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Nonstandard Group-Preserving Schemes for Very Stiff Ordinary Differential
Equations

Chein-Shan Liu 1

Abstract: The group-preserving scheme developed by
Liu (2001) for calculating the solutions of k-dimensional
differential equations system adopted the Cayley trans-
form to formulate the Lie group from its Lie algebra A ∈
so(k,1). In this paper we consider a more effective expo-
nential mapping to derive exp(hA). In order to overcome
the difficulty of numerical instabilities encountered by
employing group-preserving schemes on stiff differential
equations, we further combine the nonstandard finite dif-
ference method into the group-preserving schemes to ob-
tain unconditional stable numerical methods. They pro-
vide single-step explicit time integrators for stiff differ-
ential equations. Several numerical examples are exam-
ined, some of which are compared with exact solutions
showing that the nonstandard group-preserving schemes
have good computational efficiency and certain accuracy.

keyword: Stiff differential equations, nonstandard
group-preserving scheme, A-stable, L-stable

1 Introduction

For many systems in engineering applications, the ini-
tial value problems with stiff ordinary differential equa-
tions may occur due to the appearance of large difference
of time scales exhibited in the physical models. These
time scales are usually responsible for the different de-
caying rates of the model. Because of the speciality and
complexity of these systems, the corresponding differ-
ential equations are usually called stiff differential equa-
tions, also called ill-conditioned equations. Gear method
[Gear (1971)] equipped with Adams predictor–corrector
method was known to be a better integrator of stiff dif-
ferential equations, and is highly efficient for the solu-
tion of ill-conditioned problems for its good stability,
high precision, etc. It is the first order upwind differ-
ence method and the code of Gear method has the merit
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of self-stability. Adams method required less computa-
tion time for its simpler iterative procedure; however,
it may fail applied to strong ill-conditioned equations.
When solving the ill-conditioned problems, both explicit
and implicit methods will need to compute the Jacobian
of the system, which may cause great inconvenience as
compared to the numerical solutions of non-stiff prob-
lems. For a large system, the computation of Jacobian is
often very tedious and may cause mistakes. In this pa-
per some effective schemes are developed by consider-
ing nonstandard difference method for solving very stiff
problems, which basing on the group preserving scheme
proposed by Liu (2001) stated as follows.

Group-preserving scheme (GPS) can preserve the inter-
nal symmetry group of the considered system. Although
we do not know previously the symmetry group of the
nonlinear differential equations systems, Liu (2001) has
embedded them into the augmented dynamical systems,
which concern with not only the evolution of the state
variables but also the evolution of the magnitude. That
is, for k ordinary differential equations system:

ẋ = f(x, t), x ∈ Rk, t ∈ R, (1)

we can embed it to the following k+1-dimensional auge-
mented dynamical system:

d
dt

[
x

‖x‖
]

=

⎡
⎣ 0k×k

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦[

x
‖x‖

]
. (2)

Here we assume that x never goes to the zero point, which
leads to ‖x‖ > 0 and hence the above system is well-
defined.

It is obvious that the first equation in Eq. (2) is the same
as the original equation (1), but the addition of the second
equation gives us a Minkowskian structure of the aug-
mented state variables of X := (x,‖x‖)T satisfying the
cone condition:

XTgX = 0, (3)
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where

g =
[

Ik 0k×1

01×k −1

]
(4)

is a Minkowski metric, Ik is the identity matrix of order
k, and the superscript T stands for the transpose. In terms
of (x,‖x‖), Eq. (3) becomes

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0, (5)

where the dot between two k-dimensional vectors de-
notes their Euclidean inner product. The cone condition
is thus a natural constraint that we can impose on the dy-
namical system (2).

Consequently, we have a k + 1-dimensional augmented
system:

Ẋ = AX (6)

with a constraint (3), where

A :=

⎡
⎣ 0k×k

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦ , (7)

satisfying

ATg+gA = 0, (8)

is a Lie algebra so(k,1) of the proper orthochronous
Lorentz group SOo(k,1). This fact prompts us to de-
vise the so-called group-preserving scheme, whose dis-
cretized mapping G exactly preserves the following
properties [Liu and Chang (2004)]:

GTgG = g, (9)

det G = 1, (10)

G0
0 > 0, (11)

where G0
0 is the 00-th component of G. Such G

is a proper orthochronous Lorentz group denoted by
SOo(k,1). The term orthochronous used in the special
relativity theory is referred to the preservation of time
orientation. However, it should be understood here as the
preservation of the sign of ‖x‖.

Remarkably, the original k-dimensional dynamical sys-
tem (1) in Ek can be embedded naturally into an aug-
mented k+1-dimensional dynamical system (6) in Mk+1.
Although the dimension of the new system is raising one

more, it has been shown that under the Lipschitz condi-
tion of

‖f(x, t)− f(y, t)‖≤ L‖x−y‖, ∀ (x, t), (y,t)∈ D, (12)

where D is a domain of Rk × R, and L is known as a
Lipschitz constant, the new system has the advantage of
devising group-preserving numerical scheme as follows
[Liu (2001)]:

Xn+1 = G(n)Xn, (13)

where Xn denotes the numerical value of X at the discrete
time tn, and G(n) ∈ SOo(k,1) is the group value at time
tn.

According to the definition made by Shampine and Gear
(1979), the initial value problem (1) is said to be stiff in a
time interval of t ∈ [a,b], if (i) the solution x(t) is slowly
varying in the time interval of [a,b], and if (ii) for every
point (t,x(t)) of the solution curve in the time interval of
[a,b] the Jacobian matrix

J =
∂f(x, t)

∂x
∈ Rk×k (14)

has at least one eigenvalue whose real part is large nega-
tive, whilst the real parts of the other eigenvalues do not
take large positive values.

If Eq. (1) is stiff, then the augmented Eq. (6) is also stiff.
This assertion follows from the following Jacobian ma-
trix for system (6):

Jaug =

[
J 0k×1

1
‖x‖

(
∂(x·f(x,t))

∂x

)T −x·f(x,t)
‖x‖2

]
∈ R(k+1)×(k+1),

(15)

which has k eigenvalues {λ1,λ2, . . .,λk} as that for J, as
well as another one denoted by λ0 = −x · f(x, t)/‖x‖2.
In the literature the term stiff has been used by various
authors with quite different meanings. However, Spijker
(1996) has reviewed various aspects of stiffness in the nu-
merical solutions for stiff ordinary differential equations
(SODEs), and has given an intutive definition of stiff sit-
uation, which in terms of stepsize h and the Lipschitz
constant L is hL � 1.

In this paper we attempt to develop nonstandard group-
preserving schemes for SODEs. It is an extension of the
work of Liu (2001) by taking the stiffness of differen-
tial equations into account. Numerical schemes adopted
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for stiff differential equations are usually implicit. The
explicit schemes that have been applied to solving the
stiff problems are apparently not very effective up to now.
So conventionally, the implicit schemes with variable or-
der and stepsize are used for SODEs, among which the
backward difference type is one of the most famous; see,
e.g., Stabrowski (1997) and references theirin. The main
advantage of the implicit scheme is its stability in the
long-term calculations, which is usually absent for ex-
plicit scheme. However, the main disadvantage of im-
plicit scheme is its time consumption spent to solve the
resulting nonlinear algebraic equations step-by-step.

This paper will develop highly effective schemes by an
extension of the group-preserving scheme developed by
Liu (2001). The new method provides an explicit single-
step algorithm, and renders a more compendious numer-
ical implementation than other conventional schemes to
solve SODEs. It would be found in this study that the
new method greatly reduces the computation time that is
important for conducting a long-term simulation.

2 GPS for differential equations system

2.1 The Cayley transform

The group generated from A ∈ so(k,1) is known as a
proper orthochronous Lorentz group, one of which is the
Cayley transform

Cay(τA) = (I−τA)−1(I+τA), (16)

a mapping from A to an element of SOo(k,1) for τ ∈ R
and τ2 < ‖x‖2/‖f‖2. Substituting Eq. (7) for A(n), which
denotes the value of A at the discrete time tn, into the
above equation yields

Cay[τA(n)] =

⎡
⎢⎣ Ik + 2τ2

‖xn‖2−τ2‖fn‖2 fnfT
n

2τ‖xn‖
‖xn‖2−τ2‖fn‖2 fn

2τ‖xn‖
‖xn‖2−τ2‖fn‖2 fT

n
‖xn‖2+τ2‖fn‖2

‖xn‖2−τ2‖fn‖2

⎤
⎥⎦ .

(17)

Inserting the above Cay[τA(n)] for G(n) into Eq. (13)
and taking its first row, we obtain

xn+1 = xn +
‖xn‖2 +τfn ·xn

‖xn‖2 −τ2‖fn‖2 hfn = xn +ηnfn. (18)

In the above xn denotes the numerical value of x at the
discrete time tn, τ is one half of the time increment, i.e.,
τ := h/2, fn denotes f(xn, tn), and ηn is an adaptive factor.

In order to meet the property (11), we require the stepsize
of scheme (18) being constrained by h < 2‖xn‖/‖fn‖.
Under this condition we have

h <
2‖xn‖
‖fn‖ ⇐⇒ G0

0 > 0 =⇒ ηn > 0. (19)

Some properties of preserving the fixed point behavior of
the above numerical scheme (18) have been investigated
by Liu (2001), and applying it to non-stiff differential
equations has revealed that it is easy to implement nu-
merically and has high computational efficiency and ac-
curacy as discussed by Liu (2001). However, for stiff dif-
ferential equations the stepsize may be constrained very
small in order to meet the requirement in Eq. (19). In
Section 3 we will propose some modifications.

2.2 Exponential mapping

An exponential mapping of A(n) admits a closed-form
representation:

exp[hA(n)] =

⎡
⎢⎣ Ik + (an−1)

‖fn‖2 fnfT
n

bnfn
‖fn‖

bnfTn
‖fn‖ an

⎤
⎥⎦ , (20)

where

an := cosh

(
h‖fn‖
‖xn‖

)
, bn := sinh

(
h‖fn‖
‖xn‖

)
. (21)

Substituting the above exp[hA(n)] for G(n) into Eq. (13)
and taking its first row, we obtain

xn+1 = xn +ηnfn, (22)

where the adaptive factor

ηn :=
bn‖xn‖‖fn‖+(an −1)fn ·xn

‖fn‖2 (23)

is varying step-by-step. From an > 1, ∀h > 0 and
‖fn‖‖xn‖ ≥ fn ·xn ≥−‖fn‖‖xn‖, we can prove that[
exp

(
h‖fn‖
‖xn‖

)
−1

]
‖xn‖

‖fn‖ ≥ ηn

≥
[
1−exp

(
−h‖fn‖

‖xn‖
)]

‖xn‖
‖fn‖ > 0, ∀h > 0. (24)

Although this scheme is group properties preserved for
all h > 0, and does not endure the same shortcoming
as the one for scheme (18), the factor h‖fn‖/‖xn‖ in
Eq. (21) may render scheme (22) blow-up when apply
it to stiff differential equations by using an h not small
enough.
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2.3 Translation in state space

At the very beginning we have assumed that x never
passes through the zero point, which means that ‖x‖> 0
and hence schemes (18) and (22) are workable. However,
we may face such a system whose orbit x may pass the
zero point or may tend to it. For this case we should mod-
ify the above methods by simply considering the transla-
tion of x as to be shown below.

The property (24) holds for numerical scheme (22) with
any stepsize h > 0. So we may choose large h in the cal-
culation without leading to inconsistent numerical result
by scheme (22) for non-stiff differential equations. How-
ever, this is not the case for scheme (18). For a large
h with h > 2‖xn‖/‖fn‖, the adaptive factor in Eq. (18)
is negative, and hence scheme (18) may give improperly
qualitative behavior of numerical solution.

If x runs near the zero point, in order to meet the require-
ment of ‖x‖ > τ‖f‖, it not only needs τ very small but
also leads to a much stringent constraint on the choice of
a suitable stepsize in the calculation. In practice, we may
encounter the problem of dividing by a very small de-
nominator in Eq. (18) when fixing the stepsize, and such
division always renders the scheme failing to calculate
the solution.

In order to avoid the above difficulties of possibly divid-
ing by a very small denominator or even dividing by a
zero number when ‖x‖= 0, let us translate the state vari-
able x to a new variable u by a constant vector b:

u = x+b, (25)

such that u is far apart from the zero point. Therefore,
we have a new system of ODEs given by

u̇ = F(u, t) := f(u−b, t). (26)

Although x may close to or even go to the zero point we
do not worry about the zeroness of ‖u‖ because of ‖u‖=
‖b‖ > 0 when x = 0. Even Lee, Chen and Hung (2002)
have applied the above technique to treat some differen-
tial equations with mild stiffness, however, we should
note that the translation (25) does not remove the stiff-
ness of the considered system because ∂F/∂u = ∂f/∂x
has the same eigenvalues.

Now, replacing x by u and f by F in Eq. (18) we obtain a
similar scheme for the new system (26) as follows:

un+1 = un +
‖un‖2 +τFn ·un

‖un‖2 −τ2‖Fn‖2 hFn. (27)

This yields a time marching scheme for u and thus gives
the solution of x by calculating x = u− b at each time
step.

By the same token, scheme (22) can be applied to the
new variable u with the following formula:

un+1 = un +
bn‖un‖‖Fn‖+(an −1)Fn ·un

‖Fn‖2 Fn, (28)

where

an := cosh

(
h‖Fn‖
‖un‖

)
, bn := sinh

(
h‖Fn‖
‖un‖

)
. (29)

Some numerical examples will be shown later that such
strategy is effective for certain mildly stiff differential
equations, but it still fails to calculate the solutions for
very stiff differential equations. Basically, by merely
translating the state vector it can not lighten the high stiff-
ness of differential equations. It means that Eq. (26) is
still highly stiff if the original Eq. (1) is. Under this very
stringent condition we should consider another effective
method as follows.

3 Stable group-preserving scheme for stiff differen-
tial equations

The main idea of nonstandard finite difference [e.g.,
Mickens (1994, 1999), Mickens and Ramadhani (1994)
and Mickens and Smith (1990)] is replacing the Euler ap-
proximation of Ẋ

Ẋ −→ Xn+1−Xn

h
, (30)

by a nonstandard approximation

Ẋ −→ Xn+1−Xn

φ(h)
, (31)

where φ(h) is called a denominator function having the
properties of φ(h) > 0 and φ(h) = h+O(h2).

For stiff differential equations we let

φ(h) :=
1−exp(−Lh)

L
, (32)

where L is the Lipschitz constant of Eq. (1). If the
considered system (1) is stiff in some time interval of
t ∈ [a,b], and its Jacobian matrix J is continuous and
bounded in [a,b], then we let the Lipschitz constant to
be

L = ‖J‖ ≥ max{|λi| : i = 1,2, . . .,k}, (33)
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where ‖J‖ stands for the Euclidean norm of J. Hence,
the Lipschitz constant is a large value for stiff differential
equations.

The replacement of h by φ(h) in Eq. (31) inspires us to re-
place the h’s in Eqs. (18) and (22) by φ(h); consequently,
we have

xn+1 = xn +
4‖xn‖2 +2φfn ·xn

4‖xn‖2 −φ2‖fn‖2 φfn, (34)

xn+1 = xn +
bn‖xn‖‖fn‖+(an −1)fn ·xn

‖fn‖2 fn, (35)

where

an := cosh

(
φ‖fn‖
‖xn‖

)
, bn := sinh

(
φ‖fn‖
‖xn‖

)
. (36)

Now we investigate what advantages can be gained by
schemes (34) and (35). From Eq. (32) and ‖fn‖ ≤ L‖xn‖
it follows that

φ‖fn‖
‖xn‖ ≤ φL < 1, ∀h > 0. (37)

Hence, the denominator in Eq. (34) is positive, i.e.,

4‖xn‖2 −φ2‖fn‖2 = ‖xn‖2
(

4− φ2‖fn‖2

‖xn‖2

)
> 0. (38)

It guarantees that the adaptive factor in Eq. (34) is always
positive, that is,

ηn :=
4‖xn‖2 +2φfn ·xn

4‖xn‖2 −φ2‖fn‖2 φ > 0, ∀h > 0. (39)

Similarly, due to Eq. (37) the coefficients an and bn in
Eq. (36) are bounded, and hence the over-flow which may
happen for scheme (22) can be avoided. The combination
of nonstandard method with group-preserving schemes
renders the new numerical schemes (34) and (35) always
stable. More practically, they are unconditionally stable.
This result is very important for stiff differential equa-
tions, because the dominant factor to choose a suitable
stepsize for stiff differential equation is its stability, not
its accuracy, as shown by Shampine and Gear (1979).
However, we can see in the later that schemes (34) and
(35) still have an accuracy in the order of O(h).

Furthermore, scheme (34) preserves the fixed point and
the property of the original differential equations system.
Under the above condition (39), it is obvious that

xn+1 = xn ⇐⇒ fn = 0. (40)

This means that xn is a fixed point of the discretized map-
ping (34) if and only if the point x is an equilibrium (crit-
ical, fixed) point of the system (1).

We next investigate the property of the fixed point. The
Jacobian of the mapping (34) is

J :=
∂xn+1

∂xn
= Ik + fn

(
∂ηn

∂xn

)T

+ηnJn, (41)

where Jn denotes the value of J at time t = tn. At the
fixed point fn = 0, we have ηn = φ, and thus

J = Ik +φJn. (42)

Obviously, J has eigenvalues {1+φλi, i = 1,2, . . .,k}.

For the eigenvalue λ = Re(λ)+ iIm(λ) of J, where the
prefixes Re and Im denote respectively the real and imag-
inary parts, we let |λ|2 = (Re(λ))2+(Im(λ))2 and we can
prove the following implications:

Re(λ) > 0 =⇒ |1+φλ| > 1, ∀h > 0, (43)

Re(λ) = 0 =⇒ |1+φλ| ≥ 1, ∀h > 0, (44)

Re(λ) < 0 =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|1+φλ| < 1, ∀h > 0

if L ≥ |λ|2
−2Re(λ)

,

|1+φλ| < 1,

h < ln
(

1+ 2LRe(λ)
|λ|2

)−1/L

if L < |λ|2
−2Re(λ)

.

(45)

From the following equation

|1+φλ|=
√

1+2φRe(λ)+φ2[(Re(λ))2 +(Im(λ))2],
(46)

and φ > 0, Eq. (43) follows directly. For the second case,
substituting Re(λ) = 0 into Eq. (46) leads to Eq. (44),
of which the equality holds only under the condition of
Im(λ) = 0. Now we prove the third implication (45). If
we let |1+φλ| = 1, by Eq. (46) we obtain

φ
(
2Re(λ)+φ[(Re(λ))2 +(Im(λ))2]

)
= 0. (47)

Because of φ > 0, it follows that

φ =
−2Re(λ)

|λ|2 , (48)

which together with Eq. (32) leads to

1+
2LRe(λ)

|λ|2 = exp(−Lh). (49)
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The right-hand side is positive. Under the condition of
1+2LRe(λ)/|λ|2 > 0, the above equation has a solution
for h:

h = ln

(
1+

2LRe(λ)
|λ|2

)−1/L
. (50)

This completes the proof of Eq. (45).

From Eq. (43) it follows that the property of unstable
fixed point is not changed by the mapping (34). From
Eq. (44) it follows that the fixed point of neutral type is
not preserved by the mapping (34). Finally, from Eq. (45)
we know that the mapping (34) preserves the property of
stable fixed point for all h > 0 for the most cases, unless
the eigenvalue at the fixed point has very small negative
real part.

4 Numerical examples

4.1 Example 1

Consider the following planar dynamical system:

ẋ1 = −x1 +
2x2

ln(x2
1 +x2

2)
, ẋ2 = −x2 − 2x1

ln(x2
1 +x2

2)
, (51)

whose solution, in terms of the polar coordinates (r,θ),
can be expressed as

r(t) = r0e−t , θ(t) = θ0 + ln

(
1− t

lnr0

)
,

where r0 = r(0) and θ0 = θ(0) are initial values. This
example is not of stiff type; however, we use it to demon-
strate the difference of schemes (18) and (22).

Obviously, (x1,x2) = (0,0) is a stable fixed point. Letting
r0 = 10 and θ0 = π/6 and applying schemes (18) and
(22) to Eq. (51) with h = 0.001 sec in the time interval of
0≤ t ≤ 2 sec, indicates that the accuracy of both schemes
is in the order of O(h) as shown in Fig. 1(a). However,
with r0 = 20000 and h = 2 sec, scheme (18) producing
a solution sticks on the initial point and fails to converge
to the stable fixed point, but scheme (22) still producing
a solution converges to the correct stable fixed point as
shown in Fig. 1(b).

4.2 Example 2

Consider the following two-dimensional SODEs:

ẋ1 = 9x1 +24x2 +5cos t− 1
3

sint, x1(0) =
4
3
, (52)

ẋ2 = −24x1 −51x2 −9cos t +
1
3

sint, x2(0) =
2
3
, (53)

whose solutions are given by

x1(t) = 2e−3t −e−39t +
1
3

cost,

x2(t) = −e−3t +2e−39t − 1
3

cos t.

The exact solutions show that after a long time the or-
bit will pass through near the zero point, and tend to a
straight line with slope -1 in the plane (x1,x2).

We first apply schemes (18) and (22) to Eqs. (52) and
(53) without considering translation. The results are dis-
played in Fig. 2, where h = 0.001 sec was used. Scheme
(18) gives incorrect numerical solution as shown by the
time history of x1, whose adaptive factor is negative at
some time moments and zero in some time intervals.
This indicates that under such h = 0.001 sec scheme (18)
is unstable, but scheme (22) is still stable. The latter
gives correct result as shown in Fig. 2(a), whose error
as shown in Fig. 2(b) is within the order of O(h). We

plot the values of
√

x2
1 +x2

2 in Fig. 2(c). It can be seen

that when
√

x2
1 +x2

2 approaches to zero the adaptive fac-
tor of scheme (22) as shown in Fig. 2(d) is irregular ap-
pearing spikes, and at the same time the error as shown in
Fig. 2(b) has peaks. So we applied schemes (27) and (28)
to the above system by considering (b1,b2) = (1,1) and
h = 0.001 sec. They lead to the same results, and both
give correct numerical solutions as shown in Fig. 3. It is
clear that by translating the state vector with the above
(b1,b2) we obtain more smooth curves of adaptive fac-
tors as shown in Figs. 3(d) and 3(e), and the peaks of
the error as shown in Fig. 2(b) disappear in Figs. 3(b)
and 3(c). Finally, when the stepsize was increased to
h = 0.05 sec, and kept the above translation unchanged,
Fig. 4(a) displays the trajectories of the numerical solu-
tions in the plane (x1,x2), which converge to the steady
state solution very soon, even they have inconsistent tran-
sient behaviors. In the transient stage both adaptive fac-
tors as shown in Figs. 4(d) and 4(e) are highly oscillatory.

This example shows that the translation of state vector
really gives improvement of the numerical solutions.

4.3 Example 3

Consider a very stiff system of nonlinear three-
dimensional ODEs:

ẋ1 = −0.04x1 +104x2x3, x1(0) = 1, (54)
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Figure 1 : The numerical solutions of Example 1 were obtained by schemes (18) and (22). For small stepsize with
h = 0.001 sec both schemes are better coincident with exact solution, but for large stepsize with h = 2 sec only
scheme (22) gives appropriate solution.

ẋ2 = 0.04x1−104x2x3 −3×107x2
2, x2(0) = 0, (55)

ẋ3 = 3×107x2
2, x3(0) = 0. (56)

The constant coefficients range from 10−2 to 107 over
nine orders of magnitude. It is the source of the stiffness
of this problem. The above system has been discussed

by Robertson (1996), Lapidus and Seinfeld (1971), and
Stabrowski (1997). First we note that x1 +x2 +x3−1 = 0
is an invariant of Eqs. (54)-(56), and we may question
that does the numerical scheme preserve this invariant?

Applying schemes (18) and (22) to the above system
with h = 0.0003 sec, we show the errors of invariant in
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Figure 2 : The numerical solutions of Example 2 were obtained by schemes (18) and (22) with stepsize h =
0.001 sec. Without considering translation scheme (18) gives inappropriate solution because its adaptive factor
may be negative. However, scheme (22) still gives correct solution, but some error peaks appear.

Fig. 5. It can be seen that the errors are in the order of
10−14. Even schemes (18) and (22) have the advantage
to preserve the invariant, they still fail to calculate the
long-term behavior. The time spent to approach the sta-

ble fixed point (x1,x2,x3) = (0,0,1) may over 108 sec
as shown in Fig. 6. The three eigenvalues of the Jaco-
bian matrix are (λ1,λ2,λ3) = (0,0,−0.04) at the initial
point, but (λ1,λ2,λ3) = (0,0,−104) at the fixed point.
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Figure 3 : The numerical solutions of Example 2 were obtained by schemes (27) and (28) with stepsize h = 0.001 sec
and translation (b1,b2) = (1,1). They lead to the same results compatible with exact solution. The peaks of numer-
ical solutions error disappear, which illustrate the effect of considering translation.

We thus apply the modified scheme (34) to the above
system by letting L = 104 in Eq. (32), and hence, φ =
[1− exp(−104h)]/104. Even the result shown in Fig. 6

used a large stepsize h = 2 sec, it still requires 5× 107

steps to the final long time 108 sec. From Fig. 6(b) it can
be seen that the three values of (ẋ1, ẋ2, ẋ3) tend to zero.
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Figure 4 : The numerical solutions of Example 2 were obtained by schemes (27) and (28) with stepsize h = 0.05 sec
and translation (b1,b2) = (1,1). Even they have not accurate transient solutions but tend to the exact steady state
solution.

If we use schemes (18) and (22) to calculate the above
long-term results, of which the stepsize h = 0.0003 sec is
chosen for a stability consideration, it would need more

than 1011 steps and a lot of computational time to finish
the same job. Next, we use scheme (34) to calculate the
solution in the range of t < 10 sec with h = 0.00001 sec.
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Figure 5 : The numerical solutions of Example 3 were obtained by schemes (18) and (22) with stepsize h =
0.0003 sec, whose errors of the invariant x1 +x2 +x3 −1 = 0 as can be seen are within the order of 10−14.

The result as shown in Fig. 7 is compatible with that cal-
culated by LSODE integrator as shown in Fig. 4.1 of the
paper by Byrne and Hindmarsh (1987). The graphical re-
sults show how x2 starts at 0, builds to about 3.6×10−4

at time t = 2×10−3 sec and decays.

4.4 Example 4

Consider another stiff system of nonlinear three-
dimensional ODEs:

ẋ1 = −0.013x2−1000x1x2 −2500x1x3, x1(0) = 0, (57)

ẋ2 = −0.013x2−1000x1x2, x2(0) = 1, (58)

ẋ3 = −2500x1x3, x3(0) = 1 (59)

in the range of 0≤ t < 50 sec. The above system has been
discussed by Brunner (1974) in the problem of chemi-
cal reaction. Brunner has introduced a method of recur-
sive collocation to solve such system. We compare the
numerical value calculated from scheme (18) by using

h = 0.0001 sec with the exact values and the calculated
values from Brunner at the final time in Table 1. The er-
ror by scheme (18) as can be seen is smaller than those
calculated by the Brunner method.

4.5 Example 5

We consider a linear stiff system of Rosenbrock and
Storey (1966):

ẋ1 = −1000x1, x1(0) = 1, (60)

ẋ2 = 0.909x1−x2, x2(0) = 0.999 (61)

in the range of 0 ≤ t < 0.024 sec. The exact solutions are

x1(t) = exp(−1000t),

x2(t) = −0.909
999

exp(−1000t)+
998.91

999
exp(−t).

In the calculations we fix the stepsize to be h = 0.003 sec,
and apply scheme (34) to the above system by letting L =
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Figure 6 : The numerical solutions of Example 3 were obtained by schemes (34) and (35) with stepsize h = 2 sec.
This example shows that it needs a huge time more than 108 sec to approach the stable fixed point.

103 in Eq. (32), and hence φ = [1− exp(−103h)]/103.
We also calculate the above system by the fourth-order
Runge-Kutta method (RK4). The calculated results were
compared with the exact solutions at the final time t =
0.024 sec in Table 2. It can be seen that the RK4 even
has a certain accurate solution on the slowly changing
component x2, but it induces a larger error on the rapidly

changing component x1.

4.6 Example 6

Let us consider another linear stiff system given by
Lapidus and Schiesser (1976):

ẋ1 = −0.1x1 −49.9x2, x1(0) = 2, (62)
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Figure 7 : The numerical solution of Example 3 was calculated in the range of t < 10 sec with h = 0.00001 sec. The
result shows how x2 starts at 0, builds to about 3.6×10−4 at time t = 2×10−3 sec and decays.

Table 1 : Numerical results of Example 4
t = 50 sec x1(t) x2(t) x3(t)

Exact −1.89371×10−6 0.5976547 1.4023434
Brunner −1.893×10−6 0.5974750 1.4025231

Error of Brunner −0.00071×10−6 0.0001797 -0.0001797
scheme (18) −1.893386×10−6 0.5976546 1.4023436

Error of scheme (18) −0.000324×10−6 0.0000001 -0.0000002

Table 2 : Numerical results of Example 5
t = 0.024 sec x1(t) x2(t)

Exact 0.37751345442791×10−10 0.97619772471953
RK4 0.12776784956455×102 0.96457203308391

Error of RK4 0.12776784956417×102 0.11625691635613×10−1

scheme (34) 0.17104556531100×10−9 0.99247777104929
Error of scheme (34) 0.13329421986821×10−9 0.16280046329765×10−1

Table 3 : Numerical results of Example 6
t = 0.5 sec x1(t) x2(t) x3(t)

Exact 0.95122942380588 0.13887943864964×10−10 0.13887943864964×10−10

RK4 0.95122939473318 0.56965907189574×10−10 0.58351760483645×103

Error of RK4 0.29072705243216×10−7 0.43077963324610×10−10 0.58351760483644×103

scheme (34) 0.98224764491287 0.68582498160849×10−5 0.68582498160849×10−5

Error of scheme (34) 0.31018221106989×10−1 0.68582359281410×10−5 0.68582359281410×10−5
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ẋ2 = −50x2, x2(0) = 1, (63)

ẋ3 = 70x2 −120x3, x3(0) = 2 (64)

in the range of 0 ≤ t < 0.5 sec. The exact solutions are

x1(t) = exp(−0.1t)+exp(−50t),

x2(t) = exp(−50t),

x3(t) = exp(−50t)+exp(−120t).

In the calculations we fix the stepsize to be h = 0.025 sec,
and apply scheme (34) to the above system by letting L =
120 in Eq. (32), and hence φ = [1− exp(−120h)]/120.
We also calculate the above system by the RK4. The
calculated results were compared with the exact solutions
at the final time t = 0.5 sec in Table 3. It can be seen
that the RK4 even has a certain accurate solutions on the
slowly changing components x1 and x2, but it induces a
very large error on the rapidly changing component x3.

5 One-dimensional cases

Specialize Eqs. (18), (22), (34) and (35) to the one-
dimensional case:

xn+1 = xn +
2hxn

2xn−h fn
fn =

2xn +h fn

2xn −h fn
xn, (65)

xn+1 = xn exp

(
h fn

xn

)
, (66)

xn+1 = xn +
2φxn

2xn−φ fn
fn =

2xn +φ fn

2xn −φ fn
xn, (67)

xn+1 = xn exp

(
φ fn

xn

)
. (68)

We will apply these schemes to the one-dimensional lin-
ear model problems and give linear stability analyses.

5.1 The first linear model problem

A minimal requirement of numerical scheme for stiff dif-
ferential equations is that it can pass the test of absolute
stability. In this section the linear stability analyses of the
above four schemes are given below. Applying the above
four schemes to the first linear model problem

ẋ = λx, λ ∈ C− := {z ∈ C| Re(z) < 0}, (69)

where C is the set of complex numbers, we obtain

xn+1 =
2+λh
2−λh

xn, (70)

xn+1 = xn exp(λh), (71)

xn+1 =
3−exp[Re(λh)]
1+exp[Re(λh)]

xn, (72)

xn+1 = xn exp [1−exp[Re(λh)]]. (73)

In particular, scheme (71) is exact for Eq. (69). It is easy
to verify that the corresponding four stability functions:

R1(z) :=
2+ z
2− z

, (74)

R2(z) := exp(z), (75)

R3(z) :=
3−exp[Re(z)]
1+exp[Re(z)]

, (76)

R4(z) := exp [1−exp[Re(z)]], (77)

satisfy

|R1(z)| ≤ 1, |R2(z)| ≤ 1, |R3(z)| ≤ 1, |R4(z)| ≤ 1,

∀z ∈ C−. (78)

Hence schemes (65)-(68) are all A-stable in the sense of
Dahlquist (1963). Furthermore, scheme (66) is also L-
stable, because its stability function satisfies R2(−∞) =
0.

5.2 The second linear model problem

Let us consider the second linear model problem:

ẋ = λ0[x− p(t)]+ ṗ(t), x(0) = x0, (79)

whose exact solution is x(t)= [x0−p(0)]exp(λ0t)+ p(t).
For definite we may let p(t) = 1−exp(λ1t), and assume
λ0 = −109 and λ1 = −1. Hence, x(t) = x0 exp(−109t)+
[1− exp(−t)], of which the first term is transient with
fastly decaying, and the second term in the bracket is
slowly increasing. Schemes (65) and (66) fail to calcu-
late the solution of Eq. (79) unless the stepsize would be
very small as to be explained below.

Applying schemes (67) and (68) to Eq. (79) gives good
results as shown in Fig. 8(a), where the stepsize h =
5× 10−4 sec was used, and the exact solution is com-
pared with the numerical results, whose errors are shown
in Fig. 8(b). It can be seen that the schemes (67) and
(68) are not only stable but also have the accuracy in
the order of O(h). Instead of, the Euler method re-
quires h < 2/|λ0|= 2×10−9 for a stability consideration
[Shampine and Gear (1979)], which in turns requires at
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Figure 8 : The numerical solutions of the second linear model problem were obtained by schemes (67) and (68)
with stepsize h = 5×10−4 sec. This model problem illustrates that some schemes which are even A-stable may fail
to pass this test.

least 2.5×109 steps for a same calculation as that done
in Fig. 8 by schemes (67) and (68).

Let us explain why scheme (67) works for this problem.
In order to reply this question we shoud investigate the
error propagation of scheme (67). If we define the global

error as

δn = xn −x(tn), (80)

where x(tn) denotes the exact value at time t = tn, from
Eqs. (67) and (79) it follows that

δn+1 = (1+ηλ0)δn +[x(tn)+ηẋ(tn)−x(tn+1)], (81)
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Figure 9 : The numerical solutions of Example 7 were obtained by schemes (65)-(68) with stepsize h = 0.00001 sec
and a translation with b = 10. But when h increases to 0.001 sec schemes (65) and (66) fail to calculate the solutions
even the same translation with b = 10 was considered. However, schemes (67) and (68) still work.

where

η =
2φ

2−φ fn
xn

, (82)

and φ as defined in Eq. (32) is given by φ = [exp(λ0h)−

1]/λ0. The Lipschitz constant for Eq. (79) is −λ0; hence,

−λ0 ≥ fn

xn
≥ λ0. (83)

Substituting Eq. (83) into Eq. (82) and then substituting
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the resultant into 1+ηλ0 we obtain

1 > 1+ηλ0 > −1 (84)

for any stepsize h > 0. It means that the error of scheme
(67) is not amplified for any stepsize. A similar conclu-
sion can be drawn for scheme (68) as follows. Substi-
tuting Eq. (68) for xn into Eq. (80) we obtain the error
propagation equation (81) again, but with

η =
exp

(
φ fn
xn

)
−1

fn
xn

. (85)

Hence, by Eq. (83) it follows that

1 > exp[exp(λ0h)−1]≥ 1+ηλ0

≥ 2−exp[1−exp(λ0h)] > −1 (86)

for any stepsize h > 0, which means that the error of
scheme (68) is not amplified for any stepsize.

Now, we return to scheme (65), and a similar analysis
leads to

η =
2h

2−h fn
xn

. (87)

Substituting Eq. (83) into the above, gives

2+3λ0h
2+λ0h

≥ 1+ηλ0 ≥ 2+λ0h
2−λ0h

. (88)

Unless |λ0h| < 2/3, the error induced by scheme (65)
will be amplified.

This example shows that schemes (65) and (66) can even
pass the test of the first linear model problem, but they
still fail to pass the test of the second linear model prob-
lem. For very stiff scalar equations the latter two schemes
(67) and (68) are better than the former two schemes.

5.3 Example 7

The following stiff problem:

u̇ = 5e5t(u− t)2 +1, 0 ≤ t ≤ 3, u(0) = −1, (89)

has an exact solution u(t) = t − e−5t . We first transform
Eq. (89) to

ẋ = 5e5t(x−b− t)2 +1, 0 ≤ t ≤ 3, x(0) = b−1

with b = 10. This renders x �= 0 in the new equation, and
then we apply schemes (65)-(68) to the above equation

with h = 0.00001 sec. For the latter two schemes we let
L = 10 in Eq. (32), and hence, φ = [1−exp(−10h)]/10.
The errors of the above four numerical results are com-
pared in Fig. 9(a). Then the stepsize is increased to
h = 0.001 sec. Schemes (65) and (66) become unstable;
however, schemes (67) and (68) still work, and their nu-
merical solution errors are shown in Fig. 9(b) to be in the
order of O(h) and tend to decreasing as time increasing.

This example shows that the translation of state vector
may give improvement of the numerical solutions for
smaller stepsize; however, when a larger stepsize is used
the technique of translating state vector fails to calculate
the solutions.

6 Concluding remarks

At first, we have presented a numerical scheme based on
the exponential mapping of the augmented form Ẋ = AX
for nonlinear differential equations system. The group-
preserving scheme (22) is better than scheme (18). How-
ever, when applied them to stiff differential equations
they may fail to calculate the solutions unless the stepsize
is limited to be unreasonably very small. Then, in order
to tackle this difficulty of numerical instability, we have
combined nonstandard finite difference method with the
above group-preserving schemes and developed two non-
standard group-preserving schemes (34) and (35). They
allow a larger stepsize in the calculations without induc-
ing numerical instabilities, and also preserve the stabil-
ity types of the fixed points of hyperbolic types for large
stepsize as shown in Eqs. (43) and (45). The group-
preserving schemes considered in this paper are all A-
stable in the sense of Dahlquist. However, only schemes
(34) and (35) survive for the second linear model prob-
lem, because their amplification factors of error propaga-
tion have magnitudes smaller than one for any stepsize
h > 0.

Several numerical examples were examined, some of
which were compared with exact solutions showing that
the nonstandard group-preserving schemes work very
well, and also have good computational efficiency and
accuracy. Hence, we have unconditional stable group-
preserving schemes for stiff differential equations, which
provide convenient single-step explicit time integrators
for stiff differential equations.
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