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A Quasicontinuum Method for Deformations of Carbon Nanotubes

Jong Youn Park 1, Young-Sam Cho 2, Sung Youb Kim 1, Sukky Jun 3 and Seyoung Im 1

Abstract: We present a coarse-graining computation
for deformations of CNTs (carbon nanotubes) via
QC (quasicontinuum), particularly targeting analysis of
multi-walled carbon nanotubes. Higher order triangular
elements are utilized for proper interpolation of atom po-
sitions of the CNT on the basis of QC approach. The
computing scheme enables one to differentiate between
the fully atomistic zone and the coarse-grained zone in
the framework of the multiscale computing. Several nu-
merical examples demonstrate the effectiveness and ac-
curacy of the present methodology.

keyword: Multiscale, Coarse-grained model, Carbon
nanotube, Quasicontinuum method.

1 Introduction

There has been a keen interest in deformations of carbon
nanotubes due to their various applications as mechani-
cal components and their diverse deformation-dependent
properties like electrical conductance [Tombler, Zhou,
Alexseyev, Kong, Dai, Liu, Jaynathi, Tang and Wu
(2000), Rueckes, Kim, Joselevich, Tseng, Cheung and
Liever (2000), Liu, Jiang, Johnson and Huang (2004)].
Most straightforwardly, continuum or structural mechan-
ics approach has been employed by many authors [Ar-
royo and Belytschko (2002), Jiang, Zhang, Liu, Huang,
Geubelle, Gao and Hwang (2003), Gao and Li (2003),
Jiang, Feng, Huang, Hwang and Wu (2004), Pantano,
Parks and Boyce (2004), Liu, Jiang, Johnson and Huang
(2004), Nasdala, Ernst, Lengnick and Rothert (2005)].
Among others, Arroyo and Belytschko (2002) reported
a scheme for computing atomistic-based finite defor-
mations. This provides a continuum model for curved
crystalline sheets based on the exponential Cauchy-Born
rule which extends the standard Cauchy-Born rule to the
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case of curved crystalline structures. It was success-
fully applied to nonlinear mechanical deformations of
multi-walled carbon nanotubes [Arroyo and Belytschko
(2003)]. This method actually generalizes the local qua-
sicontinuum to the case of curved crystalline structures,
but does not apply to nonlocal domains [Tadmor, Or-
tiz and Phillips (1996), Shenoy, Miller, Tadmor, Phillips
and Ortiz (1998), Knap and Ortiz (2001)]. Various mul-
tiscale methods have been proposed by many researchers
[Broughton, Abraham, Bernstein and Kaxiras (1999),
Wagner and Liu (2003), Chung, Namburu and Henz
(2004), Shen and Atluri (2005)]. In multiscale prob-
lems, coarse scales are modeled by FE(finite element), or
meshfree approximations [Wagner and Liu (2001), Atluri
and Shen (2002)].

The effectiveness of the quasicontinuum lies in the con-
current treatment of different length scales between the
local zone and the nonlocal zone for looking into the
behaviors of various defects such as voids, twins, grain
boundaries and dislocations [Tadmor, Miller, Phillips and
Ortiz (1998), Miller, Ortiz, Phillips, Shenoy and Tadmor
(1998), Rodney and Phillips (1999), Shenoy, Kukta and
Phillips (2000), Knap and Ortiz (2003), Marian, Knap
and Ortiz (2004)]. In actuality, this feature has made the
quasicontinuum method attract a substantial amount of
attention as a computational methodology for multiscale
boundary value problems in solid mechanics for the past
decade.

In the present paper, we report a computing scheme for
deformations of carbon nanotubes in the framework of
the quasicontinuum method. In a sense, it generalizes the
standard quasicontinuum method to the case of a curved
crystalline body, as it enables one to deal with the nonlo-
cal quasicontinuum as well as the local quasicontinuum
for curved structures. The key feature includes the use of
higher order interpolation functions for accurately map-
ping curved geometries, and the cluster-weighted aver-
age of the interatomic potential energy for computing the
force on the individual degrees of freedom. The outline
of the paper is as follows. In Section 2, the computational
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scheme is described, and this is followed by the numeri-
cal verifications and some examples of a large-scale com-
putation in Section 3. Finally, Section 4 concludes the
paper with some remarks.

2 Quasicontinuum (QC) for a curved crystalline
body

In this section, we discuss how to extend the standard
quasicontinuum [Knap and Ortiz (2001)] for application
to a crystalline body with curved geometry like carbon
nanotubes. We start with a brief summary of the quasi-
continuum methods.

2.1 Quasicontinuum for rectilinear crystalline struc-
tures

A total potential energy Etotal of a given system is the
summation of the individual potential energies Ei for all
atoms in a given system :

Etotal =
N

∑
i=1

Ei (1)

where N is the total number of the atoms in a system.
Tadmor et al. (1996) and Knap and Ortiz (2001) sug-
gested a coarse-grained approximation Eh

total of the en-
ergy Etotal according to the node-based summation rule
as:

Etotal ≈ Eh
total =

NR

∑
α=1

wαEα (2)

where NR indicates a total number of the representative
atoms, and wα and Eαthe weight function and the poten-
tial energy of the α-th representative atom. The mapping
from the Lagrangian variable Xi to the current position xi

for the i-th atom is approximated byxh
i , which is written

in the form of interpolation:

xh
i =

NR

∑
α=1

Sα(Xi)xα (3)

where Sα(Xi)indicates the linear shape function associ-
ated with the α-th representative atom, and xα the cur-
rent position or the nodal value of the α-th representative
atom. Assuming the interpolation of the energy distribu-
tion via the same function Sα(Xi), we have

Eh
total =

N

∑
i=1

NR

∑
α=1

Sα(Xi)Eα (4)

Comparison of Eq. 2 and Eq. 4 yields the expression for
the weight function

wα =
N

∑
i=1

Sα(Xi) (5)

Knap and Ortiz (2001) pointed out that the preceding
node-based summation rules are not free from the zero
energy deformation modes, which may be prevented by
taking a sufficient number of sampling points. In this
context, Knap and Ortiz (2001) generalized this node-
based summation rule to obtain the so-called cluster-
based summation rule, in which the shape function is
sampled, not at nodal points, but over neighborhoods,
called clusters, of the representative atoms. In this
cluster-based method, each cluster plays the role of a
node in the node-base rules, and so it is contemplated as
a representative crystallite over which the shape function
values are sampled for interpolation. A coarse-grained
energy according to the cluster-based rule is given as

Eh
total =

NR

∑
β=1

(wβ)cluster(Eβ)cluster

=
NR

∑
β=1

(wβ)cluster

[
∑

i∈Clusterβ
Ei

]

=
NR

∑
β=1

(wβ)cluster

[
∑

i∈Clusterβ

NR

∑
α=1

Sα(Xi)Eα

]
(6)

where (wβ)cluster indicates the weight of the cluster sum-
mation rule, and the (Eβ)cluster represents the summation
of all atoms in the β-th cluster. From Eq. 4 and Eq. 6, it
follows that

NR

∑
α=1

(wα)cluster ∑
i∈Clusterα

Sβ(Xi) = wβ (7)

where wβ is the weight function of Eq. 5 according to the
node-based rule. The solution of a system of linear Eq.
7 in (wα)cluster is not that time consuming as the coeffi-
cients are given as a sparse matrix due to the localization
property of the shape function Sβ(Xi). Once (wα)cluster

is calculated, it is straightforward to compute the internal
force by differentiating the coarse-grained potential en-
ergy of Eq. 6, so that the equilibrium configuration may
be obtained.
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2.2 Extension to a curved crystalline structure

As a first step towards extending this cluster-based sum-
mation rule to the case of a curved crystalline shell struc-
ture such as a carbon nanotube, we consider the for-
mation of a carbon nanotube from a graphene lattice
sheet (see Fig. 1). We take this flat graphene sheet for
the parental domain of the carbon nanotube under con-
sideration. Limiting ourselves to the local quasicontin-
uum, deformations of all individual atoms obey to the
Cauchy-Born hypothesis (speaking strictly the exponen-
tial Cauchy-Born rule due to the curvature of the car-
bon nanotube), and the locally homogeneous deforma-
tion prevails. This implies that for the local quasicontin-
uum the displacement of each atom is given by the defor-
mation of the continuum-like graphene sheet, on which
each atom is embedded. To be more specific, any fic-
titious material point which does not coincide with the
atom location in the parental domain, say a point A in
Fig. 1, undergoes the same mapping as the surrounding
material points in the parental domain, say the points B,
C, D, E, F, G in Fig. 1, as long as deformations obey
to the exponential Cauchy-Born rule. This observation
makes it possible to treat the graphene sheet like a con-
tinuum shell, and so any points on the graphene sheet,
whether or not they coincide with the atom location, may
be used as nodal points for interpolation of the current
position vectors.

Let the Lagrangian variable Xi denote the position vec-
tor of the i-th atom in the parental configuration or the
flat graphene sheet of a carbon nanotube. Note that the
current configuration cannot be written as in Eq. 3 as the
linear shape function Sα(Xi) fails to depict curved ge-
ometries. To represent a curved shell, we need at least
quadratic interpolation for the current position.

 

Figure 1 : Illustration of parental domain and FE mesh
on graphene (A-G are node).

The aforementioned observation now prompts us to in-
troduce the higher order interpolations to deal with a
curved geometry of carbon nanotubes. From the view of
adaptability, triangular elements with the Hermite type
interpolation or the quadratic or cubic Lagrange shape
function are a good candidate. For convenience of mod-
eling, the nodal points on the vertices of a triangular el-
ement are chosen such that they coincide with the atom
positions on the graphene. Then the mid nodes may not
fall on an atom site. However, this does not matter at all,
from the argument of the preceding paragraph, as long
as the local quasicontinuum is concerned. We call these
nodes atomless nodes hereafter to distinguish them from
the atom nodes, of which the locations coincide with
atom sites on the graphene.

For clarity we denote by vα the current position vector of
a nodal point, which may be an atom node or an atomless
node on the graphene sheet, and we represent the current
configuration, which is curved in nature, by the following
higher order interpolation:

xh
i =

Nv

∑
α=1

Gα(Xi)vα (8)

where Nv is the total number of the nodal points for dis-
placement or position interpolation, and Gα is a higher
order shape function. To represent a curved geometry
properly, we require Gα to be a Hermite shape func-
tion, or a quadratic or cubic Lagrangian shape function.
Note that the local quasicontinuumallows atomless nodal
points, which occur unavoidably in applying interpola-
tion of order higher than the linear one.

Now we consider how to sum up the interatomic potential
energies over the entire domain. Suppose a mesh config-
uration changes from a coarse one to fine one depending
on the field gradient on the local region, finally to fully
atomistic or molecular mechanics model on the nonlo-
cal zone. In the nonlocal region, the connection of the
locations of the neighboring atoms leads to linear trian-
gular elements. Accordingly, the linear interpolation is a
natural choice for the energy interpolation from the view
of consistent refinement from a coarse to fine mesh. In
addition, for the higher order elements, it is troublesome
to handle the atomless nodes, which are inevitable in the
higher order interpolation of the energy. It is awkward to
link a potential energy to an atomless node for interpola-
tion, though atomless nodes are allowable in interpolat-
ing the position vectors due to the locally homogeneous



64 Copyright c© 2006 Tech Science Press CMES, vol.11, no.2, pp.61-72, 2006

deformations. Conclusively, we choose the linear shape
function (3) to interpolate the potential energy

Eh
i =

NR

∑
α=1

Sα(Xi)Eα (9)

Then, the total potential energy based on the cluster-
based summation rule is given by Eq. 6 with the weight
(wβ)cluster being given by Eq. 7. Noting that the cluster
potential energy (Eβ)cluster is written as

(Eβ)cluster = ∑
i∈Clusterβ

Ei (10)

and that each atom’s contribution Ei depends on the cur-
rent configuration, given by Eq. 8, we see that the result-
ing expression for the potential energy depends on the
variables vα (α = 1 ∼ Nv).

The equilibrium equation is obtained by differentiating
or minimizing, with respect to vα, the total potential en-
ergy. For a multi-walled carbon nanotube, the total po-
tential energy comprises the chemical bonding potential
energy on each plane of the nanotube sheets and the non-
bonding potential energy between two neighboring walls
of the multi-walled carbon nanotube. The potential en-
ergy from the applied traction should be added to these if
there is a traction imposed on the boundary.

Most straightforward implementation of the aforemen-
tioned scheme is as follows. Firstly, we construct a qua-
sicontinuum mesh composed of higher order triangular
elements for the position vector interpolation, given by
Eq. 8, with the vertex nodes being made atom nodes.
Next, we remove all mid nodes in these higher order el-
ements, and use the resulting linear triangular element
for the potential energy representation Eq. 9. Minimiz-
ing the total potential energy or taking its gradient with
respect to the current position vector vα, we can obtain
force equilibrium equation.

3 Numerical examples

In this section, we apply the scheme discussed in the
previous section for various deformations of carbon nan-
otubes to check the accuracy. Firstly, we test the cases
of simple deformations, such as bending and torsion, for
which comparison is made with the results from the fully
atomistic simulation or the molecular mechanics simula-
tion.

 

 

 

F 

Figure 2 : Bending simulation for DWCNT (a) strain
energy per atom under bending load (Model 4), (b) QC
models for outer tube and inner tube (Model 4) and (c)
cross section of deformed configuration at each bending
angle (Model 4). The black indicates fully atomistic zone
and the gray QC zone.

We choose Tersoff-Brenner potential [Tersoff (1988),
Brenner (1990)] for the interatomic bonded interac-
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Table 1 : The total number of degrees of freedom and percentile errors in strain energy at each bending angles for
four considered QC models. The angles described at the first column mean the bending angles.

Model 1 Model 2 Model 3 Model 4
DOF 10080 12870 13950 15030
Error at 45 ˚ 1.72 1.37 0.58 0.05
Error at 90 ˚ 2.97 2.35 0.97 0.08

Table 2 : The total number of degrees of freedom and percentile errors in strain energy for four considered QC
models which have uniform FE mesh. The angles described at the first column mean the twisting angles.

Model 1 Model 2 Model 3 Model 4
DOF 6372 8001 10008 11988
Error at 49 ˚ 3.63 3.64 2.27 0.08
Error at 77 ˚ 5.34 4.92 3.11 0.13
Error at 120 ˚ 7.51 6.27 3.78 0.17
Error at 240 ˚ 17.55 13.30 8.08 0.48
Error at 360 ˚ 33.42 25.59 16.87 1.06

tion on the individual surface of carbon nanotubes, and
Lennard-Johns type function [Girifalco, Hodak and Lee
(2000)] to represent the nonbonded interaction between
two neighboring walls. The role of this nonbonded po-
tential is very important when rippling or buckling occurs
such that the tube wall may come into van der Waal’s
contact [Arroyo and Belytschko (2004)]. For minimiza-
tion, LBFGS (Limited-memory BFGS) [Nocedal (1980),
Liu and Nocedal (1989)], which is known as an efficient
quasi-Newton method, is adopted.

3.1 Bending of a double-walled CNT (DWCNT)

Our first numerical example is the bending of a 12.6 nm
long DWCNT, in which van der Waal’s interactions are
critical. The chiralities are (10,10) for the inner layer and
(15,15) for the outer layer, and the bending is imposed by
rotating each end in the opposite directions. The number
of degrees of freedom in QC models ranges from 10080
(Model 1) to 15030 (Model 4) while the total number
of degrees of freedom in the fully atomistic or molecular
mechanics (MM) model is 15150 (See Table 1 for detail).

Fig. 2(a) and 2(c) show the strain energies versus bend-
ing angle, and deformed configurations for three bending
angles 0 ˚ , 20 ˚ and 20.5 ˚ for the QC model like Fig.
2(b) with the number of degrees of freedom 15030. FE
mesh and atomistic zone of the half model for inner and
outer tubes are given in Fig. 2(b).

In Fig. 2(c), the black indicates the fully atomistic zone

wherein every individual atom is included while the gray
the QC zone wherein the finite element interpolation is
taken. Unless mentioned otherwise, all figures are col-
ored in this way. A kink occurs at the center when the
bending angle reaches 20.5 ˚ , which is indicated by an
abrupt protrusion on the energy curve in Fig. 2(a). The
percentile errors of the total energy relative to the result
from the MM model are tabulated for each of the QC
models in Table 1. In case of error in deformation, the
QC result atomic distance between the two walls at the
center after kink (at bending angle 20.5 ˚ ) differs only
0.28% from the MM result, even for the coarsest model,
which is negligibly small just like the errors in energy.
As far as interpolation order is concerned, it turns out
that the cubic Hermite shape function and the 3rd order
Lagrange shape function lead to the same degree of ac-
curacy in the numerical results.

3.2 Torsion of a single-walled CNT (SWCNT)

In this section, we take a torsion example for 25 nm long
(10,10) armchair CNT and it is twisted by imposing ro-
tations in the opposite directions at each end. The max-
imum angle of twist is 360 ˚ , which amounts to torsion
of 1.433[degree/Å]. Four different models depending on
the refinement have a total number of degrees of free-
dom 6372, 8001, 10008, 11988, respectively, while MM
model has 12060. Note that the maximum number of de-
grees of freedom of the present model does not exceed
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Figure 3 : Torsional simulation for SWCNT (a) Strain
energy per atom under twisting load (Model 4) and (b)
deformed configuration at each twisting angle (Model 4).

the number of degrees of freedom of the fully atomistic
model.

Fig. 3(a) shows the strain energy versus twisting angle,
and it shows that the total strain energy is in good agree-
ment when compared with the result from MM simula-
tion. Fig. 3(b) shows the deformed configurations cor-
responding to four values of the twist angles 0 ˚ , 77 ˚ ,
204 ˚ , 360 ˚ . The onset of the inhomogeneous deforma-
tion occurs at the twist angle of 49 ˚ , and it propagates
into other area as deformation proceeds. The two walls
begin to get in contact with each other at the twist angle
of 72 ˚ . A noticeable difference from the bending case is
that the location of the onset of the inhomogeneous de-

 

Figure 4 : Deformed configuration in QC model which
retains refined mesh along the helical zone of deforma-
tion localization (Model 4). The black indicates fully
atomistic zone and the gray QC zone.

formation is not predictable in torsion, while it always
occurs at the center in bending.

If the refinement is not enough to capture the local-
ized inhomogeneous deformation, the accuracy of QC
deteriorates. This is why the results from QC deviate
greatly from MM result, as shown in Table 2. Therefore,
for more accurate analysis of twisting, we may need a
scheme of adaptive meshing to control the mesh refine-
ment according to the severity of deformations. We do
not try this exactly, but we investigate a possible efficacy
of adaptive meshing by constructing the mesh in the fol-
lowing way. From the preceding analysis we pinpoint
the zone of localization, which is along the helical direc-
tion. Initial mesh is refined along this localization zone,
as shown in Fig. 4. Four different models depending on
the refinement have a total number of degrees of freedom
5850, 6219, 7587, 8208, respectively. Although these
QC models have a total number of degrees of freedom
near the number of degree of freedom for the previous
coarse models which have uniform FE mesh, errors in
energy remarkably decrease as shown in Table 3.

3.3 Bending of a perfect and a defective 5-walled CNT

In this section, we simulate bending of 5-walled carbon
nanotubes with their length 28.13 nm. The chiralities
from the inner wall to the outer wall are (9,0), (18,0),
(27,0), (36,0), (45,0). We consider three cases. The first
is a perfect 5-walled CNT (see Fig. 5(a)), and the second
is the case wherein the inner three walls are dissected into
two at the center and each of the end surfaces generated
from the cut is capped with the half of fullerene. The
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Table 3 : The total number of degrees of freedom and percentile errors in strain energy for four considered QC
models which retain refined mesh along the helical zone of deformation localization. The angles described at the
first column mean the twisting angles.

Model 1 Model 2 Model 3 Model 4
DOF 5850 6219 7587 8208
Error at 49 ˚ 1.92 1.90 1.73 1.64
Error at 77 ˚ 3.35 3.37 2.49 2.38
Error at 120 ˚ 2.91 2.87 2.03 1.93
Error at 240 ˚ 3.95 3.83 2.42 2.28
Error at 360 ˚ 6.62 6.43 4.82 4.43

 

Figure 5 : Cross sectional views of QC models for bend-
ing 5WCNTs (a) perfect walls and (b,c) inner three walls
are capped with half the fullerene. The black indicates
fully atomistic zone and gray QC zone.

gap between the fullerenes at the center is 3.4 Å (see Fig.
5(b)). The third is the same as the second case except that
the distance between the two fullerene caps is now 7.6 Å
(see Fig. 5(c)). The second and the third examples are the
so-called bamboo structure, experimentally observed by
Cumings and Zettl (2000). Here we take a smaller diam-
eter than reported by Cumings and Zettl (2000). The total
numbers of degrees of freedom for each case is tabulated
in Table 4 together with those of the present quasicon-
tinuum models. Bending is imposed on each end of the
carbon nanotubes by prescribing rotation in the opposite
directions up to 45 ˚ of the total bending angle.

In the first model, smooth bending is progressed until
two kinks take place around the center at the bending an-
gle 14.4 ˚ , and they take the configuration as shown in
Fig. 6(a) at the bending angle 15.3 ˚ . Next a pair of the

buckles or ripples occur between two neighboring kinks
(see Fig. 6(d)) at the bending angle 27.0 ˚ . This is in
contrast with the result from the reference [Arroyo and
Belytschko (2004)], which reports a single initial kink.
The reference [Arroyo and Belytschko (2004)] simulates
a case of geometry similar to the structural deformation
observed by Iijima et al. (1996), and the diameter of this
nanotube is about two times larger than the one in the
present example.

In the second example, which models the bamboo struc-
ture, a single kink occurs on the center at the bending
angle 7.2 ˚ , and this kink grows into the space (see Fig.
6(b)) between the two caps of the inner walls until rip-
pling or wrinkling arises due to the increasing repul-
sive steric force between the second outer wall and the
caps’ surface at the bending angle 19.8 ˚ . At 27.0 ˚ of
the bending angle, it takes the deformed configuration as
shown in Fig. 6(e). In the third model, one kink occurs
and grows into the gap space between the two caps, as in
the second model (see Fig. 6(c) and (f)). However, due
to the larger gap between the two caps than in the sec-
ond model, the kink continues to grow into the gap space
(compare Fig. 7(b) and 7(c)) until it is hampered by a
large steric force from the cap surface. As deformation
proceeds further, the additional kinks and rippling take
place.

The three-dimensional perspective view of the deformed
configurations for each of the three models are shown
in Fig. 8, where each structure shows its own deforma-
tion pattern depending on its internal structure, that is, a
uniform structure and bamboo structures with different
cap distances. As illustrated in the examples, nonbonded
interaction plays an important role in the local deforma-
tions, particularly when deformation mode like kinking
or rippling occurs.
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Table 4 : The total number of degrees of freedom for MM and QC model in bending simulation for 5WCNTs.

MM Model 1
(perfect)

QC Model 1
(perfect)

MM Model 2, 3
(capped)

QC Model 2, 3
(capped)

DOF 105300 65340 103500 69588

 

Figure 6 : Cross section of equilibrium configuration for three considered QC models at (a-c) bending angle 15.3 ˚
and (d-f) bending angle 27.0 ˚ . The black indicates fully atomistic zone and gray QC zone.

 

Figure 7 : Cross section (left) and front view (right) of equilibrium configuration for three considered QC models at
bending angle 36 ˚ . The black indicates fully atomistic zone and gray QC zone.

3.4 Cluster radius study for nonlocal formulation of
QC

In this subsection, we take an example of bending to ex-
amine the influence of the size of the cluster radius for
calculating the potential energy. For large scale simula-
tion (in next subsection), it is not efficient to calculate en-
ergy of all of atoms. Therefore, cluster-based summation
for energy is adopted. A 43.36nm long (60,0) SWCNT is
used for this simulation. One quarter of the entire domain
around the center is chosen for the fully atomistic zone

as deformation is localized around the center in bending.
The total number of atoms is 24000, which amounts to
the total number of degrees of freedom 72000. The to-
tal number of degrees of freedom in QC model is 28656,
which is about 40% of MM model. The mesh configura-
tion of QC model and the fully atomistic zone are shown
in Fig. 9(a). Bending is applied in the same way as in
the preceding subsection, and the imposed bending angle
ranges from 0 ˚ to 25 ˚ .

If the cluster radius is greater than 14.1 Å, which is ap-
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Figure 8 : Perspective view of equilibrium configuration for three considered QC models at bending angle 36 ˚ (a)
perfect 5WCNT, inner three walls are capped with half the fullerene (b) fullerene gab is 3.5 Å and (c) 7.6 Å.

proximately 10 times the bond length of graphene (1.45
Å), the boundaries of any two neighboring clusters meet
with each other over the entire domain. The size of
the cluster radius varies from 6 times to 10 times the
graphene bond-length, and the energy and deformation
are calculated for each of the different cluster radii. Fig.
9(b) shows the energy versus the bending angle, and the
maximum error at the bending angle 25 ˚ is about 6%.
This error looks not small, but in terms of the deformed
configuration, QC results are very close to MM result,
as shown in Fig. 9(c), which depicts the comparison of
the deformed configurations at the bending angle 25 ˚
between the three calculations: one from QC with the
cluster radius 8.7 Å(6 times the bond length), another
from QC with the cluster radius 14.1 Å(10times the bond
length) and the other from MM. The computing time for
QC model with the cluster radius 8.7 Åis only 28 % of
that of the MM model.

3.5 Bending of a 15-walled CNT

In this section, we perform a large scale simulation
in order to demonstrate superiority of proposed coarse-
grained scheme. A 15-walled carbon nanotube with its

length 62.54 nm and diameter 11.08 nm is used for bend-
ing simulation (see Fig. 10(a) and Fig. 10(b)). In this
simulation, entire domain is modeled by FE mesh for QC
zone like Fig. 10(a). The chiralities from the inner wall
to the outer wall are (10,10), (15,15), . . . , (80,80). This
MWCNT containing 673650 atoms has over two million
degrees of freedom. QC model used in this simulation
consists of 253908 degrees of freedom which is less than
13% of fully atomistic calculations. In this system, en-
tire domain is subdivided by QC zone. As cluster radius
is 4.5 Å, it is about 60% of maximum radius. Bending
is applied in the same way as in the preceding subsec-
tion, and the imposed bending angle ranges from 0 ˚ to
30 ˚ . At final stage for bending angle, this result reveals
three-dimensional picture of buckles. Even though the
system considered is smaller than size observed in ref-
erence [Poncharal, Wang, Ugarte and de Heer (1999)],
this deformation agrees very well with rippling structure
reported in experiment [Poncharal, Wang, Ugarte and de
Heer (1999)] and in simulation [Arroyo and Belytschko
(2004)]. Ripples shown in Fig. 10(c) are built up by
sequences of simple two buckles on top and two tilted
buckles on side (see Fig. 10(d) and 10(e)).
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Figure 9 : (a) QC model for study of cluster radius,
(b) strain energy curve during bending simulation with
different cluster radii and (c) deformed configurations
for fully atomistic simulation and for QC simulations at
bending angle 25 ˚ .

4 Conclusion

In this paper, we propose a simple method of extending
the conventional QC to the case of a curved crystalline
body like CNTs. We have introduced a concept of atom-
less degrees of freedom, which makes it possible to em-
ploy the higher order interpolations for the position and

 

 

Figure 10 : Bending simulation for 15-walled (a) FE
mesh of 15th wall in QC model, (b) a cross section of
initial configuration, (c-e) a cross section and perspective
views of equilibrium configuration at the bending angle
30 ˚ .

displacement vectors in the cluster based QC. This en-
ables us to treat nonlocal zones as well as local zones in
deformations of curved crystalline sheets. Various nu-
merical examples demonstrate the effectiveness and the
limitation of the present schemes.
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