C
∂t

+kφ0

⎛
⎝exp

(
− x2

4Dpt

)
√

πDpt

⎞
⎠ ∂C

∂x

−kφ0

⎛
⎝xexp

(
− x2

4Dpt

)
2
√

π(Dp t)3/2

⎞
⎠C = 0 (29)

with the initial condition

C(x,0) = 0 ; x ∈ [0,∞) (30)

and subject to the boundary condition

C(0, t) = C0H(t) (31)

as well as the regularity condition

C(x, t)→ 0; as x → ∞ (32)

Therefore, for the flow process to be transient, the com-
pressibility of the pore fluid and/or the compressibility
of the porous skeleton should be non-zero. In the ab-
sence of these compressibilities, the flow process is gov-
erned by Laplace’s equation with the consequence that
for a mathematical solution to exist, the domain should
be finite. In general the governing PDEs (21) and (25)
are respectively parabolic and hyperbolic partial differ-
ential equations. The computational treatment of the hy-
perbolic PDE in particular is a non-routine exercise re-
quiring special approaches that can address discontinu-
ous fronts encountered during the transport of the chemi-
cal. The time-adaptive MLS scheme will be used to solve
advective transport of a discontinuous front governed by
(29).
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(a) flow potential     (b) flow velocity 

Figure 6 : The time- and space-dependent distribution of (a) the flow potential and (b) the flow velocity .

(a) time-adaptive     (b) non time-adaptive 

Figure 7 : Computational results for the advective transport in a porous medium with a transient advective flow
velocity, obtained from the MLS method (t = 400 days), (a) with time-adaptive techniques (b) without time-adaptive
techniques.

5.2 Numerical Computation

For the computations, we consider a finite region Ω=[0,l]
with l=30m, which is subject to the boundary condi-
tions of the flow potential φ(0)=φ0 and φ(∞)=0, and
the Dupuit-Forchheimer hydraulic conductivity for the
porous medium is taken as k=0.03m/day. Typical val-
ues for the compressibilities for the porous aquifer ma-
terial and the fluid are taken as Cs=1.0×10−8m2/N and
Cf =4.4×10−8m2/N [Freeze and Cherry (1979)] respec-
tively, and the porosity is taken as n∗ =0.3. For these
values, the specific storage parameter is approximately
equal to Ss=1.0×10−8m2/N.

First, we consider the case where the constant flow po-
tential φ0 = 100m is applied on the upstream boundary.

Figure 6 shows the flow potential and flow velocity dis-
tribution during 0 to 10 days over the domain, which
are obtained from analytical solutions (26) and (28) re-
spectively. We note from Figure 6 that the flow velocity
varies rapidly over the domain at the early stages of the
transport due to the large variation in the potential and
exhibits decay with time. The spatial domain Ω is dis-
cretized into 300 elements and the MLS method, both
with and without the time-adaptive procedures is used to
develop computational estimates for the advective trans-
port problem. Figure 7 shows the corresponding numer-
ical solutions obtained from the MLS method both with
and without the time-adaptive scheme. Without the time-
adaptive scheme, the MLS method will introduce oscilla-
tions in the solution due to the variation of the flow veloc-
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(a) flow potential     (b) flow velocity 

Figure 8 : The space and time-dependent distribution of (a) the flow potential (b) the flow velocity corresponding to
a decaying boundary potential.

Figure 9 : Computational results for the advective trans-
port in a porous medium with transient advective flow
velocity obtained using a time-adaptive MLS method (t
= 1000 days).

ity. The time-adaptive MLS method, however, gives an
oscillation-free computational solution. With the time-
adaptive scheme, the initial time step of ∆t=0.2 days in-
creases to ∆t=33 days at the end of the computation to
satisfy the constraint (18) imposed by the Courant num-
ber criterion.

We next consider a hydraulic pressure transient problem,
where the boundary flow potential is assumed to decay
as an exponential function of time

φ0 = φ∗ exp(−k
l
t) (33)

where φ∗=100m. This potential variation can approxi-

mate the chemical entry under a gravity potential. Fig-
ure 8 illustrates the flow potential and velocity distribu-
tion over the domain during a 1000 day period. We note
that the flow velocity decays almost to zero after 500
days. Figure 9 illustrates the numerical solution obtained
from the time-adaptive MLS method which uses 100 el-
ements. The initial time step of ∆t=5 days increases to
∆t=647days due to the low flow velocity at the location
where the steep front of the solution is located, which
implies that the chemical will migrate only 0.1m (ele-
ment length) within 647days. We note from this figure
that the advective transport process of the contaminant
almost ceases due to the low flow velocity.

Finally, we apply the decaying boundary flow potential
with a pulse as defined by the following time-dependent
pressure history:

φ0 =

⎧⎨
⎩

φ∗ exp(− k
l t), t ≤ 500

φ∗ exp[− k
l (t −500)], t > 500

(34)

Figure 10 illustrates the flow potential and velocity dis-
tribution over the domain up to a time duration of 1000
days. Figure 11 shows the corresponding numerical re-
sults, obtained using the time-adaptive MLS method with
100 elements. Again, with the adaptive scheme, the ini-
tial time step of ∆t =5 days increases to ∆t =142 days at
the end of the simulation. We note from the numerical
results shown in Figure 11 that the advective transport of
the contaminant in the porous medium is accelerated at
t=500 days due to the application of a pulse in the flow
potential at the boundary.
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(a) flow potential     (b) flow velocity 

Figure 10 : The time- and space-dependent distribution of (a) the flow potential and (b) the flow velocity corre-
sponding to a time-dependent decaying boundary potential.

Figure 11 : MLS scheme-based computational results
for the advective transport in a porous medium induced
by a transient advective flow velocity; results applica-
ble to a time-dependent decaying boundary potential (t
= 1000 days).

6 Conclusions

A Fourier analysis shows that the time-marching scheme
and the Courant number will have significant influ-
ences on the numerical performance of the Modified
Least Squares method for the solution of the advective-
transport equation. The upwind parameter introduced
in the Modified Least Squares method and time weight-
ing can be determined from a Fourier analysis conducted
on the discretization of both the temporal and spatial
terms of the advective-transport equation. It is shown
from the Fourier analysis that the Modified Least Squares
method with θ=1/3 and α=3/2 can generate oscillation-

free solutions to the advective-transport equation when
the Courant number is equal to unity. Based on this ob-
servation, a time-adaptive scheme is proposed to auto-
matically select the time step in terms of the criterion
Cr=1 for the advective transport problem with a tran-
sient flow velocity. Such a time-adaptive MLS method
was used to simulate the advective transport of a chem-
ical species with a profile that has a discontinuous front
for a situation where the flow velocity is governed by a
transient pressure field. Computational results show that
the use of an MLS scheme with added features of a time-
adaptive procedure results in an accurate method for the
solution of the linear advection equation in the presence
of a transient flow velocity.

Acknowledgement: This research work was supported
through a Discovery Grant awarded by the Natural Sci-
ences and Engineering Research Council of Canada
awarded to the first author, who would also like to ac-
knowledge the research support received by the Max
Planck Gesellschaft through the Award of the 2003 Max
Planck Research Prize in the Engineering Sciences.

References

Atluri, S.N. (2004): The Meshless Local-Petrov-
Galerkin Method for Domain & BIE Discretizations,
Tech Science Press, Encino, CA.

Atluri S.N.; Han Z.D.; Rajendran A.M. (2004): A new
implementation of the meshless finite volume method,
through the MLPG ”Mixed” approach. CMES: Com-



52 Copyright c© 2006 Tech Science Press CMES, vol.12, no.1, pp.41-53, 2006

puter Modeling in Engineering & Sciences, vol.6, pp.
491-513.

Atluri, S.N.; Zhu, T. (1998): A new Meshless Local
Petrov-Galerkin (MLPG) approach in computational me-
chanics. Comput Mech, vol.22, pp. 117-127.

Brezzi, F.; Bristeau, M.O.; Franca, L.P.; Mallet, M.;
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