Copyright (©) 2006 Tech Science Press

CMES, vol.11, no.3, pp.111-120, 2006

ADVENTURE AutoGL: A Handy Graphics and GUI Library for Researchers and
Developers of Numerical Simulations

H. Kawai !

Abstract: ADVENTURE AutoGL (pronounced as ‘O-
te-ga-lu’) is a graphics and GUI library, dedicated for
simulation-based research and development. It is de-
signed for the simulation users to develop their own data
viewers and editors. Currently, the library is used among
many researchers and simulation users, mainly in uni-
versities and national research centers. Its functionalities
and supported platforms are explained. AutoGL applica-
tions of various kinds of simulation methods are demon-
strated also.

keyword: Numerical simulation, GUI, Graphics, Visu-
alization, Pre- and post- processing.

1 Introduction

A variety of numerical simulation methods, including
FDM, FVM, FEM, BEM, mesh-less and particle-based
method, as well as MD (Molecular Dynamics), cellular
automaton, multi- agent and so on, have been proposed
and used among researchers and engineers. Each of them
uses its own data structure and requires some special data
manipulation. And they have to be visualized, created
and modified in a flexible way.

ADVENTURE AutoGL is a simple and handy graphics
and GUI (Graphical User Interface) library. Using this
library, a researcher or a developer using numerical sim-
ulation methods can develop his or her own viewers and
editors, namely pre- and post-processors, to visualize and
manipulate simulation data.

2 Survey

My motivation to develop ADVENTURE AutoGL is
summarized here as its own requirement specification.

* Ease of Use
It has to be designed so that most of researchers in our

field can use it easily. I assume that they can write a pro-
gram either in Fortran, C, C++ or Java to develop their

I'Keio University, Yokohama, Japan

simulation code. However, most of them are not profes-
sional programmers, so they are satisfied if they can just
use basic computer language constructs such as branch,
loop, array and character string. Neither modular pro-
gramming nor object-oriented programming should be
required. Traditionally, GUI and graphics has been re-
garded as ‘dangerous zone’ for them. Therefore, special
care must be taken to design AutoGL so that its API (Ap-
plication Programming Interface) is acceptable for them.

* Portability

It has to run on anywhere. This means supporting,
not only popular platforms such as Windows, MacOS,
Linux and UNIX, but also any special or advanced plat-
forms that some of AutoGL users are interested in for
their research purposes, such as virtual reality environ-
ment, supercomputer and computational grid, Web, PDA
(Portable Digital Assistant) and smart phone. Extensibil-
ity is the key for such types of research activities. Also,
an extension work should also be simple and easy for
them.

* Efficiency

It has to be efficient. Visualization of 3-D objects costs
huge amount of computational resources, therefore the
implementation must be efficient both in terms of space
and time. Actually, some of AutoGL users who want to
deal with a finite element analysis of 100M DOFs (De-
grees of Freedom) scale, such as ADVENTURE com-
munity, as well as users of GeoFEM in RIST, Japan and
Salinas in Sandia National Laboratory, U.S. require visu-
alization and manipulation of such a huge data set that no
commercial package can support. MD and particle-based
simulation users also request handling of huge number of
molecules or particles.

Here, the richness of functionality is intentionally ex-
cluded because of the diversity of needs required for
advanced research activities in the numerical simulation
field. Rather than any type of package software special-
ized for a certain application domain, a kind of devel-
opment environment such as programming languages, li-

112 Copyright (©) 2006 Tech Science Press

braries and utility commands is suitable to meet the re-
quirement here.

Before developing AutoGL, I surveyed and also used
many existing solutions for visualization and manipula-
tion of scientific data, either as commercial products or
freely available packages. They are classified roughly
into the following categories.

* Libraries for Programming Language

Variety of low-level GUI/ Graphics libraries is available.
As GUI libraries, there are Motif on UNIX, Gtk+ and
Qt on Linux, Cocoa and Carbon on MacOS, WIN32/64,
MFC (Microsoft Foundation Class library) and .NET
framework on Windows, and AWT (Abstract Window-
ing Toolkit), Swing and SWT on Java environment. As
graphics libraries, OpenGL, Direct3D and Java3D are
popular. In terms of efficiency, most of them are suf-
ficient. However, most of the libraries are platform-
dependent. Moreover, they are also very difficult to use
for most of the researchers assumed here, especially if
the performance is the main issue.

VTK (Visualization ToolKit) is a high-level library for
data visualization and available through C++, Java, and
many other scripting language. It is relatively easy to
use, but it is not efficient enough to support a huge-scale
analysis.

* Visualization Package

Visualization packages such as AVS/Express and Mi-
croAVS, PV-Wave, OpenDX (IBM Visualization Data
Explorer), are popular among the numerical simulation
community. Their input files are easy to write, and most
of them support some ways to customize file import
and visualization. The lack of performance and efficient
memory usage against a huge data set prohibit some of
the researchers to use them.

Data file format useful for data visualization such as
VRML (Virtual Reality Modeling Language) and X3D,
and their viewers / editors may also be classified in this
category.

* CAE Package

Most of CAD / CAE packages, such as CATIA, I-
DEAS, MSC/Patran, FEMAP, ABAQUS, STAR-CD and
FIELDVIEW, are for FEM or FVM. Their target users
are mainly mechanical engineers who do not write a pro-
gram, rather than researchers and developers. Their file
formats, typically called a neutral file, are often compli-
cated and difficult to read / write. Currently no package

CMES, vol.11, no.3, pp.111-120, 2006

can support a huge scale analysis.

Very few packages are available for other simulation
methods such as BEM and MD, and they are often ex-
pensive. There is virtually no support for more advanced
simulation methods, for example, mesh-less methods
such as EFGM (Element-Free Galerkin Method) and
MLPG (Mesh-less Local Petrov-Galerkin Method) by
Atluri et. al (2004a, 2004b), particle-based methods,
cellular automaton and multi-agent approaches. The re-
searchers of these methods have to develop their own pre-
and post-processors.

3 ADVENTURE AutoGL

ADVENTURE project is an open-source research and
development project, starting since 1997, to develop fi-
nite element-based large-scale CAE applications. The
system called ADVENTURE now consists of about 20
modules. ADVENTURE AutoGL library is contained in
ADVENTURE Auto module in ADVENTURE system.

To obtain ADV/Auto module and AutoGL library, a user
can download its source code from ADVENTURE home
page. The newer versions are also available from the au-
thor’s home page linked from the member page of AD-
VENURE.

3.1 Functionality

Currently, AutoGL supports the following visualization
capabilities.

e Drawing lines, triangles, quadrilaterals, character
strings, spheres, cones, cylinders, etc. Hidden sur-
face removal, lighting, shading and transparency are
supported.

e Visualization techniques such as iso-line contour,
smooth contour, arrow diagram, deformation plot,
iso-surface and arbitrary oriented cut plane.

e GUI components such as buttons, text fields, toggle
and choice buttons.

e Event handling, picking and selection of 2-D and
3-D objects.

Figure 1 shows a typical AutoGL application. It has a
view window and also one or more panel windows. The
view window contains a 2-D or 3-D graphics image, and

ADVENTURE AutoGL 113

Figure 1 : An example AutoGL application, ‘Panel’

Figure 3 : Iso-surface plot

AutoGL _SetColor (1.0,1.0,0.0);

/* RGB color components */
AutoGL_DrawLine

(0.0,0.0,0.0, 3.0,2.0,1.0);

/* draw line between two 3-D points */
AutoGL_DrawTriangle

(0.0,0.0,0.0,

1.0,0.0,0.0,

0.0,2.0,0.0);
Figure 2 : Contour plot /* draw triangle of three points */
}
The current color is specified as yellow (red = 1, green

cach panel windows contains GUI components such as = - blue = 0), and a line segment and a triangle are
buttons and text fields. rendered into the view window. They are defined in 3-
D world coordinate system. The triangle is lighted and
shaded automatically. It is like a classic BASIC lan-
guage, although it can also handle 3-D graphics.

Figure 2 and 3 shows some examples of visualization.
Figure 2 is a stress contour plot of structural analysis us-
ing FEM, and Figure 3 is an iso-surface plot of a scalar

field of an FDM result. double Parameter;

Here is an example source code section in C language, void Print (void)

written by an AutoGL application programmer. {

void RedrawView () printf (* Hello World \n");

{ printf (" Parameter is %f \n", Parameter);

114 Copyright (©) 2006 Tech Science Press

Figure 4 : Particle trace of cavity flow

}

void AutoGL_SetUp (int argc, char *argv[])

{

AutoGL_SetViewRedrawCallback
(RedrawView);

AutoGL_AddReal(&Parameter, “Parameter”);

AutoGL_AddCallback (Print, "Print");

}

In an AutoGL application, the programmer cannot de-
fine the main function, which is already defined inside
the AutoGL library. Instead, the programmer has to de-
fine AutoGL _SetUp function, which is called once at the
initialization phase. Fortran77 API is also defined.

In this code section, there is a global variable, Param-
eter, of double precision real number type, and a func-
tion, Print, defined by the programmer. When the Au-
toGL initialization function, AutoGL_SetUp, is called,
the variable, Parameter, and the function, Print, are reg-
istered into AutoGL. The variable, Parameter, appears in
a panel window as a text field control, which accepts a
real number. The function, Print, is represented as a but-
ton on the panel window. When an AutoGL application
user modifies the value of the text field control labeled
“Parameter”, it is reflected into the variable, Parameter,
immediately. Then the AutoGL application user pushes

CMES, vol.11, no.3, pp.111-120, 2006

the button labeled “Print”, and the function, Print, is in-
voked. Two message lines containing “Hello World” and
the current value of the variable, Parameter, is shown on
the terminal.

AutoGL _SetViewRedrawCallback registers a view re-
draw callback function. In this case, it is the function
RedrawView, already provided by the programmer. The
function is called every time the view is redrawn or a
mouse or a key event happens.

Combining AutoGL low-level visualization functionali-
ties, users can implement more advanced visualization
techniques by themselves. They can also support their
own special numerical simulation scheme and its origi-
nal data structure.

For example, capability to generate particle traces,
shown in Figure 4, is calculated by a fluid dynamics
code, ADV/Fluid module, developed in ADVENTURE
project. Also, in the research by Okada et. al (2004), two
finite element analysis results of different scales are su-
perposed to form a final contour plot required for mesh
superposition method, shown in the Figure 5.

Applied force

. 0.0
X ‘M
=
X -4.0 .
? ® (MPa)

Figure 5 : Mesh superposition method

3.2 Platform

AutoGL supports the following computer platforms.

e Client environments using OpenGL library: Linux,
FreeBSD, MacOS (using Gtk+ and GtkGLArea li-
braries), Windows (using WIN32 library) and some
commercial UNIX environments (using Motif li-
brary).

e Server environments using off-line rendering: PC
clusters, SGI Altix, Hitachi SR8000 and The Earth
Simulator.

ADVENTURE AutoGL

Figure 6 : Mesh of Pantheon (45M DOFs)

e Web-application: As browsers, Internet Explorer,
Netscape Navigator and Mozilla. Also, PDA termi-
nals such as NTT DoCoMo i-mode portable phone.

On a typical desktop or notebook PC equipped with a
commodity-level video card, interactive operations to a
finite element model of 100M DOFs are supported. Fig-
ure 6 shows visualization of the mesh of an ancient ar-
chitecture, Pantheon in Roma, with 45M DOFs.

Without modifying its source code, an AutoGL appli-
cation is available through a Web browser as a Web-
application. Image data are generated from the Web
server side and downloaded to the browser side. Figure 7
shows a sample application ‘Panel’ already demonstrated
in Figure 1, this time running on Mozilla.

115

z File Edit View Search Go Bookmaks Tasks Help

B?’m - 7 e 1%0%&0 ;‘ |.,§. hittpfi garlic. g tu-tokyo ac j[l‘--ki-lwdir'dlﬂj & Search Plit -

© A Home | wk Bockmarks ¢ Fed Hat Network 2§ Support 2§ Shop 2§ Products 2§ Training

F scale

*| Modtel Parameters
Originl abel
Jrelie, world
Mumber [0
Valus 500060

P show ais

Shape

“ line

T trimgle

* box

Draw

Frint
AutoGL_Update

| % & w2 @ | Document: Done (1.08% secs)

Figure 7 : Web-application ‘Panel’ browsing on Mozilla

It is implemented as a CGI (Common Gateway
Interface)-based Web application. An AutoGL appli-
cation binary executable, created by a programmer and
written in C, C++ or Fortran, runs on the server side as
a “daemon” process, which is independent of the Web
server process. The AutoGL application process com-
municates with a CGI script.

First, the programmer runs the AutoGL application bi-
nary executable on the Web server machine. Next, a user
of the AutoGL-based Web application on the client side
terminal, which may be HTML, Java applet or i-mode
Java application, operates through the terminal, and in-
vokes CGI calls. Every time a CGI call happens, the
CGI script program invoked from the Web server pro-
cess sends a message to the AutoGL application process,
already running on the Web server machine as a “dae-
mon” process, mainly through file I/O. The CGI script
program writes an AutoGL command script file. The Au-
toGL application finds the script file, reads it, generates a
view image through its off-line rendering capability and
writes a JPEG file. Finally, the image file is sent back to
the client terminal by the Web server process.

Not only on the Web server, off-line rendering capability
is also useful if simulation data become very huge. Vi-
sualization images can be generated on a computational
server. Rendering is performed based on software emula-
tion. Figure 8 shows the animation of a dynamic analysis
of an ABWR (Advanced Boiled Water nuclear Reactor).
A finite element simulation is carried out on The Earth

116 Copyright (©) 2006 Tech Science Press CMES, vol.11, no.3, pp.111-120, 2006

— Sports dynamics
— Fluid-structure interaction

— Virtual manufacturing and prototyping

e Architectural, civil and environmental engineering

Ancient and legacy architecture

City traffics

Pollution of ocean and lake

Heat island problem

Earthquake and health monitoring
e Nano-level material science

— Neutron irradiation damage
e Biology

— Biomechanics

— bio-informatics and DNA search

These applications are re-classified according to numeri-
cal methods, physics and disciplines as follows.

e Finite element method

Solid mechanics and fracture mechanics

Figure 8 : An off-line rendering of ABWR (35M DOFs)
dynamic analysis

Fluid dynamics

Electro-magnetics

Design optimization
Simulator using ADV/Solid module. It is performed by
Ogino and Shioya et. al (2005).

Multi-scale analysis and homogenization

e Finite difference method

4 AutoGL Applications — Fluid dynamics, ocean and climate modeling

Since 2002, ADV/Auto module and AutoGL are down-

loaded from ADVENTURE home page and used among

various kinds of researchers and engineers. The follow- — Fluid dynamics, architectural environmental
ings are some of their applications. study

e Finite volume method

Until now, AutoGL has covered the following application

domains o Mesh-less and voxel-based method

e Molecular dynamics
e Mechanical engineering
e Dislocation dynamics
— Turbine blades and pumps
e Bio-informatics
— Nuclear power plant vessels

— Portable information devices e Multi-agent approach

ADVENTURE AutoGL

Figure 9 : A shallow water analysis of Tokyo bay for
environmental assessment

— Traffics simulation

Figure 9 shows a screen image of the editors and the
viewers specialized for an environmental simulation of
lakes and coastal regions by Bunya and Yoshimura, et.
al (2005). Using this graphical editor, coastal line data
from GIS (Geographical Information System) database
can be imported, edited and simplified for the analysis
purpose. A finite element analysis is performed to solve
the shallow water equation of the problem. Animation of
the analysis results, such as contour and height plot, as
well as particle plot can be generated.

Figure 10 shows traffic simulator based on multi-agent
techniques, called MATES (Multi-Agent based Traffic
and Environment Simulator) by Yoshimura (2005). It is
written in C++. The simulation is performed to assess
extension of LRT (Light Rail Transit) lines in Okayama

117

/00 4V I N W I Y
/i ': i LI_FJ—f-jJ,’/%LF_%____\L
Iy i_‘L. . \\\i
L\.If'i;? T j—f\)
=
VR 5 11 o
e o / A~
| —:—uL‘_‘”_f“‘/gfi}L
e T
T AT Ll
n "‘H[jl i / I\;f_’; |

Time: 003615000[ns]

Figure 10 : Traffic simulation of Okayama

city, Japan.

Figure 11 shows the results of an FDM-based CFD anal-
ysis of the heat island problem of Tokyo in Japan, de-
veloped in our 21* Century COE Program (Murakami
laboratory). The upper left side picture shows a screen
shot of the viewer specialized for the problem and simu-
lation codes. It is written in Fortran77. Using the viewer,
GIS data of land usage and building information can be
superposed into CFD analysis results to show their co-

118 Copyright (©) 2006 Tech Science Press

CMES, vol.11, no.3, pp.111-120, 2006

Pans|

Pansl

Figure 11 : A meteorological analysis over Tokyo for heat island problems

relation. The 2nd picture shows land and building infor-
mation. The 3rd picture shows temperature distribution.
The 4th picture shows velocity distribution of airflow.

Figure 12 shows an example of a 2-D finite element
post-processor developed in our 21* Century COE Pro-
gram (Noguchi laboratory), as a post-processing compo-
nent of our finite element development and benchmark-
ing framework. It is written in Fortran90. It took just a
few days to develop. The framework also contains mesh
generation components, benchmark verification compo-
nents and interface to ABAQUS.

The examples, shown in Figure 13 and 14, are performed
by Takahashi, et. al (2006). These simulation results

are based on MD and dislocation dynamics, respectively.
They are tools to enable a multi-scale simulation of ma-
terial embrittlement by neutron irradiation damage.

S Summary

ADVENTURE AutoGL library is introduced. Its capa-
bilities and supported platforms are explained, followed
by its applications to a variety of numerical simulations.

Acknowledgement: This work was financially sup-
ported, initially by The JSPS “Research for the Future”
program of “Computational Science and Engineering”,
then followed by The 21* Century COE Program, ‘Sys-

ADVENTURE AutoGL

mode
Other

+ Translate
+ Rotate_direction

« rotate_Up_vector

«w Scale

« LINE
< LINE + BOX
+ BOX

MOT DISPLAY
DEFORMATION
~ LINE

+ LINE + BOX
« BOX

« NOT DISPLAY
I CONTOUR

MINRARNGE|0.000000
WaXRANGE|S.000000

DRAW
PRINT
QuIT

Figure 12 : 2-D post-processor in a finite elements
benchmark framework

Time = 2,755087e-12 (sec)

Figure 13 : Molecular dynamics

tem Design: Paradigm Shift from Intelligence to Life’, of
the Ministry of Education, Science and Culture of Japan.
Also, special thanks to ‘hard-core’ AutoGL users, includ-
ing Prof. Murakami, Prof. Noguchi and Mr. Tanaka in
Keio Univ., Prof. Kikuchi, Prof. Wada and Dr. Takahashi
in Tokyo Univ. of Science, Prof. Kanayama, Prof. Sh-
ioya and Dr. Ogino in Kyushu Univ., Prof. Yoshimura,
Prof. Soneda, Dr. Yamada, Dr. Bunya, Mr. Fujii and Mr.

119

Figure 14 : Dislocation dynamics

Nakama in Univ. of Tokyo, Prof. Okada in Kagoshima
Univ., Prof. Miyamura in Nippon Univ., Prof. Mimura in
Tsuruoka Univ., Prof. Nakabayashi in Toyo Univ., Prof.
Ishihara in Kyushu Institute of Technology, and their lab-
oratory members, as well as ADVENTURE community
members.

References

Bunya, S.; Westerink, J. J. and Yoshimura, S. (2005):
Discontinuous Boundary Implementation for the Shal-
low Water Equations. Int. J. Numer. Meth. Fluids, Vol.
47, pp. 1451-1468.

Han, Z. D. and Atluri, S. N. (2004): Meshless Lo-
cal Petrov-Galerkin (MLPG) approaches for solving 3D
Problems in elasto-statics. CMES: Computer Modeling
in Engineering and Sciences, Vol. 6, pp. 169-188.
Okada, H.; Liu, C. T.; Ninomiya, T.; Fukui, Y. and
Kumazawa, N. (2004): Analysis of Particulate Com-
posite Materials Using an Element Overlay Technique.
CMES: Computer Modeling in Engineering and Sci-
ences, Vol. 6, pp. 333-348.

Ogino, M.; Shioya, R.; Kawai, H. and Yoshimura, S.
(2005): Seismic Response Analysis of Nuclear Pressure
Vessel Model with ADVENTRUE System on the Earth
Simulator. Journal of The Earth Simulator, Vol.2, pp.41-

120 Copyright (©) 2006 Tech Science Press

54.

Sladek, J. ; Sladek, V. and Atluri, S. N. (2004): Mesh-
less Local Petrov-Galerkin Method in Anisotropic Elas-
ticity. CMES: Computer Modeling in Engineering and
Sciences, Vol. 6, pp. 477-490.

Takahashi, A.; Soneda, N.; Kikuchi, M. (2006): Com-
puter Simulation of Microstructure Evolution of Fe-Cu
Alloy during Thermal Ageing. Key Engineering Materi-
als, Vol. 306-308, pp.917-922.

Yoshimura, S. (2005): MATES: Multi-Agent based
Traffic and Environment Simulator — Theory, Implemen-
tation and Practical Application. CMES: Computer Mod-
eling in Engineering and Sciences, Vol.11, No.1, pp.17-
26.

ADVENTURE home page,

http://adventure.q.t.u-tokyo.ac.jp/

GeoFEM home page, http://geofem.tokyo.rist.or.jp/

VTK home page, http://www.vtk.org/

OpenDX home page, http://www.opendx.org/

CMES, vol.11, no.3, pp.111-120, 2006

