
Copyright c© 2006 Tech Science Press CMES, vol.11, no.3, pp.103-110, 2006

Plate Bending Analysis by using a Modified Plate Theory

Y. Suetake 1

Abstract: Since Reissner and Mindlin proposed their
classical thick plate theories, many authors have pre-
sented refined theories including transverse shear defor-
mation. Most of those plate theories have tended to use
higher order power series for displacements and stresses
along the thickness in order to achieve the higher accu-
racy. However, they have not carefully noticed lateral
load effect. In this paper, we pay attention to constitution
of the lateral loads: a body force and upper and lower sur-
face tractions. Especially we formulate a modified theory
for plate bending, in which the effect of a body force is
distinguished from that of surface tractions. The present
plate theory includes not only transverse shear deforma-
tion but also transverse normal stress effect. In this paper,
our attention is focused on bending moment behavior of
plates.

keyword: Thick plate theory, Transverse shear defor-
mation, Load effect, Transverse normal stress, Body
force.

1 Introduction

Since Reissner (1945) and Mindlin (1951) proposed their
classical thick plate theories, many authors have pre-
sented refined theories including transverse shear defor-
mation. As well-known the Reissner’s theory (1945) is
an assumed-stress theory and the Mindlin’s theory (1951)
an assumed-displacement one.

In the Reissner’s theory, a parabolic distribution of trans-
verse shear stresses is assumed and we can satisfy the
shear-free condition on the upper and lower surfaces of
plates. In addition a transverse normal stress is also in-
corporated in the theory. A cubic distributionof the trans-
verse normal stress is assumed, in which only an upper
surface traction is considered. Discussion of strains of
plates is supplemented in Reissner (1947).

In the Mindlin’s theory, linear distributions of in-plane
displacements and a constant deflection are assumed and,
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therefore, the transverse shear stresses distribute con-
stantly along the thickness of plates. This apparently
contradicts the shear-free condition on the plate surfaces.
In order to compensate the contradiction, Mindlin in-
troduced a correction parameter for the transverse shear
stresses. In this theory, the transverse normal stress is ne-
glected and difference between the upper and lower sur-
face tractions is adopted as a lateral load.

It is well-known that the above classical theories coincide
when the transverse normal stress is neglected and the
shear correction parameter is 5/6. Rational determination
of the correction parameter, however, is not presented.
In some cases we cannot obtain accurate solutions when
the parameter is 5/6. The solutions depend on not only
the shear correction parameter but also constitutionof the
lateral loads.

Many high order theories have been presented in order
to obtain more accurate solutions of the plate bending.
Levinson (1980) and Reddy (1984) assume a cubic distri-
bution of in-plane displacements for thick plates. Reiss-
ner (1975) and Rehfield (1982 and 1984) consider de-
flection change along the thickness of plates. Lo, Chris-
tensen, and Wu (1977a, 1977b, and 1978) formulate a
high-order theory of plates which includes both in-plane
and out-of-plane modes of deformation introducing 11
unknown parameters.

The above plate theories are assumed-displacement ones.
Alternative theories, which are assumed-stress theories,
are also important. Ambartsumyan (1975) presents an
assumed-stress high-order plate theory, in which both the
transverse shear stresses and the transverse normal stress
is incorporated. Voyiadjis and Baluch (1981) consider
the transverse normal strain in addition to the transverse
stresses. Reissner (1983) also formulate an assumed-
stress high-order plate theory.

Hirashima and Muramatsu (1980), and Hirashima and
Negishi (1983 1st and 2nd) establish a generalized high-
order plate theory that includes the above theories as par-
ticular ones. Hirashima and Negishi (1983 1st) also dis-
cuss the accuracy of the plate theories in detail. Krenk
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(1981) employs Legendre polynomials for representing
the distribution of displacements and stresses along the
thickness. Green and Naghdi (1972) also present a multi-
director approach for plates and shells, which surpasses
the classical theories. Recently, many sophisticated nu-
merical approaches are applied to the analysis of the plate
bending, for example, Long and Atluri (2002), and Qian,
Batra, and Chen (2003).

In general, the higher the order of the theories is, the
higher the accuracy of those is. However, the concise-
ness of the theories has been lost. On the other hand,
the importance of the lateral load effect is not noticed in
the above high-order plate theories. The lateral load of
plates consists of the upper and lower surface tractions
and the body force. In the above theories the body force
is not considered and its effect on plate bending is not
separated from that of the surface tractions.

In this paper, we pay attention to the constitution of the
lateral loads as Suetake and Tomoda (2004) and Sue-
take (2005), in which a modified bending theory of thick
plates is formulated. In the modified theory employed
here, the body force is separated from the surface trac-
tions. The present plate theory includes not only trans-
verse shear deformation but also transverse normal stress
effect. The present modified theory can be a simple
means of comparison for numerical analyses. In this pa-
per, our attention is focused on bending moment behavior
of plates and we make sure that the present modified the-
ory gives us excellent results, even though it is as simple
as the classical theory.

2 Modified Theory

In this paper a modified bending theory of plates is pre-
sented by using the Levinson-Reddy type displacement
field [Levinson (1980) and Reddy (1984)]. We pay atten-
tion to the constitution of the lateral loads through con-
sideration of the transverse normal stress. Consequently
we can treat with the surface tractions and the body force
separately.

2.1 Displacement-strain relation

Levinson (1980) and Reddy (1984) assume the 3rd-order
displacement field in order to represent distortion of a
normal to the mid-surface. The displacement field as-

sumed here is given by

U = −ψxz− 4
3t2 ϕxz3 ; ϕx ≡ ∂w

∂x −ψx

V = −ψyz− 4
3t2 ϕyz3 ; ϕy ≡ ∂w

∂y −ψy

W = w

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (1)

where x and y are in-plane coordinates, z is a coordinate
normal to the mid-surface of plates, t is a thickness of
plates, ψx and ψy are deflection angles, and w is a de-
flection of plates. In Eq. (1), if we neglect the 3rd-
order terms, we have the Mindlin type displacement field
[Mindlin (1951)]. From the displacement field (1), we
obtain the following strain distribution:

i) in-plane strains

εx = −∂ψx
∂x z− 4

3t2
∂ϕx
∂x z3

εy = −∂ψy

∂y z− 4
3t2

∂ϕy

∂y z3

γxy = −( ∂ψx
∂y + ∂ψy

∂x )z− 4
3t2 (

∂ϕx
∂y + ∂ϕy

∂x )z3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (2)

ii) transverse shear strains

γxz = ϕx(1− 4
t2 z2) , γyz = ϕy(1− 4

t2 z2). (3)

Note that Eq.(3) satisfies the shear-free condition on the
upper and lower surfaces of plates.

2.2 Constitutive equation

Since we treat with isotropic elastic plates here, we em-
ploy the Hooke’s law as a constitutive equation. Elim-
inating the transverse normal strain εz from the 3-D
Hooke’s law, we obtain the following relation:

σx = E
1−ν2 (εx +νεy)+ ν

1−νσz

σy = E
1−ν2 (νεx +εy)+ ν

1−νσz

τxy = Gγxy ; G ≡ E
2(1+ν)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (4)

and

τxz = Gγxz , τyz = Gγyz, (5)

where E is Young’s modulus and ν is Poisson’s ratio.
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Substitution of Eqs. (2) and (3) into Eqs. (4) and (5)
gives us

σx = − E
1−ν2{( ∂ψx

∂x +ν ∂ψy

∂y )z

+ 4
3t2 (

∂ϕx
∂x +ν ∂ϕy

∂y )z3}+ ν
1−νσz

σy = − E
1−ν2 {(ν ∂ψx

∂x + ∂ψy

∂y )z

+ 4
3t2 (ν ∂ϕx

∂x + ∂ϕy

∂y )z3}+ ν
1−νσz

τxy = −G{( ∂ψx
∂y + ∂ψy

∂x )z+ 4
3t2 (

∂ϕx
∂y + ∂ϕy

∂x )z3}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6)

and

τxz = Gϕx(1− 4
t2 z2) , τyz = Gϕy(1− 4

t2 z2). (7)

Equation (7) is the same as the shear distribution in the
Reissner’s theory [Reissner (1945)]. In the Mindlin’s the-
ory [Mindlin (1951)], the 2nd- and 3rd-order terms are
neglected and the effect of the transverse normal stress is
not incorporated.

2.3 Equilibrium condition

Linear equilibrium conditions for 3-D bodies are given
by

∂σx
∂x + ∂τxy

∂y + ∂τxz
∂z +X = 0

∂τxy

∂x + ∂σy

∂y + ∂τyz

∂z +Y = 0

∂τxz
∂x + ∂τyz

∂y + ∂σz
∂z +Z = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (8)

where X , Y , and Z are body forces and, in this paper, we
consider only Z, that is, we set X = Y = 0.

By using the 3rd equilibrium condition in Eqs. (8), we
can determine the distribution of σz. Before doing that,
we should pay attention to the constitution of the lateral
loads. The lateral load of a plate consists of the body
force Z = p0(x,y)

/
t and the upper and lower surface trac-

tions, p1(x,y) and p2(x,y), as shown in Fig.1. Therefore
we have the following traction boundary conditions:

σz(x,y,− t
2
) = −p1 , σz(x,y,

t
2
) = p2. (9)

Substituting Eq. (7) into the 3rd of Eq. (8) and integrat-

x
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O

Z=p
0
(x,y)/t

p
1
(x,y)

p
2
(x,y)

Figure 1 : Lateral Load Constitution of Plate

ing it with respect to z, in view of Eq. (10), we have

σz =
Gt
3

(∇2w− ∂ψx

∂x
− ∂ψy

∂y
)(1− 3

t
z+

4
t3 z3)

+
p0

2
(1− 2

t
z)+ p2. (10)

When we apply the traction boundary condition (9) to
Eq.(10), we obtain

∂ψx

∂x
+

∂ψy

∂y
= ∇2w+

3
2Gt

p ; p ≡ p0 + p1 + p2. (11)

Consequently we obtain the distribution of σz as

σz = − p
2
(1− 3

t
z+

4
t3 z3)+

p0

2
(1− 2

t
z)+ p2. (12)

Integrating the 1st and 2nd of Eq. (8) with respect to z,
we obtain the ordinary moment equilibrium equations.

2.4 Governing equation

Integration of Eqs.(6) and (7) with respect to z, in view of
Eq. (12), gives us the following moment and shear force
expressions:

Mx = −D{4
5
(

∂ψx

∂x
+ν

∂ψy

∂y
)+

1
5
(

∂2w
∂x2 +ν

∂2w
∂y2 )}

+
νt2

60(1−ν)
{p0 +6(p1 + p2)}, (13)

My = −D{4
5
(ν

∂ψx

∂x
+

∂ψy

∂y
)+

1
5
(ν

∂2w
∂x2 +

∂2w
∂y2 )}

+
νt2

60(1−ν)
{p0 +6(p1 + p2)}, (14)
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Mxy = −D
2

(1−ν){4
5
(

∂ψx

∂y
+

∂ψy

∂x
)+

2
5

∂2w
∂x∂y

}, (15)

and

Qx =
2
3

Gt(
∂w
∂x

−ψx) , Qy =
2
3

Gt(
∂w
∂y

−ψy), (16)

where D is the bending rigidity of plates: D ≡
Et3

/
12(1−ν2). Substituting Eqs. (13) to (16) into the

ordinary moment equilibrium equations, we have

D

{
4
5
(

∂2ψx

∂x2 +
1−ν

2
∂2ψx

∂y2 +
1+ν

2
∂2ψy

∂x∂y
)+

1
5

∂
∂x

(∇2w)
}

+
2
3

Gt(
∂w
∂x

−ψx)− νt2

60(1−ν)

{
∂p0

∂x
+6(

∂p1

∂x
+

∂p2

∂x
)
}

= 0, (17)

and

D

{
4
5
(

∂2ψy

∂y2 +
1−ν

2
∂2ψy

∂x2 +
1+ν

2
∂2ψx

∂x∂y
)+

1
5

∂
∂y

(∇2w)
}

+
2
3

Gt(
∂w
∂y

−ψy)− νt2

60(1−ν)

{
∂p0

∂y
+6(

∂p1

∂y
+

∂p2

∂y
)
}

= 0. (18)

Equations (11), (17), and (18) are the present governing
equations for the plate bending. We can rewrite Eqs. (17)
and (18), in view of Eq.(11), as

(∇2 − 10
t2 )(

∂ψx

∂y
− ∂ψy

∂x
) = 0, (19)

∇4w =
1
D

[p0 + p1 + p2

− t2

6(1−ν)
∇2

{
12−ν

10
p0 +

3
5
(2−ν)(p1 + p2)

}]
.(20)

If we assume that ∂ψx
/

∂y = ∂ψy
/

∂x, Eq. (19) can be sat-
isfied a priori. In that case, we can derive the governing
equations for ψx and ψy from Eqs. (11) and (17) to (19):

∇4ψx =
1
D

∂
∂x

[p0 + p1 + p2

+
t2

60(1−ν)
∇2 {(3+ν)p0 +3(1+2ν)(p1 + p2)}

]
,

(21)

∇4ψy =
1
D

∂
∂y

[p0 + p1 + p2

+
t2

60(1−ν)
∇2 {(3+ν)p0 +3(1+2ν)(p1 + p2)}

]
.

(22)

3 Fourier Analysis

For numerical calculations we employ here the Fourier
series analysis. In this section we explain the Fourier
analyses of plates and 3-D bodies. Two plate analyses
are presented here; one is based on the present theory
and the other on the classical one. We can also employ
alternative approaches for the analyses.

3.1 Plate analysis based on the present theory

Elastic plates adopted here as numerical examples are
simply supported rectangular plates subjected to lateral
loads. The coordinates of the plate model is shown in
Fig.2.

The deflection and the deflection angles are expressed by
the following trigonometric double series here:

w = ∑
n

∑
m

Wmn sin mπx
a sin nπy

b

ψx = ∑
n

∑
m

Φmn cos mπx
a sin nπy

b

ψy = ∑
n

∑
m

Ψmn sin mπx
a cos nπy

b

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (23)

Note that Eqs. (23) satisfy the boundary condition of
simply supported plates. In addition, we expand the load
functions into the following Fourier double series:

pi = ∑
n

∑
m

P
(i)
mn sin

mπx
a

sin
nπy
b

;

P
(i)
mn =

4
ab

Z b

0

Z a

0
pi(x,y) sin

mπx
a

sin
nπy

b
dxdy. (24)

x

y
z

O z=-t/2

z=t/2

y=0

y=b

x=a

x=0

mid-surface

C

Figure 2 : Rectangular Plate and Coordinates
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Substituting Eqs. (23) into Eqs. (20) to (22), we can
easily determine the coefficients Wmn, Φmn, and Ψmn as

Wmn =
1

λ4
mnD

[
P

(0)
mn +P

(1)
mn +P

(2)
mn

+
λ2

mnt2

6(1−ν)

{
12−ν

10
P

(0)
mn +

3
5
(2−ν)(P

(1)
mn +P

(2)
mn)

}]
,

(25)

Φmn =
1

λ4
mnD

· mπ
a

[
P

(0)
mn +P

(1)
mn +P

(2)
mn

− λ2
mnt2

60(1−ν)

{
(3+ν)P

(0)
mn +3(1+2ν)(P

(1)
mn +P

(2)
mn)

}]
,

(26)

Ψmn =
1

λ4
mnD

· nπ
b

[
P

(0)
mn +P

(1)
mn +P

(2)
mn

− λ2
mnt2

60(1−ν)

{
(3+ν)P

(0)
mn +3(1+2ν)(P

(1)
mn +P

(2)
mn)

}]
,

(27)

where λ2
mn ≡ (mπ/a)2 +(nπ

/
b)2.

3.2 Plate analysis based on the classical theory

At this stage it is significant to review the classical plate
theories. The governing equations of the static Mindlin’s
theory [Mindlin (1951)] are as follows:

∇4w =
1
D
{1− t2

6(1−ν)κ
∇2}p, (28)

∇4ψx =
1
D

∂p
∂x

, ∇4ψy =
1
D

∂p
∂y

, (29)

where κ is the shear correction parameter. In Eq. (28), if
we

set κ = 5/3(2−ν), the static Mindlin’s theory coincides
with the Reissner’s one.

If we use the trigonometric series (23) again in the classi-
cal bending analysis of plates, the coefficients Wmn, Φmn,
and Ψmn can be determined as

Wmn =
P

(0)
mn +P

(1)
mn +P

(2)
mn

λ4
mnD

{1+
λ2

mnt2

6(1−ν)κ
}, (30)

Φmn =
1

λ4
mnD

· mπ
a

(P
(0)
mn +P

(1)
mn +P

(2)
mn), (31)

Ψmn =
1

λ4
mnD

· nπ
b

(P
(0)
mn +P

(1)
mn +P

(2)
mn). (32)

As well-known, we can calculate the bending and twist-
ing moments of plates by using the following expressions
instead of Eqs. (13) to (15):

Mx = −D(
∂ψx

∂x
+ν

∂ψy

∂y
), (33)

My = −D(ν
∂ψx

∂x
+

∂ψy

∂y
), (34)

Mxy = −D
2

(1−ν)(
∂ψx

∂y
+

∂ψy

∂x
). (35)

3.3 3-D analysis

In order to evaluate the accuracy of the present plate the-
ory, we perform a 3-D elastic analysis of the plate model.
We employ the Fourier series again for the 3-D analysis.
We explain the approach briefly in this subsection. Geo-
metrical boundary conditions of the model as a 3-D body
is given by

V (0,y, z) = V(a,y, z) = W (0,y, z)= W(a,y, z) = 0

U(x,0, z) = U(x,b, z) = W(x,0, z) = W(x,b, z) = 0

⎫⎬
⎭ ,

(36)

which corresponds to the conditions for simply supported
plates. To satisfy these conditions, we employ the follow-
ing trigonometric series

U = ∑
n

∑
m

umn(z)cos mπx
a sin nπy

b

V = ∑
n

∑
m

vmn(z) sin mπx
a cos nπy

b

W = ∑
n

∑
m

wmn(z) sin mπx
a sin nπy

b

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (37)

Traction boundary conditions employed here are

σz(x,y,− t
2
) = −p1(x,y)

σz(x,y,
t
2
) = p2(x,y) ,

τxz(x,y,± t
2
) = τyz(x,y,± t

2
) = 0. (38)

In addition, the body forces of the model are represented
by

X = Y = 0 , Z =
1
t

p0(x,y). (39)
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Substitution of Eq. (37) into the Navier’s equation, which
is a governing equation for 3-D elastic problems, yields
an ordinary differential equation system with respect to
the unknown functions umn(z), vmn(z), and wmn(z). When
we solve the differential equation system under Eqs. (38)
and (39), we can determine those three unknown func-
tions.

4 Numerical Models

As numerical examples we adopt simple plate bending
problems of a square plate. The plate model is simply
supported along the all edges. The width-thickness ratio
µ ≡ t/a is changed within the range of 0.001 ≤ µ ≤ 0.5.
Poisson’s ratio is ν = 0.3. In the Fourier analysis, we take
200×200 = 40000 terms in the double series.

A constitution of lateral loads adopted here is shown in
Fig.3. The plate model is subjected to a constant body
force and a partially distributed constant load on the up-
per surface.

The Fourier coefficients of the load functions are given
by

P
(0)
mn =

⎧⎪⎨
⎪⎩

16p0
π2(2 j−1)(2k−1) (m and n: odd)

0 (m or n: even)

, (40)

P(1)
mn =

4p1

π2mn

{
cos

mπx0

a
−cos

mπ(x0 +a∗)
a

}

×
{

cos
nπy0

b
−cos

nπ(y0 +b∗)
b

}
. (41)

x, y

z

O

Z=p
0
(x,y)/t

p
1

O

Z=p
0
/t

x0, y0

a, b

a*, b*

C

Figure 3 : Figure 3: Lateral Load Constitution

Two different constitutions of lateral loads are adopted
in the present numerical calculations. One is a sym-
metric distribution on the upper surface; the other a

non-symmetric distribution. Numerical properties of the
loads are as follows:

i) symmetric distribution

χ̂0 = 0.8 , χ̂1 = 1.25 , x0
/

a = y0
/

b = 0.3 ,

a∗/a = b∗/b = 0.4, (42)

ii) non-symmetric distribution

χ̂0 = 0.6 , χ̂1 = 40 , x0
/

a = y0
/

b = 0.2 ,

a∗/a = b∗/b = 0.1 , (43)

where the non-dimensional load parameter χ̂i is defined
by

χ̂i =
p̂ia3

µD
=

12(1−ν2)
Eµ4 p̂i ; µ =

t
a
. (44)

5 Numerical Results

In this paper, our attention is focused on bending moment
behavior of plates. In the numerical calculation, we esti-
mate the error of the present plate analysis. Results of the
3-D elastic analysis are employed as the standard values.
Classical analysis based on the Mindlin’s theory is also
performed in order to confirm the accuracy of the present
analysis.

Since we adopt the Levinson-Reddy type displacement
field, Eq.(1), it is not so easy to predict local behaviors
for the large thickness of plates. This is a further issue to
be improved.

5.1 Symmetric surface traction

In this subsection, we discuss the case of the symmetric
surface traction. As mentioned before, the plate model
is subjected to not only a constant body force but also a
partially distributed constant load on the upper surface.
In this case, the surface traction is symmetric.

Numerical results are shown in Fig.4, in which the er-
rors of the present and the classical plate analyses, ε, are
plotted against the width-thickness ratio of the model, µ.
In Fig.4, closed circles indicate the results of the present
analysis and closed triangles that of the classical analysis,
respectively.

It follows from Fig.4 that the present modified plate the-
ory approximates the 3-D analysis with high accuracy.
Especially, we should note that the error of the present



Plate Bending Analysis 109

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5

μ

ε

［%］

Present

Classical

Figure 4 : Error of Moment at Center Point (Symmetric
Model)

analysis remains quite small even in the thick plate re-
gion near µ = 0.5. On the other hand, the error of the
classical analysis increases rapidly with the increase of
the width-thickness ratio.

The excellent approximation of the deflection behavior
has already been confirmed [Suetake 2005]. The present
investigation shows the efficiency of the modified plate
theory also in the moment analysis.

5.2 Non-symmetric surface traction

The results of the non-symmetric surface traction model
are presented in this subsection. The load adopted
here consists of a constant body force and a non-
symmetrically distributed constant load on the upper sur-
face.

Numerical results of the moment error at the center point
of the model are shown in Fig.5, which is depicted in the
same manner as Fig.4. It can be seen also from Fig.5
that the present modified plate theory gives us excellent
results. In this case, however, the classical theory also
maintains practically sufficient accuracy.

6 Concluding Remarks

The following conclusions may be drawn from the
present investigation:

1) A modified plate bending theory is proposed, in which
the effect of lateral loads is carefully considered.

2) The new theory gives us excellent approximations for
moments even in thick plate region, while the classi-
cal one maintains practically sufficient accuracy within
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Figure 5 : Error of Moment at Center Point (Non-
symmetric Model)

a moderately thick plate region.

3) The constitution of the lateral loads plays a key role in
the plate bending analyses of thick plates. In particular,
when the constitution of loads is not simple, we should
use the modified theory instead of the classical one.
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