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3D Transient Heat Transfer by Conduction and Convection across a 2D Medium
using a Boundary Element Model

N. Simões 1,2 and A. Tadeu 2

Abstract: The use of the Boundary Element Method
(BEM) to formulate the 3D transient heat trans-
fer through cylindrical structures with irregular cross-
sections, bounded by a homogeneous elastic medium,
is described in this paper. In this formulation, both the
conduction and the convection phenomena are modeled.
This system can be subjected to heat emitted by either
point or line sources located somewhere in the media.
The solution is first obtained in the frequency domain
for a wide range of frequencies and axial wavenumbers.
Time domain responses are later calculated by means of
(fast) inverse Fourier transforms into space-time. The ap-
propriate fundamental solution (Green’s functions) em-
ployed in this BEM model takes the convection phe-
nomenon into account. The model is implemented and
validated by comparing it with analytical solutions for a
filled cylindrical circular ring core placed in an infinite
medium and subjected to a heat line source.

keyword: Transient heat transfer, conduction, convec-
tion, Boundary Element Method, Green’s functions.

1 Introduction

Most heat transfer problems involve heterogeneous el-
ements and unsteady exchanges of energy between dif-
ferent media. Formulations for studying those systems
should therefore contemplate transient heat phenomena.
Several numerical approaches have been developed to
study heat transfer. These include the Finite Elements
[e.g. Bathe (1976)], the Finite Differences, the Boundary
Elements Method [Brebbia et al. (1984), Pina and Fer-
nandez (1984)] and Meshless techniques [Lin and Atluri
(2000), Atluri and Shen (2002), Sladek et al. (2004)].
Of these techniques, the BEM only requires the dis-
cretization of the material boundaries, while it also takes
into account the radiation conditions in the far field,
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which makes the description of the region quite compact.
The Finite Elements and the Finite Differences Methods,
however, need the full discretization of the domain being
studied. The BEM is therefore an efficient method since
fewer equations are needed. Furthermore, it is probably
the method best suited to analyzing problems involving
infinite or semi-infinite domains, since it automatically
satisfies the far field conditions. Boundary Element mod-
els require the prior knowledge of Green’s functions: the
reference works by Carslaw and Jaeger (1959), Özisik
(1993) and Beck (1992) contain compilations of certain
Green’s functions and their applicability.

Most of the known schemes devised to solve transient
diffusion heat problems have either been formulated in
the time domain (“time-marching” approach) or else they
use Laplace transforms. The BEM has been employed in
both techniques. In the “time-marching” approach, the
BEM can be used to compute the solution directly in the
time domain, step by step, at successive time increments.
Chang et al. (1973) described the first time-domain di-
rect boundary integral method to study planar transient
heat conduction. Models involving time-dependent so-
lutions were also proposed by: Shaw (1974), to deal
with the heat diffusion in 3D bodies; Wrobel and Breb-
bia (1981), to study axisymmetric diffusion problems;
Dargush and Banerjee (1991), to model planar, three-
dimensional and axisymmetric analyses and Lesnic et al.
(1995) to study unsteady diffusion equation in both one
and two dimensions by a time marching BEM model,
taking into account the treatment of singularities.

A disadvantage of the “time-marching” techniques is that
their solutions may be unstable. An alternative is to apply
a Laplace transform to move the solution from the time
domain to a transformed variable. However, this process
requires an inverse transform to find the solution in the
time domain. Rizzo and Shippy (1970) used a Laplace
transform associated with a boundary integral represen-
tation for transient heat conduction analysis. Since then,
several authors have applied Laplace transforms to vari-
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ous diffusion problems, including Cheng et al. (1992),
Zhu et al. (1994) and Sutradhar et al. (2002). The
last author employed a Laplace transform BEM approach
in a 3D transient heat conduction problem, considering
that the thermal conductivity and the specific heat could
change exponentially in one coordinate.

One drawback of using Laplace transforms is the loss
of accuracy in the inversion process, which amplifies
small truncation errors. Stehfest (1970) has proposed a
more stable algorithm to overcome this problem. A time
Fourier transform scheme has been suggested by the au-
thors [Tadeu et al. (2004)] to deal with the time variable
in the transient heat conduction equation. This approach
allows the calculation to be made in the frequency do-
main.

In the work described here, the time Fourier Transform
is again used to compute the transient heat transfer when
cylindrical inclusions of infinite length are located inside
a homogeneous elastic medium. However, the convec-
tion phenomenon is also considered in this formulation.

The rest of this paper is organized as follows: first, the
fundamental equations of the three-dimensional heat dif-
fusion problems are described; then, the main integrals
required to solve the BEM are indicated, including the
necessary Green’s functions; next, the frequency heat re-
sponses through a cylindrical circular ring core are ob-
tained using the BEM model and compared with analyt-
ical solutions; the BEM model is then used to simulate
the heat propagation generated by a heat point source
placed in the vicinity of an inclusion with an irregular
cross-section, which encloses a circular cylinder.

2 Three-dimensional problem formulation

The transient heat transfer in a homogeneous, isotropic
body, involving the conduction and convection phenom-
ena, can be expressed by the diffusion equation below,
when constant velocities, Vx, Vy and Vz, are assumed
along the domain in the x, y and z directions respectively,
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where i =
√−1 and ω is the frequency. Eq. (2) differs

from the Helmholtz equation by the presence of a con-
vective term. For a heat point source applied at (0,0, 0)
in an unbounded medium, of the form p(ω,x,y, z, t) =
δ(x)δ(y)δ(z)ei(ωt), where δ(y) and δ(z) are Dirac-delta
functions, the fundamental solution of eq. (2) can be ex-
pressed as
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When the geometry of the problem does not change
along one direction (z) the full 3D problem can be ex-
pressed as a summation of simpler 2D solutions. This re-
quires the application of a Fourier transformation along
that direction, which can be expressed as a summa-
tion of 2D solutions with different spatial wavenumbers
kz[Tadeu & Kausel (2000)].

The application of a spatial Fourier transformation to
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where H0 are second-kind Hankel functions of the order
0, and r0 =

√
x2 +y2.

This response is related to a spatially varying heat line
source of the type p(ω,x,y,kz, t) = δ(x)δ(y)ei(ωt−kzz)

(see 1).

The full three-dimensional solution can be syn-
thesized by applying an inverse Fourier trans-
form along the kz domain to the expression
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Figure 1 : Spatially harmonic varying line load
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. If we as-

sume the existence of virtual sources, equally spaced
sufficiently far apart, this inverse Fourier transformation
can be formulated as a discrete summation, which
enables the solution to be obtained by solving a limited
number of two-dimensional problems,
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where kzm is the axial wavenumber given bykzm = 2π
Lz

m.
The distance Lz must be large enough to prevent spatial
contamination from the virtual sources [Bouchon & Aki
(1977)]. An analogous approach has been used by Tadeu
et al (2002) and Godinho et al (2001) to solve problems
of wave propagation.

The fundamental solution of the differential equation ob-
tained from eq. (2) after the application of a spatial
Fourier transformation along the z direction is eq. (4)
with Vz = 0.⎛
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The frequency responses may need to be computed from
0.0Hz up to very high frequencies. However, since the
heat responses decay very fast as the frequency increases,
it allows us to limit the upper frequency where the solu-
tion is required. The use of complex frequencies leads

to arguments for the Hankel function different from zero
(ωc =−iη for 0.0Hz), when the frequency is zero, which
allows the calculation of the static response.

The heat responses in the spatial-temporal domain are
then obtained by means of an inverse fast Fourier trans-
form in kz and in the frequency domain. In order to pre-
vent the aliasing phenomena, complex frequencies with
a small imaginary part of the form ωc = ω − iη (with
η = 0.7∆ω, and ∆ω being the frequency step) are used
in the computation procedure. The constant η cannot be
made arbitrarily large, since this leads to severe loss of
numerical precision in the evaluation of the exponential
windows [see Kausel and Roësset (1992)]. The time evo-
lution of the heat source amplitude can be easily changed.

3 Boundary Element Method formulation

The fundamental BEM equations can be found in Wro-
bel (1981), where they are described in detail. The BEM
can be used to solve eq. (6) for each value of kz, corre-
sponding to individual 2D problems.

The boundary integral equations for a homogeneous
isotropic medium layer that is embedded in an infinite
medium and contains a cylindrical body (bounded by a
surface S), when this system is subjected to an incident
heat field given by T̃inc, are expressed as follows,
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These boundary integral equations incorporate a term re-
lated to the convection phenomenon: Vn = Vxnx +Vyny.
In eqs. (7) and (8), the interior and exterior domains are
identified by the superscripts int and ext respectively, νn

is the unit outward normal along the boundary, G and H
are respectively the fundamental solutions (Green’s func-
tions) for the temperature (T̃ ) and heat flux (q), at (x,y)
due to a virtual point heat load applied at (x0,y0), p is
a constant defined by the shape of the boundary, with a
value of 1/2 if (x0,y0) ∈ S when the boundary is smooth.
Note that this formulation assumes initial conditions of
null temperatures and null heat fluxes throughout the do-
main. Other initial conditions would require the evalua-
tion of the surface integrals.

If the boundary is discretized into N straight boundary
elements, with one nodal point in the middle of each ele-
ment, eqs. (7) and (8) take the form,
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l are the nodal heat fluxes and
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are the nodal heat fluxes and temperatures in the interior
domain,
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where ηl is the unit outward normal for the lth

boundary segment Cl. In equations (9) and (10),
H(ext) (ω,xl,yl,ηl,xk,yk,kz) and G(ext) (ω,xl,yl,xk,yk,kz)
are respectively the Green’s functions for the heat fluxes
and temperature components in the exterior medium
of the inclusion, while H(int) (ω,xl,yl,ηl,xk,yk,kz) and
G(int) (ω,xl,yl,xk,yk,kz) are respectively the Green’s
functions for the heat fluxes and temperature components
in the interior medium of the inclusion, at point(xl,yl),
caused by a concentrated heat load acting at the source
point (xk,yk). If the loaded element coincides with the el-
ement being integrated, the factor ckl takes the value1/2.

The two-and-a-half dimensional Green’s functions for
temperature and heat fluxes in Cartesian co-ordinates are
those for an unbounded medium,
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tion, and Hn are Hankel functions of the second kind and
order n.

If the element to be integrated is not the loaded element,
the integrations in equations (9) and (10) are evaluated
using a Gaussian quadrature scheme, while for the loaded
element, the existing singular integrands in the source
terms of the Green’s functions are calculated in closed
form [Tadeu (1999)].

The final system of equations is assembled assuring the
continuity of temperatures and heat fluxes along the
boundary of the inclusion. The unknown nodal tempera-
tures and heat fluxes are obtained by solving this system
of equations, allowing the heat field along the domain to
be defined.

The final integral equations are manipulated and com-
bined so as to impose the continuity of temperatures and
heat fluxes along the boundary of the inclusion, and a
system of equations is assembled. The solution of this
system of equations gives the nodal temperatures and
heat fluxes, which allow the reflected heat field to be de-
fined.
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A numerical inverse fast Fourier transform in kz and fre-
quency domain is then used to compute the temperature
field in the spatial-temporal domain.

4 Bem validation

The BEM algorithm was implemented and validated by
applying it to a filled cylindrical circular ring core (see
figure 2), subjected to a harmonic heat line source applied
at point O (x0,y0), for which the solution is known in
closed form and described in Appendix A. The continuity
of normal heat fluxes and temperatures at both interfaces
along the material interfaces (a = 0.5m and b = 1.0m)
are assumed. The thermal properties and the convection
velocities allowed at each of the three media are listed in
figure 1. The reflected heat responses were calculated in
the frequency domain from 0Hz to 64×10−7 Hz, with a
frequency increment of ∆ω = 1×10−7 Hz and consider-
ing a single value of the parameter kz equal to 0.4rad / m.
The simulated system is heated by a harmonic line source
located in the inner medium of the circular ring core
(x = −0.3m,y = 0.0m).

Figure 2 : Circular ring core geometry

Fig. 3 shows the real and imaginary parts of the re-
sponses at receivers placed in each medium: Rec. 1 (x =
0.2m,y = 0.2m), in medium 3; Rec. 2 (x = 0.2m,y =
0.7m), in medium 2; and Rec. 3 (x = 0.2m,y = 1.2m),
in medium 1. The solid lines represent the analytical
responses, while the marked points correspond to the
BEM solution, computed using 100 constant boundary
elements. The round and the triangle marks designate the
real and imaginary parts of the responses, respectively.

The results obtained by the two formulations are in very
close agreement. Very good results were also obtained
for heat sources and receivers placed at different posi-
tions.

5 Applications

The BEM formulation has been used to study the heat
propagation in a system in which a hollow square
(medium 2) is buried in an unbounded water medium
(medium 1), and the square, 0.5 m length, contains a
solid cylinder, 0.15 m of radius, which is filled with oil
(medium 3), as illustrated in Figure 4. The inclusions
have been modeled using a total of 500 straight bound-
ary elements.

Two different cases have been considered ascribing dif-
ferent properties to the medium 2. The hollow square
(containing the cylindrical ring core) (medium 2) is de-
fined as being made of steel (Case 1) or concrete (Case
2), for which the thermal properties are listed in the figure
2. The thermal conductivity (k1 = 0.606W.m - 1.◦C−1),

the density (ρ1 = 998.0Kg.m - 3) and the specific heat

(c1 = 4181.0 J.Kg - 1.◦C−1) of the host medium (wa-
ter) are kept constant in all the analyses and it is as-
sumed that they do not vary with temperature. The
thermal properties of the oil (medium 3) are assumed
to remain constant with temperature variations, allow-
ing k3 = 0.145W.m - 1.◦C−1, ρ3 = 887.1 Kg.m - 3 and
c3 = 1888.5 J.Kg - 1.◦C−1.

This system is subjected to a heat point source, placed
in the host medium at (x0 = −0.15 m, y0 = −0.1 m,
z0 = 0.0 m), which starts emitting energy at t ≈ 0.76 h.
Its power is increased linearly from 0.0 W to 1000.0 W,
reaching maximum power at t ≈ 3.46 h. This peak is
maintained for a period of t ≈ 2.72 h. The power is then
reduced linearly to 0.0 W, which occurs at t ≈ 8.89 h.
The heat field is computed for several grids of receivers
in the frequency range of

[
0.0, 128.0e−5Hz

]
, with a fre-

quency increment of 0.5e−5 Hz, giving a time period of
55.56 h. The spatial intervals between virtual sources are
given by the higher value of L, depending on the mate-

rial’s thermal properties, L = (2
√

ki
/
(ρi ci∆ f )+2).

Next, two situations are presented: the modeling of both
the conduction and convection phenomena, or the con-
duction phenomenon alone. The convection velocity (in
the y direction) affecting the water medium may be 2.0×
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Table 1 : Material thermal properties

Medium 1 Medium 2 Medium 3

Thermal conductivity
(

W.m - 1.oC−1
)

k1 = 0.12 k2 = 0.72 k0 = 0.12

Density
(

Kg.m - 3
)

ρ1 = 1380.0 ρ2 = 780.0 ρ0 = 1380 .0

Specific heat
(

J.Kg - 1.oC−1
)

c1 = 510.0 c2 = 1860.0 c0 = 510.0

Convection velocity (m / s) V1 = 1×10−6 V2 = 2×10−6 V3 = 1×10−6

Table 2 : Thermal properties of medium 2

Medium 2 Thermal conductivity,
k [W.m - 1.oC−1]

Specific heat, c [J.Kg - 1.oC−1] Density, ρ [Kg.m - 3]

Steel 63.9 434.0 7832.0
Concrete 1.4 880.0 2300.0

10−6 m / s, while for the oil a velocity of 1×10−6 m / s is
allowed.

Table 3 : Coordinates of receivers Rec. 1 to Rec. 5,
placed at z = 0.0m and z = 0.5m

Receiver x (m) y (m)
Rec. 1 −0.1835 0.2563
Rec. 2 −0.1835 0.5601
Rec. 3 0.0063 0.2563
Rec. 4 0.1835 0.4335
Rec. 5 0.1835 0.5601

Figures 5 and 6 illustrate the temperature evolution
recorded at receivers Rec. 1 to Rec. 5, located at
z = 0.0m and z = 0.5m, respectively. The receivers are
placed inside the inclusions and also in the host medium,
as shown in Figure 4 and listed in Table 3.

Since null initial temperatures and heat fluxes are the ini-
tial conditions prescribed for the full domain, all the re-
ceivers exhibit null temperatures in the initial moments
of the time responses. After the heat source has started
emitting energy, the receiver closest to the heat source
(Rec. 1), on plane z = 0.0m, is the first to register a
change of temperature. This same receiver also records
a higher maximum temperature during the time domain
under study than the rest of the receivers, for both cases.
For Case 1, receiver Rec. 1 reaches almost 47.0 ◦C, while
a maximum of 130.0 ◦C is registered when Case 2 is com-

puted. At z = 0.5m, when Case 1 is modeled, receiver
Rec. 1 records a higher maximum temperature (23.2 ◦C)
than the same receiver does in Case 2 (15.9 ◦C). For Case
1, the amplitude decreases 23.8 ◦C between the planes
z = 0.0m and z = 0.5m, while the difference is 114.1 ◦C
for the Case 2. We may conclude that in the presence of
the hollow concrete inclusion, the energy does not prop-
agate so easily in the z direction, as it does when the in-
clusion is made of steel. So, the amplitude differences
between the two cases, found at z = 0.0m, result from
heat accumulation in the source plane (z = 0.0m), when
the inclusion medium presents a significantly lower ther-
mal diffusivity.

At receiver Rec. 5, which is placed further away from
the heat source, the temperature increase smoothly and
its maximum is reached at later times (when the source
power is no longer emitting energy), which means that
the energy is still propagating to the zones with lower
temperatures in order to achieve energy equilibrium.

The distances from the source to the receivers Rec. 3 and
Rec. 4, located at z = 0.0m, are 0.389m and 0.629m,
respectively. Receiver Rec. 3 exhibits a far higher maxi-
mum temperature than Rec. 4 in Case 2 (concrete mate-
rial). When steel is used, however, these receivers regis-
ter similar maximum temperatures. We may also observe
that although receivers Rec. 2 and Rec. 4, located at
z = 0.0m, are almost the same distance from the source,
Rec. 4 registers a higher maximum temperature sooner
than Rec. 2, in Case 1.
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Figure 3 : Real and imaginary parts of the heat responses
when a heat source is placed in medium 3 (x = −0.3m,
y = 0.0m): a) Receiver Rec. 1; b) Receiver Rec. 2; c)
Receiver Rec. 3
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Figure 4 : Geometry of the problem and position of a
set of receivers (Receivers Rec. 1 to Rec. 5) placed at
z = 0.0m and z = 0.5m

The factors involved in these dissimilar responses are re-
lated to the thermal diffusivity differences between the
three media and also to the receivers’ distance from the
heat source. When no convection phenomenon is mod-
eled, lower temperatures are recorded by all the receivers,
as shown in figure 5. The presence, direction and ampli-
tude of the convection velocity may have a considerable
influence on the heat responses.

In figure 6 a set of snapshots, obtained at t = 10 h
and t = 20 h, displays the temperature field for both
cases, the hollow square steel and concrete structures.
The results are presented using two-dimensional contour
figures (transversal and longitudinal grid of receivers).
These last illustrations are obtained from a transversal
grid of receivers (80×80) placed at z = 0.0 m and from a
longitudinal grid of receivers, distributed in the x z plane,
crossing the hollow inclusion at y = 0.25 m.

At z = 0.0m and time t = 10 h it is interesting to note that
round isothermals can be found within the oil domain
for Case 1 (see figure 6a)), which means that the heat
propagates faster around the steel structure than through
the oil fluid. The temperature around the full circular
fluid medium is similar and the heat propagation process
for this fluid medium is from the boundary to the centre.
However, when the hollow square is made of concrete it
can be observed that the temperature distribution mostly
depends on the distance between each point and the heat
source, since the thermal diffusivity difference between
media 2 and 3 is less than for the steel material. The re-
ceivers placed in the concrete medium, behind the cylin-
drical circular fluid medium (opposite to the source side),
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b)  

Figure 5 : Heat curves registered for Cases 1 and 2 when both conduction and convection phenomena are assumed:
a) Receivers Rec. 1 to Rec. 5, placed at z = 0.0m; b) Receivers Rec. 1 to Rec. 5, placed at z = 0.5m
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Figure 6 : Heat curves registered for Cases 1 and 2 when the conduction phenomenon is assumed alone: Receivers
Rec. 1 to Rec. 5, placed at z = 0.0m
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d) 

Figure 7 : Two-dimensional snapshots of the temperature fields (◦C) when both conduction and convection phe-
nomena are modelled: a) Case 1, at t = 10h; b) Case 1, at t = 20h; c) Case 2, at t = 10h; d) Case 2, at t = 20h
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register lower temperatures along the transversal grid of
receivers than the other regions that are the same distance
from the source, which means that the heat flows through
this inclusion more slowly. As time elapses, the tempera-
ture differences between the region behind the inclusion
and in its vicinity decrease (t = 20 h in figure 6d)), con-
firming the equilibrium evolution. It is interesting to note
also that the temperature rises in the zones a long away
from the source, since the energy is still flowing away
through the domain, while the temperature closer to the
heat source decreases sharply.

The results computed at a grid of receivers distributed
along the xz plane at z = 0.025 m are useful to better un-
derstand the heat diffusion process in the z direction. The
receivers are spaced 0.025m along the z direction: the
grid is formed by 80×41 receivers.

Figures 7 c) and d) illustrate the high heat diffusivity
[faster heat propagation] through the steel material: the
presence of isothermals that are parallel with the x direc-
tion reflects this behaviour. The temperature distribution
inside the oil reveals a long delay in the energy progress
in the z direction. It is clear that the presence of the cir-
cular heterogeneity introduces an abrupt disruption of the
heat propagation along the transversal domain.

6 Final Remarks

A BEM model has been implemented and used to com-
pute three-dimensional transient heat transfer along a
square hollow inclusion of infinite length, itself contain-
ing an inclusion filled with oil, located inside a homoge-
neous elastic medium and heated by a spherical heat load
placed inside the host medium. The phenomena stud-
ied here include heat conduction and convection. The
incorporation of convection diffusion changes the heat
responses in keeping with the amplitude and velocities
assumed for each material.

A Fourier transform applied in the time domain is the
technique used to deal with the time variable of the diffu-
sion equation. Notice that, if the geometry does not vary
along one direction, the solution becomes simpler, since
the full 3D problem can be computed as a summation of
2D solutions with different spatial kz wavenumbers. The
application of an inverse Fourier transform along the kz

domain can be expressed as a discrete summation if a
sequence of sources, equally-spaced, is considered. A
numerical inverse fast Fourier transform in kz and in the

frequency domain is then used to compute the tempera-
ture field in the spatial-temporal domain.
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Appendix A: Analytical Solution of the 3D Tran-
sient Heat Transfer through a Cylin-
drical Circular Ring Core

Consider a ring defined by the internal and external radii,
a and b respectively, bounded by an exterior and interior
medium, as illustrated in figure 8. This ring is heated by
a harmonic source with radial convection, placed in the
exterior solid medium (with a thermal conductivity k1, a
density ρ1, a specific heat c1 and a convection velocity
V1). The heat generated by this source propagates and
hits the outer surface of the ring. After striking the outer
surface of the cylindrical ring, part of the incident en-
ergy is reflected back into the exterior solid medium, and
the remaining energy is transmitted into the ring material
(with a thermal conductivity k2, a density ρ2, a specific
heat c2 and a convection velocity V2), in the form of prop-
agating energy. This energy continues to propagate and
until it strikes the inner surface of the ring. There, a simi-
lar phenomenon may occur, with part of the energy being
transmitted to the inner medium (with a thermal conduc-
tivity k3, a density ρ3, a specific heat c3 and a convection
velocity V3) and the rest being reflected back to the ring
medium. This process will be repeated until all the en-
ergy is dissipated.
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Figure 8 : Circular ring geometry and representation of
the surface terms

Incident heat field (or free-field)

The three-dimensional incident field for a point pressure
source placed at (x0,0,0), can be expressed as

T̂inc(ω, r, r′, z) =
Ae

V1r
2K1

2k1

e
−i
√
− V2

1
4K2

1
− iω

K1

√
r′2+z2

√
r′2 + z2

with r′ =
√

(x−x0)
2 +y2 (12)

where the subscript inc denotes the incident field, A is the
heat amplitude, K1 = k1

ρ1 c1
and r′ defines the distance be-

tween the source and the receiver. When a Fourier trans-
formation is applied along the z direction, the incident
field can be expressed as a summation of 2D sources,
with different spatial wavenumbers,

T̂inc(ω, r, r′) =
2π
L

M

∑
m=−M

T̃inc(ω, r, r′,kzm)e−ikzmz (13)

with T̃inc (ω, r,kzm) = −iA
4k1

e
V1r
2K1 H0 (kα1r′) and kα1 =√

−V 2
1

4K2
1

+ −iω
K1

− (kzm)2.

Eq. (13) expresses the incident field as heat terms cen-
tred at the source point (x0, 0, 0), and not at the axis of
the cylindrical inclusion, and this constitutes a difficulty.
In order to overcome this problem, the incident heat field
can be expressed as heat terms centred at the origin. This
is achieved by applying Graf’s addition theorem [Wat-
son (1980)], which results in the expressions below (in

cylindrical coordinates):

T̃inc(ω, r,θ,kzm)

= − iA
4k1

e
V1r
2K1

∞

∑
n=0

(−1)n εnJn(kα1 r0)Hn(kα1 r)cos(nθ)

when r > r0

T̃inc(ω, r,θ,kzm)

= − iA
4k1

e
V1r
2K1

∞

∑
n=0

(−1)n εnHn(kα1r0)Jn(kα1 r)cos(nθ),

when r < r0, (14)

in which r0 is the distance from the source to the axis of
the inclusion, Jn(. . . ) are Bessel functions of order n, and

εn =
{

1 i f n = 0
2 i f n �= 0

.

The scattered heat field in the outer medium

The heat generated in the exterior medium depends on
heat coming from the external surface of the cylindrical
ring, which propagates away from it. The outgoing heat
can be defined using the following equation,

T̃1(ω, r,θ,kzm) = e
V1r
2K1

∞

∑
n=0

AnHn(kα1r)cos(nθ) (15)

where An are unknown amplitudes.

The heat field in the ring

Two distinct groups of heat fields exist inside the ring,
corresponding to the heat generated at the external sur-
face and travelling inwards, and to the heat generated at
the internal surface of the pipe, which travels outwards.
For the terms generated at the external boundary, the cor-
responding standing heat field is given by

T̃2(ω, r,θ,kzm) = e
V2r
2K2

∞

∑
n=0

BnJn(kα2 r)cos(nθ) (16)

where Bn are unknown amplitudes.

For the heat generated at the internal boundary, there is a
corresponding diverging heat field, which can be defined
by,

T̃3(ω, r,θ,kzm) = e
V3r
2K3

∞

∑
n=0

CnHn(kα3r)cos(nθ) (17)

where kα3 =
√

−V 2
3

4K2
3

+ −iω
K3

− (kzm)2 and Cn are unknown

amplitudes.
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The heat field in the inner medium

In the inner medium (medium 3), the heat field depends
only on heat coming from the internal surface of the
cylindrical ring core, and thus only inward-propagating
heat is generated. The corresponding heat field is given
by:

T̃4(ω, r,θ,kzm) = e
V3r
2K3

∞

∑
n=0

DnJn(kα3 r)cos(nθ) (18)

where Dn are unknown amplitudes.

The unknown coefficients An, Bn, Cn and Dn are deter-
mined by imposing the required boundary conditions.
For the case described here, the boundary conditions are
the continuity of temperatures and normal heat fluxes on
the two interfaces. The four equations defined give rise
to a system of four equations with four unknowns, which
yields the unknown coefficients.

T̃inc(ω,b,θ,kzm)+ T̃1(ω,b,θ,kzm) = T̃2(ω,b,θ,kzm)
at r = b

k1
∂
[
T̃inc(ω,b,θ,kzm)

]
∂r

+k1
∂
[
T̃1(ω,b,θ,kzm)

]
∂r

= k2
∂
[
T̃2(ω,b,θ,kzm)

]
∂r

at r = b

T̃2(ω,a,θ,kzm)+ T̃3(ω,a,θ,kzm) = T̃4(ω,a,θ,kzm)
at r = a

k2
∂
[
T̃2(ω,a,θ,kzm)

]
∂r

+k2
∂
[
T̃3(ω,a,θ,kzm)

]
∂r

= k3
∂
[
T̃4(ω,a,θ,kzm)

]
∂r

at r = a (19)

Combining eqs. (A.3) and eqs. from (15) to (A.8) one
obtains a system of equations which is then used to find
the unknown coefficients (An, Bn, Cn, Dn):⎡
⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦
⎡
⎢⎢⎣

An

Bn

Cn

Dn

⎤
⎥⎥⎦

= (−1)n εn

⎡
⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎦ (20)

with

a11 = e
V1b
2K1 Hn(kα1 b);

a12 = −e
V2b
2K2 Jn(kα2b);

a13 = −e
V2b
2K2 Hn(kα2b);

a14 = 0;

a21 = 0;

a22 = e
V2a
2K2 Jn(kα2a);

a23 = e
V2a
2K2 Hn(kα2 a);

a24 = e
V3a
2K3 Jn(kα3a);

a31 = k1

{ V1b
2K1

Hn(kα1 b)+
[nHn(kα1 b)− (kα1b)Hn+1(kα1 b)]

}
e

V1b
2K1 ;

a32 = −k2

{ V2b
2K2

Jn(kα2b)+
[nJn(kα2b)− (kα2 b)Jn+1(kα2 b)]

}
e

V2b
2K2 ;

a33 = −k2

{ V2b
2K2

Hn(kα2b)+
[nHn(kα2 a)− (kα2 a)Hn+1(kα2b)]

}
e

V2b
2K2 ;

a34 = 0;

a41 = 0;

a42 = k2

{ V2a
2K2

Jn(kα2a)+
[nJn(kα2a)− (kα2 a)Jn+1(kα2a)]

}
e

V2a
2K2 ;

a43 = k2

{ V2a
2K2

Hn(kα2 a)+
[nHn(kα2 a)− (kα2a)Hn+1(kα2 a)]

}
e

V2a
2K2 ;

a44 = −k3

{ V3a
2K3

Hn(kα3 a)+
[nJn(kα3a)− (kα3 a)Jn+1(kα3 a)]

}
e
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2K3 ;

b1 =
iA
4k1

e
V1b
2K1 Hn(kα1 r0)Jn(kα1 b);

b2 = 0;

b3 =
iA
4

e
V1b
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⎧⎨
⎩

V1b
2K1

Jn(kα1 b)+[
nJn(kα1 b)

−(kα1 b)Jn+1(kα1b)

] ⎫⎬⎭ ;

b4 = 0.

Notice that when the position of the heat source is
changed, the terms ai j of the matrix remain the same,
while the independent terms bi are different. However, as
the equations can be easily manipulated to consider an-
other position for the source, they are not included here.




