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Acoustic scattering from arbitrarily shaped three dimensional rigid bodies using
method of moments solution with node based basis functions

B. Chandrasekhar1

Abstract: In this work, a novel numerical technique
is presented to calculate the acoustic fields scattered by
three dimensional rigid bodies of arbitrary shape using
the method of moment’s solution procedure. A new set
of basis functions, namely, Node based basis functions
are developed to represent the source distribution on the
surface of rigid body and the same functions are used as
testing functions as well. Both single layer formulation
and double layer formulations are numerically solved us-
ing the same basis functions. The surface of the body is
modeled by triangular patch modeling. Numerical tech-
nique presented in this paper, using these node based ba-
sis functions, is compared with the exact solutions wher-
ever available and also with the edge based solutions
[Chandrasekhar and Rao (2004)].

keyword: Acoustic Scattering, Method of Moments,
Node based basis function, Boundary Integral Equations.

1 Introduction

In the recent past, there has been a growing demand for
the development of faster, accurate and efficient algo-
rithms to solve the acoustic scattering problem. This may
be partly due to the developments in the digital computer
technology and partly due to the ever increasing demand
in the defense/commercial sectors. There are several for-
mulations and algorithms to address the acoustic scatter-
ing problems based on T-matrix approach [Varadan and
Varadan (1980), Varadan, Lakathia, and Varadan (1988),
Tobocman (1984)], boundary integral equation method
[Schuster and Smith (1985), Schuster (1985), Seybert,
Soenarko, Rizzo, and Shippy (1985), Malbequi, Candel,
and Rignot (1987)], and the method of moments solu-
tion [Harrington (1968), Rao and Raju (1989), Raju, Rao,
and Sun (1991), Rao and Sridhara(1991) ,Rao, Raju, and
Sun(1992), Sun and Rao (1992)].

All the formulations/algorithms have one common prob-
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lem known as non uniqueness problem i.e. when the fre-
quency of incident wave matches with the characteris-
tic frequency of the surface S of the body, the solution
breaks down. These characteristic frequencies happen to
be resonance frequencies of the cavity formed by surface
S of the body. There are two popular approaches which
address this problem 1) Combined Helmholtz Integral
Equation Formulation (CHIEF) [Schenck (1968)] 2) Bur-
ton and Miller’s (BM) approach [Burton and Miller
(1971)]. Alhough CHIEF is very popular, it is heuris-
tic and prone to inaccuracies especially at higher fre-
quencies. The BM approach is a mathematically proven
method to eliminate non-uniqueness problem but it also
suffers from a drawback, which is explained below.

BM procedure basically suggests developing and solving
two separate formulations known as Single Layer Formu-
lation (SLF) and Double Layer Formulation (DLF). Bur-
ton and Miller mathematically proved [Burton and Miller
(1971)] that by combining the SLF and DLF with a
complex constant, the internal resonance/non-uniqueness
problem can be eliminated. Although SLF is relatively
easier to solve, the DLF is much more difficult to solve
numerically due to the presence of hyper-singular ker-
nel in the integral equation. However, many researchers
[Amini and Wilton (1986), Meyer, Bell, Zinn, and Stally-
bras (1978), Chien, Raliyah and Alturi (1990), Yan, Cui
and Hung (2005)] attempted to implement the BM pro-
cedure to overcome the internal resonance problem. The
usual procedure is to regularize the hyper–singular in-
tegral and the regularization technique is computation-
ally very expensive and it is difficult to incorporate in
a general-purpose code. Also, there are other meth-
ods which reduce the hyper singular kernel to a strongly
singular kernel and their solution is based on based on
Petrov-Galerkin schemes [Qian, Han, and Atluri (2004)]
and collocation-based boundary element method [Qian,
Han, Ufimtsev, and Atluri (2004)]. A de-singularized
boundary integral formulation is also one of the re-
cently proposed method [Callsen, von Estorff, and Za-
leski (2004)] to overcome the problems of singularity.
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Recently double layer formulation of BM approach was
numerically solved by using method of moment’s solu-
tion [ Chandrasekhar and Rao (2004a)] and it is shown
[ Chandrasekhar and Rao (2004b)] that the internal res-
onance problem can be eliminated by combining SLF
and DLF with a complex constant as suggested by Bur-
ton and Miller. Later, the same numerical solution pro-
cedure [Chandrasekhar and Rao (2005)] was extended
to open bodies, intersecting bodies and other complex
shaped closed bodies. This was achieved by selecting
appropriate basis functions in the method of moment’s
solution and by simplifying the formulation with sim-
ple vector calculus. We also note that, the solution pro-
cedure mentioned in this paper, neither regularizes the
hyper-singular integral nor implements complex integra-
tion schemes. The numerical procedure mentioned in
the earlier work [Chandrasekhar and Rao (2004)] was
based on the edge based basis functions and the size of
the impedance matrix depends on the number of edges
present in the triangular patch modeling. An attempt is
made in this work, to reduce the size of the impedance
matrix so that the computational time required for the so-
lution of linear equations comes down.

In this work, a new set of basis functions, namely, Node
based basis functions are developed to represent the
source distribution and the same functions are used as
testing functions as well. The surface of the closed body
is modeled by triangular patch modeling and in this kind
of modeling, the number of nodes are always less than
the number of edges or faces. With this scheme, the size
of the impedance matrix is very small compared to edge
based solution [ Chandrasekhar and Rao (2004) ] or face
based solution [Rao, Raju, and Sun (1992) ] as the nu-
merical solution is based on defining the basis functions
on the nodes. As the storage matrix is smaller, time re-
quired for the solution of simultaneous linear system of
equations is smaller and hence, much larger problems
can be solved without increasing the solution time com-
pared to the existing solutions based on method of mo-
ments [Rao, Raju, and Sun (1992), Chandrasekhar and
Rao (2004a)].

2 Organization of a paper

In this paper, next section briefly describes the method
of moment’s solution procedure. Mathematical formu-
lation is laid in section III for single layer and double
layer formulations. In section IV, we describe the nu-

merical solution procedure and derive matrix equations
for SLF and DLF. Numerical results, based on the devel-
opment of new basis function are given in sec V. Lastly
we present some important conclusions drawn from this
present work.

3 Outline of Method of Moments

Consider the deterministic equation

Lf = g (1)

where L is a linear operator, g is a known function and f
is an unknown function to be determined. Let f be rep-
resented by a set of known functions f j, j = 1,2, ...,N
termed as basis functions in the domain of L as a linear
combination, given by

f =
N

∑
n=1

αjfj (2)

where α jare scalar coefficients to be determined. Substi-
tuting Eq. 2 into Eq. 1, and using the linearity of L, we
have

N

∑
n=1

α jLfj = g (3)

where the equality is usually approximate. Let
(w1,w2,w3, ......) define a set of testing functions in the
range of L. Now, taking the inner product of Eq. 3 with
each wi and using the linearity of inner product defined
as 〈f,g〉 =

R
s f•gds, we obtain a set of linear equations,

given by

N

∑
n=1

α j 〈wi,Lfj〉 = 〈wi,g〉 i = 1,2, ....,N (4)

The set of equations in Eq. 4 may be written in the matrix
form as

ZX = Y (5)

which can be solved for Z using any standard linear equa-
tion solution methodologies. The simplicity, accuracy
and efficiency of the method of moments lies in choosing
proper set of basis/testing functions and applying to the
problem at hand. In this work, we propose a special set
of basis functions and a novel testing scheme to obtain
accurate results using SLF and DLF.
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4 Mathematical Formulation

Consider an acoustic wave with a pressure and veloc-
ity
(

pi,ui
)

incident on a three-dimensional arbitrarily
shaped rigid body placed in a homogeneous medium of
density ρ and speed of sound through the medium c. As
the body is rigid, the acoustic wave gets scattered with
a pressure and velocity (ps,us). Here, we note that, in-
cident fields are defined in the absence of the scattering
body. The pressure and velocity fields of acoustic wave
is related to the velocity potential Φ as u = −∇Φ and
p = jωρΦ assuming a harmonic time variation.

Using the potential theory and the free space Green’ s
function, the scattered velocity potential is defined as

Φs =
Z

s
σ
(
r′
)

G
(
r,r′
)

ds′ (6)

for single layer formulation and

Φs =
Z

s
σ
(
r′
) ∂G(r,r′)

∂n′
ds′ (7)

for double layer formulation.

Where r and r′are the position vectors of observation and
source point, respectively, with respect to a global co-
ordinate system O. Vectors n and n′ are the unit normal
vectors with respect to the observation point and source
point respectively. σ is the source distribution over the
surface of the body and G(r,r′) is the free space Green’s
function, given by,

G
(
r,r′
)

=
e− jkk•|r−r′|

4π |r−r′ | (8)

For a rigid body, the normal derivative of total velocity
potential, on the surface of the body vanishes. That is

∂
(
Φi +Φs

)
∂n

= 0 (9)

∂Φs

∂n
= −∂Φi

∂n
(10)

Substituting Eqs. 6 and 7. into Eq. 10,

∂
∂n

Z
s
σ
(
r′
)

G
(
r,r′
)

ds′ = −∂Φi

∂n
(11)

for single layer formulation and

∂
∂n

Z
s
σ
(
r′
) ∂G(r,r′)

∂n′
ds′ = −∂Φi

∂n
(12)

For double layer formulation.

Eq. 11 can be re-written as

σ
2
−

Z
s
σ
(
r′
)∂G(r,r′)

∂n
ds′ = −∂Φi

∂n
(13)

The second term in the above equation is the integration
over the surface excluding the principal value term i.e.
r = r′. This integration can be evaluated using standard
integration algorithms.

Following the procedures developed in [Maue (1949) and
Mitzner (1966)], Eq. 12 may be written as

R
s n•n′k2σ(r′)G(r,r′)ds′+R

s (n
′ X ∇′σ)•(nX ∇G) ds′ = ∂Φi

∂n

(14)

where nand n′are the unit normal vectors at rand r′.
In the following sections, a novel numerical technique
is developed using node based basis functions for both
single layer and double layer formulations. Eq. 11 and
Eq. 12 fail when the frequency of the incident field
matches with the characteristic frequency of surface S.
However, this internal resonance problem can be elimi-
nated by combined layer formulation [Burton and Miller
(1971)]. This paper focuses only on the numerical solu-
tion of the single layer and double layer formulations by
developing a new set of basis functions called node based
basis function.

5 Numerical Solution Procedure

Consider a three dimensional arbitrarily shaped body ap-
proximated by a triangular patches as shown in Fig. 1.

Let Nf ,Ne and Nn represent the number of triangular
patches, number of edges and number of nodes respec-
tively on the surface of triangulated body. Consider a
node n about which the basis function is defined in con-
trast to the basis functions defined with respect to edge as
in [Chandrasekhar and Rao (2004)]. When the object is a
closed one, all the nodes will have at least three triangular
patches attached to it and at least three edges.

For illustration purposes, consider one such a node as
shown in Fig. 2., where there are five triangular patches
attached to it. Let T1,T2, ......,T5 are the triangular
patches
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Figure 1 : Triangular patch modeling of an arbitrarily
shaped three-dimensional body.

Figure 2 : Node based basis function and geometric pa-
rameters associated with the node.

and e1,e2, .......,e5 are the edges connected to the node.
The shaded region, shown in the Fig. 2. as Sn, is formed
by joining the mid points of the edges to the centroids of
adjacent triangular patches thus forming a closed bound-
ary around the node.

Let there are p number of triangular patches attached to
field node m and q number of triangular patches attached
the source node n. By joining the node on which the
basis function or weighting function is defined, to the
centroid of the attached triangular patches, the shaded
area on each triangular patch is divided into two sub tri-
angles, resulting u number of sub triangles around field
node mand v number of sub triangles around the source
node n. In this paper, index x is used to represent the sub
triangle attached to the field node and index y is used to

represent the sub triangle attached to the source node.

The node based basis function is defined over the shaded
area as follows.

fn =
{

1 r ∈ Sn

0 Otherwise
(15)

The source distribution σ over the surface of the scatter-
ing object is approximated by

σ =
Nn

∑
n=1

αn fn (16)

where αn represent the unknown coefficients to be deter-
mined. The basis functions defined over the node has all
advantages as edge based basis functions [see B. Chan-
drasekhar and S.M. Rao (2004)].

5.1 Derivation of matrix equations for Single Layer
Formulation

We follow the Galarkin’s approach by using the same ba-
sis functions defined in Eq. 15 as testing functions as
well.

Testing Eq. 13 with a testing function

wm
〈
wm, σ

2

〉−〈wm,
R

s σ(r′) ∂G(r,r′)
∂n ds′

〉
=
〈

wm,−∂Φi

∂n

〉 (17)

Evaluating the first term of Eq. 17〈
wm, σ

2

〉
= 1

2

R
s wmσ(r′) ds

= σ(r′)
2

u
∑

x=1
Ax

m
(18)

where Ax
m is the area of sub triangle attached to the field

node.

Evaluating the second term of Eq. 17

〈
wm,

R
s σ(r′)∂G(r,r′)

∂n ds′
〉

=
R

s wm
R

s σ(r′) ∂G(r,r′)
∂n ds′ ds

=
u
∑

x=1
Acx

m

R
s σ(r′)∂G(rcx

m ,r′)
∂n ds′

(19)

Evaluating the right hand side of Eq. 17〈
wm,−∂Φi

∂n

〉
= −R

s wm
∂Φi

∂n ds

= −
u
∑

x=1
Acx

m
∂Φi

∂n

(20)
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Substituting the source expansion defined in Eq. 16 into
Eq. 18 and Eq. 19, results in a system of linear equations
of size Nn X Nn, which can be represented in the matrix
form as

Zsl f X = Y (21)

where Zsl f is the impedance matrix of the single layer
formulation of size Nn X Nn , X and Y are the column
vectors of size Nn.The elements of Zsl f ,X and Yare given
below.

Zmn
sl f =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

u
∑

x=1
Ax

m f or m = nand x = y

−
u
∑

x=1

v
∑

y=1
Ax

m
R

s
∂G(rcx

m ,rcy
n )

∂nc
m

ds′ otherwise

(22)

and

Ym = −
u

∑
x=1

Ax
m

∂Φi

∂nx
m

(23)

Once the elements of the impedance matrix Z and the
forcing vector Y are determined, one may solve the linear
system of equations, Eq. 21, for the unknown vector X.

5.2 Derivation of matrix equations for Double Layer
Formulation

Testing Eq. 14 with the functions defined in Eq. 15,〈
wm,

R
s n•n′k2σ(r′)G(r,r′)ds′

〉
+〈wm,

R
s (n′x∇′σ)•(nX ∇G) ds′〉

=
〈

wm,
∂Φi

∂n

〉 (24)

Taking the first term for evaluation,〈
wm,

R
s n•n′k2σ(r′)G(r,r′)ds′

〉
=

R
s wm

R
s n•n′k2σ(r′)G(r,r′)ds′ds

=
u
∑

x=1
Ax

mnx
m • R

s n′k2σ(r′)G(r,r′)ds′
(25)

where nx
m represent the unit normal vectors of the sub

triangle connected to the mth node. We also note that
the double surface integration in Eq. 25 is converted to a
single surface integral by approximating the integrand at
the centroid of the sub triangle attached to mth node and
multiplying by the area of the sub triangle as before.

To evaluate the second term in the Eq. 24, we follow
the similar procedure mentioned in [Chandrasekhar and

Figure 3 : triangular patch Tf and associated edges and
nodes.

Rao (2004)], but node based basis function are used in
contrast to the edge based basis functions. The advan-
tages of using the node based basis function are already
mentioned in the earlier section.

Let us define, J′ = n′ X ∇′σ and the vector J′ is again
approximated by a new set of basis function. We have,

J′ =
Nf

∑
f=1

g f (r′) (26)

where g f is spread over the triangular patch and assumed
to be constant. Since g f is not an independent quantity,
a relationship between αn, fn and g f may be derived as
follows:

Consider the triangular patch Tf with associated non-
boundary edges l1, l2, l3 and nodes n1,n2,n3 as shown in
the Fig. 3.

Then, using well-known Stoke’s theorem and simple vec-
tor calculus, J′ = n′X ∇′σ may be re-written as

R
s J′ds′ =

R
s n′X ∇′σ ds′

=
H

Ce
σ′dl′

= α1 f1l1+α2 f2l2+α3 f3l3
2

(27)

where Ce is the contour bounding the triangle Tf and
li, i = 1,2,3 represent the edge vectors as shown in the
Fig. 3. Noting that,

R
s J′ds′ =

R
s g f ds′

= g f A f
(28)



248 Copyright c© 2005 Tech Science Press CMES, vol.9, no.3, pp.243-253, 2005

where A f is the area of the triangular patch attached to
the source node.

g f =
1

A f

Z
s
J′ds′ (29)

substituting Eq. 27 in Eq. 29, we get

g f =
1

2A f
(α1 f1l1 +α2 f2l2 +α3 f3l3) (30)

This is the required relationship between g f and fn.

Taking the testing operation on the second term of Eq.
24 and following the procedure mentioned in [Chan-
drasekhar and Rao (2004)], but with the node based basis
functions,

〈wm,
R

s J′ • (nX ∇G) ds′〉 =
H

Cm A•dl

= lm
2 •
(

p

∑
x=1

A
(

rc f x
m

)) (31)

where A =
R

s J′Gds′, p is the number of triangular
patches attached to the field node and rc f x

m is the posi-
tion vector for the centroid of triangular patch attached
to the field node. The expression for the testing opera-
tion on right hand side of the Eq. 24 is as same as that of
single layer formulation, i.e. Eq. 23

Substituting Eq. 23, Eq. 25 and Eq. 31 in Eq. 24, we get

u
∑

x=1
Ax

mnx
m • R

s n′k2σ(r′)G(rcx
m ,r′)ds′

+ lm
2 •
(

p

∑
x=1

A
(

rc f x
m

))
=

u
∑

x=1
Ax

m
∂Φi

∂nx
m

(32)

Substituting the source expansion defined in Eq. 16 and
Eq. 15, it results into a system of linear equations which
can be expressed in matrix form as

Zdl f X = Y (33)

where Zdl f is the impedance matrix for double layer for-
mulation of size NnXNn, X and Y are column vector of
size Nn.

Zmn
dl f =

u
∑

x=1

v
∑

y=1
Ax

mnx
m •ny

n
R

s k2σ(rcy
n )G(rcx

m ,rcy
n )ds′

+ lm
2 • ln

2A f n

(
p
∑

x=1

q
∑

y=1

R
s f G

(
rc f p

m ,rc f q
n

)
ds′
)

(34)

Note that the integration on the first term of right hand
side of the above equation is on the sub triangle attached
to the source node and the integration on the second term
is on the triangular patch attached to the source node.

Ym =
u

∑
x=1

Ax
m

∂Φi (rcx
m )

∂nx
m

(35)

where

Ax
m = Area of the sub triangle attached to the field

node.

A f n = Area of the triangular patch attached to the source
node.

rcx
m = Position vector for the centroid of the xth sub

triangle attached to field node.

rcy
n = Position vector for the centroid of the yth sub trian-

gle attached to source node.

rc f p
m = Position vector for the centroid of the pth triangu-

lar patch attached to field node.

rc f q
n = Position vector for the centroid of the qth triangu-

lar patch attached to source node.

Integrals appearing in Eq. 22 and Eq. 34 may be eval-
uated using the techniques mentioned in [Wilton, Rao,
Glisson, Schaubert, Al-Bundak, and Bulter (1984) and
Hammer, Marlowe, and Stroud (1956)] for an accurate
solution, as the former contains singular kernels.

For a plane wave incidence, we set

Φi = e jkk•r (36)

where the propagation vector k is

k = sinθ0 cosφ0 nx + sinθ0 sinφ0 ny +cosθ0 nz (37)

and (θ0,φ0) defines the angles of arrival of the plan wave
in the conventional spherical co-ordinate system.

Once the elements of the impedance matrix Zand the
forcing vector Y are determined, one may solve the lin-
ear system of equations, Eqs. 21 and 33, for the unknown
vector X.

6 Numerical Results

In this section, the numerical solution developed in the
above section is validated against exact solution wher-
ever available and against the edge based solution wher-
ever exact solutions are not available. The geometries
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Figure 4 : Scattering cross section versus polar angle for
an acoustically rigid sphere of radius 1m, subjected to
an axially incident plane wave of k = 1rad/m, based on
Single layer formulation (SLF).

considered here are simple canonical shapes like Sphere,
Cube, Cylinder and a Cone. For all these cases, the body
is placed at the center of the co-ordinate system and a
plane wave with k = 1rad/m, traveling along –Z axis is
incident on the body. Here, We note that, no convergence
study is carried out to ascertain the optimum number of
nodes required to obtain certain degree of accuracy. The
scattering cross section is defined by

S = 4π
∣∣Φs

Φi

∣∣2
≈ 1

4π

∣∣∣∣∣
Nn

∑
n=1

αn

[
v
∑

y=1
Ay

nny
n • ry

ne jkny
n•ry

n

] ∣∣∣∣∣
2

(38)

As a first case, a sphere of radius 1m is considered with
a triangular patch modeling. The modeling is done by
dividing the θ and φ direction into eight equal segments
each and the complete modeling procedure is described
in [Chandrasekhar and Rao (2004)]. This results into 58
nodes, 112 faces and 168 edges on the surface of the
sphere. Fig. 4. shows the scattering cross section as a
function of polar angle Θ for the rigid sphere based on
the SLF.

It is evident from the figure that, the method of mo-
ments solution based on the node based basis functions
matches well with the exact solution [Bowman, Senior
and Uslenghi (1969)]. The discrepancy between the two
solutions can be attributed to insufficient number of un-
knowns and the fact that the surface area of the triangu-

Figure 5 : Scattering cross section versus polar angle for
an acoustically rigid sphere of radius 1m, subjected to
an axially incident plane wave of k = 1rad/m, based on
Double layer formulation (DLF).

lated sphere is less than that of the actual sphere.

In order to demonstrate the convergence of the solution,
sphere is modeled with 156 nodes, 308 faces and 462
edges as well as with 212 nodes, 420 faces and 630 edges.
The scattering cross section of these two cases is also
shown in the Fig. 4. For all the above cases the DLF
solution is also given in the Fig. 5. which also very well
matches with the exact solution. Next, Fig. 6. shows the
comparison between Node based solution with the edge
based solution as this type of comparison is used for the
cases where exact solutions are not available. Fig. 7.
and Fig. 8. show the scattering cross section as function
of polar angle for the case of rigid sphere with a radius of
2m for SLF and DLF respectively. The solution for SLF
case can be further improved by increasing the number
of unknowns. However, the DLF solution well matches
with the exact solution even for ka = 2 .

Next, we consider the case of a cube with side length
l = 1m. The case of a cube presents a challenging task of
handling sharp edges and corners. To obtain a triangular
patch model, each side of the cube is divided into 4 equal
segments resulting in 96 square patches and 98 nodes on
the cube. By joining the diagonals, we get 192 triangular
patches and 288 edges. Fig. 9. shows the scattering
cross section Sas a function of Θ. It is evident from the
figure that the constant basis functions defined over an
node for SLF and DLF compare very well with that of
edge based SLF and DLF. Also, note that even though the
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Figure 6 : Scattering cross section versus polar angle for
an acoustically rigid sphere of radius 1m, subjected to
an axially incident plane wave of k = 1rad/m, based on
SLF and DLF.

Figure 7 : Scattering cross section versus polar angle for
an acoustically rigid sphere of radius 2m, subjected to
an axially incident plane wave of k = 1rad/m, based on
Single layer formulation (SLF).

basis functions are defined on sharp edges and corners,
the numerical results are fairly

accurate. Finally, we note that the node-based conven-
tional boundary integral methods [Schuster and Smith
(1985),Schuster (1985), Seybert, Soenarko, Rizzo, and
Shippy (1985), Malbequi, Candel, Rignot (1987)] need
complex calculations to obtain accurate results for this
geometry.

Figure 8 : Scattering cross section versus polar angle for
an acoustically rigid sphere of radius 2m, subjected to
an axially incident plane wave of k = 1rad/m, based on
Double layer formulation (DLF).

Figure 9 : Scattering cross section versus polar angle
for an acoustically rigid cube of length 1m, subjected to
an axially incident plane wave of k = 1rad/m, based on
SLF and DLF.

As a third example, we consider the case of a finite
cylinder of height 2.0m and 1.0m radius. The triangu-
lar patch modeling of the cylinder is obtained by di-
viding the length and circumference into 8 and 10 uni-
form segments, respectively, resulting in 80 rectangular
patches. By joining the diagonals, we obtain 160 trian-
gular patches. The cylinder is closed on both ends by
circular disks which are modeled by and additional 70 tri-
angular patches each. Thus, in total we have 300 patches
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Figure 10 : Scattering cross section versus polar an-
gle for an acoustically rigid cylinder of radius 1m and
height 2m, subjected to an axially incident plane wave
k = 1rad/m, based on SLF and DLF.

and 450 edges for this geometry. Fig. 10. shows the
scattering cross section S as a function of Θ. For this
case also, we note good comparison for SLF and DLF
results.

Lastly, we consider a cone of 1m height and 1m radius.
The cone has a sharp corner at the tip which is difficult to
handle using node-based BIE methods. Using a similar
discretization scheme as in the case of finite cylinder, the
cone is divided into 220 patches resulting in 330 edges.
Fig. 11. shows the scattering cross section S as a function
of Θ which compares very well with the SLF result.

7 Conclusions

In this work, we presented a novel numerical technique
implementing the method of moment’s solution. Node
based basis functions are defined to reduce the size of
impedance matrix and hence the time required for solv-
ing the linear system of equations. Triangular patch mod-
eling is used to approximate the surface of the scatter-
ing body. The scattering problem is formulated using
SLF and DLF. SLF and DLF are numerically solved us-
ing same basis functions. The numerical results of the
SLF and DLF based on the node based basis functions
are compared with exact solutions wherever available,
and edge based basis functions for various geometries

Figure 11 : Scattering cross section versus polar angle
for an acoustically rigid cone of radius 1m and height 1m,
subjected to an axially incident plane wave k = 1rad/m,
based on SLF and DLF.

of canonical shapes. However, no comparison is made
in this paper on the accuracy of node based versus edge
based schemes. It is clearly evident from the numerical
results that, schemes based on node based basis functions
converge towards the exact solutions with higher num-
ber of nodes and have advantage over the edge based
basis functions from the computational complexity per-
spective.

Although the numerical solution procedure presented, re-
sults in a smaller impedance matrix compared to the edge
based solution, the computational time required for fill-
ing the impedance matrix in the Node based basis func-
tions case is slightly higher than that of Edge based basis
functions. However, comparing the computational com-
plexity of solution of simultaneous equations, node based
basis functions has an advantage over the edge based ba-
sis functions and the excess computational time required
for filling the matrix is relatively negligible.

Further research is under progress to extend the node
based basis functions to solve the internal resonance
problem by implementing the combined layer formula-
tion, acoustic scattering from open, intersecting and fluid
bodies.
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