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The Method of External Sources (MES) for Eigenvalue Problems with Helmholtz
Equation

S.Yu. Reutskiy1

Abstract: In this paper a new boundary method for
eigenproblems with the Helmholtz equation in simply
and multiply connected domains is presented. The so-
lution of an eigenvalue problem is reduced to a sequence
of inhomogeneous problems with the differential opera-
tor studied. The method shows a high precision in simply
and multiply connected domains and does not generate
spurious eigenvalues. The results of the numerical ex-
periments justifying the method are presented.
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1 Introduction

The goal of this paper is to present a new numerical tech-
nique for solution of the following eigenvalue problem:

∇2w+k2w = 0, x ∈ Ω ⊂ R d ,

B [w] = 0, x ∈ ∂Ω. (1)

Here, d = 2,3 and Ω is a simply or multiply connected
domain of interest with boundary ∂Ω. Two types of the
boundary operator B [...] will be considered: the Dirichlet
B [w] = w and the Neumann type B [w] = ∂w/∂n. As a
mechanical or acoustic application, this corresponds to
recovering the resonance frequencies of a system. Such
problems often arise in engineering applications.

The usual approach for eigenvalue problems with a self-
adjoint operator is to use the Rayleigh minimal principle.
In particular, the stationary points of the functional

R(w) =
Z

Ω
‖∇w‖2 dΩ/

Z
w2dΩ

coincide with eigenfunctions of the problem considered.
See [Courant (1943)], [Courant and Hilbert (1953)],
[Morse and Feshbach (1953)] for more detailed infor-
mation. Then, using an approximation for w with finite
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number of free parameters, one gets the same problem in
a finite-dimensional subspace which can be solved by a
standard procedure of linear algebra, e.g., see [Golub and
Loan (1996)], [Strang (1976)], [Strang and Fix (1973)].

In the last decade, the boundary methods have gained
great popularity among researchers. The method of fun-
damental solutions (MFS) [Golberg and Chen (1997)],
[Fairweather and Karageorghis (1998)], [Golberg and
Chen (1998)], [Cho, Golberg, Muleshkov, and Li (2004)]
is the fastest and most powerful tool in this field.

In the framework of the boundary methods a general ap-
proach to solving this problem is as follows. First, using
an integral representation of w in the BEM, or an approx-
imation over fundamental solutions in MFS, one gets a
homogeneous linear system A (k)q = 0 with matrix ele-
ments depending on the wave number k. The determi-
nant of this matrix must be zero to obtain the nontrivial
solution: det [A (k)] = 0. This equation must be investi-
gated analytically or numerically to get the eigenvalues.
This technique is described in [Karageorghis (2001)],
[Alves and Antunes (2005)], [Chen, Fan, Young, Mu-
rugesan, and Tsai (2005)], [Chen, Lin, Kuo, and Chyuan
(2001)], [Chen, Liu, and Hong (2003)], [Chen, Chen, and
Lee (2005)] with more details. In the two latest papers
there is a complete bibliography on the subject consid-
ered.

The method presented in this work is a mathematical
model of physical measurements when the resonance fre-
quencies of a system are determined by the amplitude of
response to some external excitation. As a result, instead
of (1) we solve a sequence of inhomogeneous boundary
value problems (BVP):

∇2w+k2w = f (x) , x ∈ Ω ⊂ R d,

B [w] = 0, x ∈ ∂Ω, (2)

where f describes some source placed outside the so-
lution domain. Let F (k) be some norm of the solution
w. This function of k has maximums at the eigenvalues
and, under some conditions described below, can be used
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for their determining. It should be emphasized that any
Helmholtz equation solver can be used in the framework
of the method presented. However, the MFS technique
seems to be a more suitable one for this goal in the case
of an arbitrary domain.

The outline of this paper is as follows: for the sake of
simplicity we begin by describing the 1D case in Sec-
tion 2. In Section 3, we present the application to 2D
problems for simply and multiple connected domains. In
Section 4, 3D problems are considered. Finally, in Sec-
tion 5, we give the conclusion and some directions for
developing the method suggested.

2 One-dimensional eigenproblem

To illustrate the method presented let us consider the
wave equation [Morse and Feshbach (1953)]

∂2u
∂t2 =

∂2u
∂x2 (3)

with the Dirichlet conditions at the endpoints of the in-
terval [0,1], i.e., u(0, t) = u(1, t) = 0. Considering the
free harmonic vibrations u(x, t) = e−iktw(x), we get the
following 1D Sturm−Liouville problem on the interval
[0,1]:

d2w
dx2

+k2w = 0, w(0) = w(1) = 0. (4)

The well known solution is: kn = nπ, wn = sin(nπx) ,
n = 1,2, ...,∞.

Following the MFS technique, let us consider the funda-
mental solution

Ψ(x,ξ,k) =
1
2k

exp(ik |x−ξ|) , (5)

which satisfies the homogeneous equation everywhere
except at the singular point x = ξ. A general solution
of the homogeneous equation in the interval [0,1] can be
written in the form:

w = q1Ψ(x,ξ1,k)+q2Ψ(x,ξ2,k) .

Here ξ1,ξ2 are two source points placed outside the so-
lution domain [0,1]; q1,q2 are free parameters. Using
the boundary conditions w(0) = w(1) = 0, one gets the
linear system:

A (k)q =

⎧⎨⎩
q1e(−ikξ1) +q2e(ikξ2) = 0

q1e(ik(1−ξ1)) +q2e(ik(ξ2−1)) = 0
(6)

The wave numbers kn can be determined from the con-
dition: det [A (k)] = 0. After simple transforms we get:
exp(2ik) = 1, or k = nπ. Thus, MFS gets the exact solu-
tion. Note that in multidimensional cases such computa-
tions are time consuming and not so simple.

As it is mentioned above, we propose another technique
based on a fundamentally different idea. The method
presented is a mathematical model of physical measure-
ments, when a mechanical or acoustic system is excited
by an external source and resonance frequencies can be
determined using an increase of amplitude of oscillations
near these frequencies. So, instead of (4) we solve the in-
homogeneous problem:

d2w
dx2 +k2w = f (x), w(0) = w(1) = 0. (7)

The solution can be written in the form:

w = wp +wh, (8)

where we split it into the sum of the particular solution
wp and the solution of the homogeneous equation wh.
When the excitation is performed by the point source
with the same wave number k which is placed at the point
ξ0 outside the solution domain, then f (x) = iδ(x−ξ0)
and the particular solution is:

wp = Ψ(x,ξ0,k) =
1
2k

exp(ik |x−ξ0|) . (9)

Then wh should satisfy the boundary conditions wh (0) =
−wp (0) , wh (1) =−wp (1) . Let us introduce the norm of
the solution as

F (k) =

√
1
N

N

∑
n=1

|w(xn)|2,

where the points xn are randomly distributed in [0,1]. In
all the calculations presented in this section we use N =
5. This function characterizes the value of the response
of the system to the outer excitation. We also use the
dimensionless function

Fd(k) = F(k)/F(k0),

where k0 is a reference wave number. In particular, we
take k0 = 1. Note that the right hand side f correspond-
ing to (9) equals to zero identically inside [0,1] and BVP
(7) has a unique solution w = 0 for all k except k = kn -
eigenvalues when the solution is not unique.
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2.1 finite-difference approximation

Applying to (7) the two-order accurate finite-difference
approximation, one gets the linear system:

δ2wn +∆x2k2wn = ∆x2 fn, n = 2, ...,N, w1 = wN+1 = 0,

where ∆x = 1/N, wn = w(xn) , fn = f (xn) , xn =
∆x(n−1) ,δ2wn = wn+1 −2wn +wn−1. According to the
method presented we use the splitting: wn = wp,n +wh,n,
where wp,n = Ψ(xn,ξ0,k) (see (9)) is a particular solution
and wh,n satisfies the homogeneous difference equation
with the boundary conditions wh,1 = −wp,1, wh,N+1 =
−wp,N+1.

Example 1.1) The resonance curve depicted in Fig. 1
is calculated using N = 50 grid points. The graph con-
tains large sharp peaks at the positions of eigenvalues.
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Figure 1 : Resonance curve in 1D eigenproblem. FD
solution.

As it is shown in the graphics, Fd (k) is a smooth curve
with separate maximums at the positions of eigenval-
ues. This admits of using the following simple algo-
rithm. First, we localize these maxima of Fd (k) on the

intervals [ai,bi]. Next, we solve the univariate optimiza-
tion problem inside each one. In particular, we apply
Brent’s method based on a combination of parabolic in-
terpolation and bisection of the function near to the ex-
tremum(see [Press, Teukolsky, Vetterling, and Flannery
(2002)]).

In the calculations presented in Tab. 1 (top part) we take
the position of the external source at ξ0 = 2. Here we
place the relative error

er = |ki −k(ex)
i |/k(ex)

i (10)

in approximation of the first five eigenvalues of the prob-
lem. The data presented in the bottom part of the table are
obtained with the help of a more precise finite-difference
scheme with four-order accurate approximation:(
1+∆x2k2/12

)
δ2wn +∆x2k2wn = ∆x2 (

fn +δ2 fn/12
)

with the same boundary conditions.

Table 1 : One-dimensional eigenproblem. Finite-
difference approximation. The relative errors in calcu-
lation of the first five eigenvalues.

2-order accurate scheme

i N = 10 N = 20 N = 50

1 4 ·10−3 1 ·10−3 1 ·10−4

2 2 ·10−2 4 ·10−3 7 ·10−4

3 4 ·10−2 9 ·10−3 2 ·10−3

4 6 ·10−2 2 ·10−2 3 ·10−3

5 0.1 3 ·10−2 4 ·10−3

4-order accurate scheme

1 2 ·10−5 1 ·10−6 8 ·10−8

2 3 ·10−4 2 ·10−5 4 ·10−7

3 2 ·10−3 1 ·10−4 3 ·10−6

4 6 ·10−3 3 ·10−4 8 ·10−6

5 1 ·10−2 8 ·10−4 2 ·10−5

2.2 MFS technique

Following the MFS approach, the solution can be written
in the form:

w = q1Ψ(x,ξ1,k)+q2Ψ(x,ξ2,k)+wp, (11)

where q1, q2 are free parameters and Ψ is given in (5).
Using the boundary conditions w(0) = w(1) = 0, now
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we get an inhomogeneous linear system for each k with
the same matrix as system (6). However, now the graph
Fd (k) is a non smooth one, as it is shown in Fig. 2.
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Figure 2 : Resonance curve in 1D eigenproblem. MFS
solution.

This can be explained by the following reasons. Problem
(7), (8) with wp given in (9) has the exact solution q1 = 0,
q2 = −eik(ξ0−ξ2) and so, the total solution w(x) = 0, for
x ∈ [0,1]. So, here we have Fd (k) which is equal to
zero with machine precision accuracy when k is far from
eigenvalues; Fd (k) grows considerably in a neighbour-
hood of the eigenvalues when the linear system becomes
almost degenerated. Thus, we can conclude that the non
smooth resonance curve is a consequence of a high preci-
sion in solution of the BVP by the MFS. The errors intro-
duced by the finite-difference approximation in the pre-
vious subsection damp these small local peaks and play
a role of an intrinsic smoothing procedure. Here an ar-
tificial procedure is needed to get an appropriate smooth
resonance curve which is convenient for applying the al-
gorithm of finding the eigenvalues described above. The
following two procedures are used in the paper.

2.2.1 smoothing by a dissipative term

The first procedure consists of introducing an additional
dissipative term in the governing equation. And instead
of (7) we consider the problem:

d2w
dx2 +

(
k2 + iεk

)
w = f , w(0) = w(1) = 0. (12)

Here ε is a small parameter. This means that the ini-
tial wave equation (3) is changed by the equation ∂2

tt u =
∂2

xxu−ε∂t u which describes vibration of a homogeneous
string with friction [Morse and Feshbach (1953)]. The
fundamental solution is:

Ψ(x,ξ,k,ε) =
1

2χ
exp(iχ |x−ξ|) , χ =

√
k2 + iεk. (13)

Now the system w(0) = 0, w(1) = 0 with wp given in
(9) has a unique non zero solution for all real k. The
resonance curve corresponding to ε = 10−6 is depicted
in Fig. 3

3 4 5 6 7
k

5

10

15

Fd

5 10 15 20 25 30
k

5

10

15

lnFd

Figure 3 : Resonance curve in 1D eigenproblem. MFS
solution. Smoothing by a friction term.
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Now this is a smooth curve with separated maxima at
the positions of eigenvalues. This admits of using the
algorithm described above.

Example 1.2) The data placed in Tab. 2 are obtained
by applying this technique with ε = 0.1, 10−3, 10−6. The
other parameters are: ξ1 = −0.5, ξ2 = 1.5, ξ0 = 5. Here
we place the relative errors (10) in the calculation of the
first five eigenvalues.

Table 2 : One dimensional eigenproblem. The relative
errors in calculations of the eigenvalues. Smoothing by a
friction term.

k(ex)
i ε = 0.1 ε = 10−3 ε = 10−6

π 1.3 ·10−4 1.3 ·10−8 1.7 ·10−12

2π 3.2 ·10−5 3.1 ·10−9 1.6 ·10−12

3π 1.4 ·10−5 1.4 ·10−9 1.5 ·10−12

4π 7.9 ·10−6 7.9 ·10−10 9.7 ·10−13

5π 5.1 ·10−6 5.0 ·10−10 9.0 ·10−13

2.2.2 smoothing by shift between wave numbers

The second smoothing technique is as following. Let
us introduce the constant shift ∆k between the exciting
source and the studied mode, i.e., instead of (9), we take
the particular solution in the form:

wp = Ψ(x,ξ0,k +∆k)

=
1

2(k +∆k)
exp(i (k +∆k) |x−ξ0|) . (14)

Now the linear system w(0) = w(1) = 0 has non zero
solutions for all k except the eigenvalues kn when the
system becomes degenerate. However, due to the iter-
ative procedure of solution and rounding errors we never
solve the system with the exact kn. And we observe de-
generation of the system as a considerable growth of the
solution in a neighbourhood of the eigenvalues. The reso-
nance curve corresponding to ∆k = 1 is depicted in Fig. 4.

Example 1.3) Some results of the calculations which
we got with the help of the second smoothing technique
are presented in Tab. 3 The values ξ1, ξ2, ξ0 are the same
as above.

Below we will name these smoothing procedures as
ε−procedure and k−procedure.
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Figure 4 : Resonance curve in 1D eigenproblem. MFS
solution. Smoothing by a shift between the wave num-
bers.

3 Two-dimensional case

The same technique can be applied to the eigenproblems
with Helmholtz equation. According to the method pre-
sented we get in the 2D case the following BVP:

∇2w+k2w = f (x) , x =(x1,x2) ∈ Ω ⊂ R 2,

B [w] = 0, x ∈ ∂Ω.

The fundamental solution now is:

Ψ(x,ξ,k) = H
(1)
0 (k |x−ξ|) (15)

We use the same splitting (8) of the solution into the sum
of the two terms. And take the particular solution in the
form:

wp(x) = Ψ(x,ζex,k) ≡ H(1)
0 (k |x−ζex|) (16)

with ζex placed outside the solution domain.
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Table 3 : One dimensional eigenproblem. The relative
errors in calculation of the eigenvalues. Smoothing by
shift of the wave numbers.

k(ex)
i �k = 0.1 �k = 1 �k = 10

π 1.4 ·10−11 9.1 ·10−12 7.8 ·10−12

2π 5.8 ·10−13 3.5 ·10−12 5.5 ·10−12

3π 6.4 ·10−12 1.3 ·10−12 3.5 ·10−12

4π 3.3 ·10−13 2.8 ·10−12 2.3 ·10−12

5π 5.3 ·10−12 3.5 ·10−12 5.9 ·10−13

We get for wh(x) the following BVP:

∇2wh +k2wh = 0,x ∈ Ω,

B [wh(x)] = −B [wp(x)] , x ∈ ∂Ω. (17)

which should be solved by an appropriate method for
a ≤ k ≤ b, where [a,b] is the range of the eigenvalues.
To compute the resonance curve in all the calculations we
use 15 testing points distributed inside Ω with the help of
RNUF generator of pseudorandom numbers from the Mi-
crosoft IMSL Library. To get the eigenvalues we look for
the maxima of Fd (k) using Brent’s procedure mentioned.

3.1 finite-difference approximation

Example 2.1) We consider the case when Ω is the unit
square with the Dirichlet boundary condition. The 2D
Helmholtz equation is solved by a FD method. In par-
ticular, the DFPS2H code from the Microsoft IMSL Li-
brary based on the fourth-order accurate finite-difference
approximation of the equation is used. Some results of
the calculations carried out using 10×10, 20×20 and
30 × 30 uniform meshes are presented in Tab. 4 The
k−procedure with ∆k = 10−6 is used for smoothing of
the resonance curve.

3.2 MFS technique

Applying the MFS procedure to problem (17) we look for
an approximation solution in the form of a linear combi-
nation:

wh (x|q) =
N

∑
n=1

qnΨ(x,ξn,k) , (18)

where Ψ is given in (15). This is the so-called Kupradze
basis [Kupradze (1967)]. The singular points ξn are lo-
cated outside the solution domain. The free parameters

Table 4 : Square with the side a = 1. Solution by the
FD method. The relative errors in the calculations of the
eigenvalues. k−procedure with ∆k = 10−6.

i Mesh size

10×10 20×20 30×30
1 2 ·10−5 1 ·10−6 2 ·10−7

2 2 ·10−4 8 ·10−6 2 ·10−6

3 4 ·10−4 2 ·10−5 3 ·10−6

4 7 ·10−4 4 ·10−5 6 ·10−6

5 1 ·10−3 5 ·10−5 8 ·10−6

qn should be chosen to satisfy the boundary condition
B [wh (x|q)] = −B [wp(x)], x ∈ ∂Ω. The collocation pro-
cedure with Nc collocation points distributed uniformly
on the boundary is used for this goal. We take Nc approx-
imately twice as large as the number of free parameters
N. As a result, we obtain an overdetermined inhomo-
geneous linear system which can be solved by the least
squares method. More details of this technique can be
found, e.g., in [Golberg and Chen (1997)], [Fairweather
and Karageorghis (1998)], [Golberg and Chen (1998)].

When dealing with problems in multiply connected do-
mains, the same trial functions Ψ can be used. And the
source points should be placed also inside each hole. As
an alternative approach one can use the special trial func-
tions associated with each hole:

Φs,1(x) = H(1)
0 (krs), Φs,2n+1(x) = H(1)

n (krs)cosnθs,

Φs,2n(x) = H(1)
n (krs) sinnθs. (19)

Here rs = |x− xs|,θs is the local polar coordinate sys-
tem with the origin at xs. This is the so-called Vekua
basis [Vekua (1957)], [Hafner (1990)], or multipole ex-
pansion. It is proven that every regular solution of the
2D Helmholtz equation in a domain with holes can be
approximated with any desired accuracy by linear com-
binations of such functions if the origin xs of a multipole
is inside every hole. In this case instead of (18) we use:

wh (x|q,ps) =
N

∑
n=1

qnΨ(x,ξn,k)+
S

∑
s=1

M

∑
m=1

ps,mΦs,m(x),

(20)

where S is the number of holes and M is the number of
terms in each multipole expansion.
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When the ε−procedure is applied, then instead of (17)
we consider the problem:

∇2wh +
(
k2 + iεk

)
wh = 0, x ∈ Ω,

B [wh(x)] = −B [wp(x)] , x ∈ ∂Ω. (21)

with some small ε > 0. Note that this problem has a
unique non zero solution for all real k. Then the trial
functions (15) should be also modified:

Ψ(x,ξ,k,ε)= H
(1)
0 (χ |x−ξ|), χ(k,ε)=

√
k2 + iεk. (22)

Applying the k−procedure we modify the particular so-
lution which should be taken in the form:

wp(x) = Ψ
(

x,ζex, k̃
)
≡ H(1)

0 (k̃ |x−ζex|), k̃ = k +∆k.

(23)

The results of the numerical experiments are given below
to illustrate the effectiveness of the MFS technique in the
framework of the MES approach.

Example 2.2) A circular domain with the radius r = 1
subjected to the Dirichlet or the Neumann boundary con-
dition is considered. The exciting source is placed at the
position ζex = (5,5); the singular points ξn of the funda-
mental solutions (18) are located on the circle with the
radius R = 2. The results shown in Tab. 5 correspond to
ε = 10−6. Here we place the relative errors (10) in the
calculation of the first 5 eigenvalues. The line − in a cell
indicates that the solution process failed with these pa-
rameters. The exact eigenvalues k(ex)

i are the roots of the
equation Jn (k) = 0 (Dirichlet) or J′n (k) = 0 (Neumann).

Example 2.3) The role of the parameter ε is shown in
Tab. 6. We solve the same problem as above with Dirich-
let condition. Here we fix the number of free parameters
N = 25 in (18) and vary the parameter ε. The smoothing
parameter ε coarsens the system. For a large ε we can
calculate all the eigenvalues ki, i = 1, ...,10 but the pre-
cision is not very high. When ε decreases, the precision
in determining ki increases but it fails for large i.

Example 2.4) Next, we consider the case when Ω is the
unit square with the same the Dirichlet or the Neumann
boundary condition.This problem has an analytical solu-
tion: k(ex) = π

√
i2 + j2, i, j = 1,2, ..(the Dirichlet con-

dition) and i, j = 0,1,2, ..(the Neumann condition). In
Tab. 7, we show the results of calculation of the first 5

Table 5 : Circular domain with the radius r = 1.
The relative errors in calculations of the eigenvalues.
ε−procedure with ε = 10−6.

Dirichlet condition

i N = 15 N = 20 N = 25
1 8 ·10−11 8 ·10−12 7 ·10−12

2 2 ·10−3 5 ·10−11 2 ·10−11

3 3 ·10−9 1 ·10−9 1 ·10−9

4 2 ·10−3 4 ·10−11 1 ·10−11

5 6 ·10−7 2 ·10−3 1 ·10−9

Neumann condition

1 2 ·10−9 2 ·10−9 2 ·10−9

2 4 ·10−9 2 ·10−9 2 ·10−9

3 9 ·10−12 1 ·10−11 6 ·10−12

4 7 ·10−8 9 ·10−10 8 ·10−10

5 2 ·10−6 6 ·10−10 3 ·10−10

eigenvalues with ε = 10−6. The placement of the sin-
gular points ζn and the exciting source are the same as
above.

Example 2.5) For the next example, we consider an an-
nular case of the double connected domain between the
two circles: Ω =

{
(x1,x2) | r2

1 ≤ x2
1 +x2

2 ≤ r2
2

}
The in-

ner and outer radii of an annular domain are r1 = 0.5
and r2 = 2 respectively. We take the Dirichlet condi-
tion on the outer boundary and the Neumann condition
on the inner one. The singular points are distributed at
the circles with the radii a = 5(outside the domain) and
b = 0.3 (inside the hole). The number of the singular
points on each auxiliary contour is equal to N. The ex-
citing source is placed at ζex = (10,10). In Tab. 8 we
present the relative errors (10) in calculation of the first 5
eigenvalues of the problem described with ε = 10−5. The

values k(ex)
i are obtained numerically as the roots of the

equation: J′n (r1k)Yn (r2k)−Jn (r2k)Y ′
n (r1k) = 0.

Example 2.6) In this example, doubly connected region
with the inner region of vanishing maximal dimension is
considered. The geometry of the problem is the same
as in the previous example. However, here we consider
the case of very small inner holes. In particular, we take
r1 = 10−1,10−2,10−3 with the same fixed r2 = 2. Now,
the Kupradze type basis functions (18) are unfit to ap-
proximate the solution in a neighbourhood of the hole.
Here we use a combined basis which includes the trial
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Table 6 : Circular domain with the radius r = 1. Dirich-
let condition. The relative errors in calculations of the
eigenvalues. ε−procedure with varying ε, N = 25.

i ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−8

1 6.4 ·10−6 6.0 ·10−10 7.3 ·10−12 4.9 ·10−11

2 2.4 ·10−6 1.9 ·10−10 2.0 ·10−11 4.3 ·10−11

3 3.2 ·10−6 1.4 ·10−9 1.0 ·10−9 −
4 9.0 ·10−7 1.6 ·10−10 1.3 ·10−11 −
5 1.1 ·10−6 1.6 ·10−9 1.4 ·10−9 −
6 6.5 ·10−7 1.5 ·10−10 − −
7 4.9 ·10−7 4.8 ·10−10 − −
8 2.7 ·10−6 1.1 ·10−9 − −
9 4.9 ·10−7 5.9 ·10−9 − −
10 5.2 ·10−6 2.8 ·10−3 − −

functions (18) with the singular points placed on an aux-
iliary circular contour outside the solution domain and a
multipole expansion with the origin at the center of the
hole. Thus, we look for an approximate solution in the
form:

w(x|q,p) = wp(x)+
N

∑
n=1

qnΦn(x)+
M

∑
m=1

pmΨm(x).

The data presented in Tab. 9, Tab. 10, Tab. 11 corre-
spond to the number of sources on the outer auxiliary
circular contour N = 50. The number of terms in mul-
tipole expansion M varies from M = 11(r1 = 10−1) to
M = 5(r1 = 10−3). The exciting source is placed at the
position ζex = (10,10). We use the k−procedure with
the shift ∆k = 1. We would like to draw readers’ at-
tention to the fact that the method presented can sepa-
rate very close eigenvalues: k(ex)

4 = 3.1900833197 and

k(ex)
5 = 3.2126996563(see data correspond to r1 = 10−1)

The Vekua basis can be used for eigenproblems in multi-
connected domains with different numbers of holes. For
example, some results of the calculations of the eigenval-
ues for a circle with the radius 2 and with two circular
holes are presented in Table 12. The radius of each hole
rh = 0.1. The centers of the holes are placed at (−1,0)
and (+1,0). The data in the last column of the table cor-
respond to the Kupradze basis functions. Here Nh is the
number of the MFS sources placed in each hole on the
circle with the radius 0.05. The detailed discussion of the
Vecua basis for the Helmholtz equation can be found in

Table 7 : Square with the side a = 1. The relative er-
rors in calculations of the eigenvalues. ε−procedure;
ε = 10−6.

Dirichlet condition

i N = 15 N = 20 N = 25
1 1 ·10−6 3 ·10−8 1 ·10−9

2 1 ·10−5 9 ·10−8 1 ·10−8

3 8 ·10−5 3 ·10−8 8 ·10−9

4 3 ·10−4 1 ·10−6 3 ·10−9

5 3 ·10−3 4 ·10−5 6 ·10−7

Neumann condition

1 4 ·10−7 5 ·10−8 8 ·10−12

2 1 ·10−6 3 ·10−8 3 ·10−9

3 4 ·10−5 1 ·10−7 3 ·10−10

4 1 ·10−4 6 ·10−6 5 ·10−9

5 5 ·10−4 2 ·10−5 6 ·10−7

Table 8 : Annular domain. The relative errors in calcu-
lations of the eigenvalues. ε−procedure; ε = 10−5.

i k(ex)
i N = 15 N = 20 N = 25

1 1.3339427880 5 ·10−11 2 ·10−11 2 ·10−11

2 1.7388632616 6 ·10−8 7 ·10−12 5 ·10−12

3 2.4753931967 − 7 ·10−11 8 ·10−12

4 3.1645013237 − 7 ·10−8 5 ·10−11

5 3.2899912986 − − 7 ·10−11

[Hafner (1990)].

4 3D eigenproblems

The MES technique can be applied for 3D eigenproblems
with the Helmholtz equation in the same way. The only
difference is that instead of (15), the fundamental solu-
tion now is:

Ψ(x,ξ,k) =
exp(ik |x−ξ|)

|x−ξ| (24)

The rest part of the algorithm is the same: we place the
external source outside the solution domain and get the
homogeneous Helmholtz equation for wh with the bound-
ary condition; B [wh (x|q)] = −B [wp(x)], x ∈ ∂Ω. Here
the particular solution wp(x) = Ψ(x,ζex,k) corresponds
to the external sources placed in ζex /∈ Ω. Then we solve
the Helmholtz equation using an appropriate 3D code
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Table 9 : Circle with a small hole. Dirichlet boundary
condition. The outer radius: r2 = 2;The relative errors
in calculation of the first ten eigenvalues. k−procedure;
∆k = 1.

r1 = 0.1, N = 50, M = 11

i k(ex)
i er

1 1.5322036536 1.9 ·10−8

2 1.9301625755 5.8 ·10−9

3 2.5680354360 1.6 ·10−9

4 3.1900833197 1.3 ·10−11

5 3.2126996563 7.4 ·10−9

6 3.5522743165 3.7 ·10−10

7 3.7941712382 1.2 ·10−11

8 4.2101115868 9.0 ·10−12

9 4.3857419081 4.4 ·10−12

10 4.8805392651 1.0 ·10−11

varying the wave number k as a parameter. We determine
the eigenvalues as positions of maximums on the reso-
nance curve Fd (k). Below we present the results of ap-
plying two different techniques in solution the Helmholtz
equation. The first one is based on the finite-difference
approximation of the PDE. The second one is the MFS
technique.

4.1 finite-difference approximation

Example 3.1) We consider the case when Ω is the unit
cube with the Dirichlet boundary condition. The 3D
Helmholtz equation is solved by a FD method. In par-
ticular, the FPS3H code from the Microsoft IMSL Li-
brary based on the fourth-order accurate finite-difference
approximation is used. This problem has an analytical
solution: k(ex) = π

√
i2 + j2 + l2, i, j, l = 1,2, ..The rel-

ative errors (10) of the calculations carried out using
10× 10× 10, 20× 20× 20 and 30 × 30× 30 uniform
meshes are presented in Tab. 13. The external source is
placed at ζex = (5,5,5). The k−procedure with ∆k = 0.1
is used for smoothing the resonance curve depicted in
Fig. 5.

Table 10 : Circle with a small hole. Dirichlet boundary
condition. The outer radius: r2 = 2;The relative errors
in calculation of the first ten eigenvalues. k−procedure;
∆k = 1.

r1 = 0.01, N = 50, M = 7

i k(ex)
i er

1 1.3709447159 2.5 ·10−8

2 1.9160005377 5.4 ·10−9

3 2.5678112121 1.6 ·10−9

4 2.9632630840 5.3 ·10−9

5 3.1900809955 2.9 ·10−12

6 3.5082790790 2.3 ·10−12

7 3.7941712738 1.0 ·10−9

8 4.2086222910 7.6 ·10−12

9 4.3857419733 1.1 ·10−11

10 4.5543927267 1.3 ·10−9

5 10
k

20

40

Fd

Figure 5 : Resonance curve for cube. FD solution.

4.2 MFS technique

In the all calculations presented here the approximate so-
lution are sought in the form of the linear combination

w(x|q) = wp +wh = wp +
N

∑
n=1

qnΨ(x,ξn,k) ,

where wp = Ψ(x,ζex,k) and Ψ is given in (24). The
source points ξn are distributed uniformly on the sphere
with the radius R = 3. The external source is placed at
ζex = (5,5,5).
Example 3.2) A spherical domain with the radius r = 1
subjected to the Dirichlet boundary condition is consid-
ered. We place the relative errors (10) in the calcula-
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Table 11 : Circle with a small hole. Dirichlet boundary
condition. The outer radius: r2 = 2;The relative errors
in calculation of the first ten eigenvalues. k−procedure;
∆k = 1.

r1 = 0.001, N = 50, M = 5

i k(ex)
i er

1 1.3148533741 2.0 ·10−8

2 1.9158544900 5.4 ·10−9

3 2.5678111892 1.5 ·10−9

4 2.8883437835 2.8 ·10−9

5 3.1900809955 1.1 ·10−10

6 3.5077982552 3.0 ·10−11

7 3.7941712738 1.2 ·10−11

8 4.2086221329 5.9 ·10−12

9 4.3857419733 1.2 ·10−12

10 4.4650868082 3.6 ·10−10

Table 12 : The circle with two circular holes. The first 5
eigenvalues. The columns 1,2 – Vecua basis, the last col-
umn – Kupradze basis; k− procedure with ∆k = 0.001.

N = 30,M = 9 N = 40,M = 11 N = 40,Nh = 25

1.49528109 1.49528066 1.49528066
1.92638243 1.92638253 1.92638252
2.41254401 2.41254605 2.41254601
2.59420024 2.59420068 2.59420067
2.75374776 2.75374786 2.75374786

tion of the first 5 eigenvalues in Tab. 14. The values
k(ex)

i are obtained numerically as the roots of the equa-
tion: Ji−1/2 (k) = 0, where Ji−1/2 is the Bessel function
of a half-integer order.

Here Nc is the number of the collocation points. We use
the k−procedure with the shift ∆k = 1.

Example 3.3) A cube with the side a = 1 subjected to the
Dirichlet boundary condition is considered. The geome-
try of the problem is the same as in Example 3.1). The
relative errors (10) in the calculation of the first 5 eigen-
values are placed in Tab. 15.

5 Concluding remarks

In this paper, a new method for eigenvalue problems with
the Helmholtz equation in 2D and 3D is proposed. It is
a mathematical model of physical measurements, when a

Table 13 : Cube with the side a = 1. Solution by the
FD method. The relative errors in the calculations of the
eigenvalues. k−procedure with ∆k = 0.1.

i Mesh size

10×10×10 20×20×20 30×30×30
1 4 ·10−5 7 ·10−6 5 ·10−6

2 4 ·10−5 3 ·10−6 5 ·10−7

3 3 ·10−5 2 ·10−6 6 ·10−7

4 6 ·10−4 3 ·10−5 7 ·10−6

5 8 ·10−4 2 ·10−5 4 ·10−6

Table 14 : Sphere with the radius R = 1. Solution by
the MFS. The relative errors in the calculations of the
eigenvalues. k−procedure with ∆k = 1.

i N = 126,Nc = 160 N = 198,Nc = 240
1 5 ·10−7 2 ·10−8

2 8 ·10−6 5 ·10−8

3 3 ·10−4 7 ·10−6

4 3 ·10−4 1 ·10−5

5 2 ·10−4 8 ·10−6

mechanical or acoustic system is excited by an external
source and resonance frequencies can be determined us-
ing the growth of the amplitude of oscillations near these
frequencies. From this point of view the technique de-
scribed in this paper can be labeled as the method of ex-
ternal sources (MES).

There is always issue of spurious eigensolutions in fun-
damental solutions based on numerical methods. In
particular, as it is stated in [Chen, Chen, and Lee
(2005)], when one applies the MFS to multiply con-
nected problems, spurious eigenvalues occur even though
the complex-valued fundamental solutions are utilized.
The analytical study presented there shows that for an an-
nular membrane with the Dirichlet boundary conditions
the spurious eigenvalues k(sp)

i are the roots of the equa-
tion Jn (kR1) = 0. Here R1 is the radius of the inner circle
where the MFS sources are placed. For example, let us
consider the annular membrane with the inner and outer
radii r1 = 1.5 and r2 = 2. When one places the MFS
sources at the circles with the radii R1 = 1 and R2 = 5,
then the method based on the treatment of the determi-
nant generates the spurious eigenvalues: 2.4048255577,
3.8317059702, 5.1356223072, 5.5200781103.....
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Table 15 : Cube with the side a = 1. Solution by the
MFS. The relative errors in the calculations of the eigen-
values. k−procedure with ∆k = 0.1

i
N = 160
Nc = 294

N = 240
Nc = 384

N = 286
Nc = 384

1 3 ·10−5 4 ·10−7 1 ·10−8

2 2 ·10−4 5 ·10−6 4 ·10−7

3 2 ·10−3 1 ·10−4 7 ·10−6

4 9 ·10−2 1 ·10−3 7 ·10−5

5 8 ·10−4 5 ·10−4 1 ·10−4

Solving this problem by the method presented in the pa-
per we do not obtain any spurious eigenvalues of the type
neither in multiply nor in simply connected problems. In
the graph Fig. 6 the resonance curve Fd (k) is shown.

3 4 5
k

25

50

75

100

125

150

175

200
Fd

Figure 6 : Resonance curve for annular domain; k-
procedure with ∆k = 0.001

The data corresponds to 40 MFS sources placed in each
circle and k-smoothing procedure with ∆k = 0.001. All
the maxima correspond the true eigenvalues only. The
results of the calculations are placed in Tab. 16.

However, the local spurious maxima of the resonance
curve occur sometimes in the framework of the method
presented. They arise because of the insufficient accu-
racy of the approximation or of the insufficient smooth-
ing of the solution. The amplitudes of such maxima are
less considerable than the amplitudes of the maxima cor-
responding to the true eigenvalues. So such spurious
eigenvalues can be easily filtered out. The resonance
curve depicted in Fig. 7 corresponds to Example 3.3) (the
cube with the side a = 1 subjected to the Dirichlet bound-

Table 16 : Annular domain.

i k(ex)
i er

1 6.276633180310751 1.5 ·10−8

2 6.302800235823343 7.4 ·10−9

3 6.380648336156545 1.4 ·10−8

4 6.508296084231980 4.9 ·10−9

5 6.682846457733554 5.0 ·10−8

ary condition). The number of the sources is N = 286 and
the number of the collocation points is Nc = 386. One can
see the small spurious maximum between the 4th and 5th

true eigenvalues.

5 10
k
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20

30

40

50
Fd

Figure 7 : Resonance curve for the unit cube; Solution
by the MFS; k-procedure with ∆k = 0.001

Comparing the method with the technique based on com-
putations of the determinant of the system one should
take into account the following circumstances. Since the
MFS is highly ill conditioned, the determinant is very
small. So, using this technique one operates with values
of the order ∼ 10−50− 10−500, see [Alves and Antunes
(2005)], [Chen, Chen, and Lee (2005)] for more detailed
information. At the same time in the framework of the
method presented we always deal with the values which
can be handled on PC with a single precision. We present
the values of the norm function F (k) when k is close to
eigenvalue in Table 17. The data correspond to the circu-
lar solution domain with the radius r = 1.

Here the number of the MFS sources is fixed N = 30
and the smoothing parameter ε is varied; er is the relative
error in determining of the approximated eigenvalue ki
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Table 17 : Circular domain with Dirichlet conditions.
The number of the source points N = 30; ε−procedure.

ε = 10−1 ε = 10−4

i er F(ki) er F(ki)
1 4×10−4 0.701 4×10−10 0.701
2 2×10−4 0.652 1×10−10 0.654
3 9×10−5 0.509 9×10−10 0.516

and F (ki) denotes the value of the norm function at this
approximated eigenvalue.

In spite of the fact that here the MES is developed in
combination with FD and MFS techniques only, any ap-
propriate Helmholtz solver can be used for this goal.
E.g., this can be the well-established numerical tech-
nique based on the finite element method (FEM) or on
the closely related finite volume method. However, keep-
ing in mind applications of the MES to egenproblems in
irregular domains it should be combined with a meshless
Helmholtz solver. The Element Free Galerkin method
[Belytschko, Lu, and Gu (1994)], the Meshless Local
Petrov-Galerkin method [Atluri and Zhu (1998)] and
the Boundary Knot Method [Chen (2005)], [Chen and
Tanaka (2002)] seems to be perspective in this connec-
tion.

It seems possible to extend the MES approach to eigen-
problems with other differential equations, e.g. to prob-
lems of plates and shells vibration. This will be the sub-
ject of further investigations. The method is easy to pro-
gram and not expensive in the CPU time. The all calcu-
lations presented in the paper were performed using 366
MHz PC.

Acknowledgement: The author acknowledge the sup-
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