
Copyright c© 2005 Tech Science Press CMES, vol.9, no.2, pp.211-219, 2005

Numerical Simulations of Unstable Flow through a Spherical Bulge in a 90-degree
Asymmetrical Bend

J.M.M. Sousa 1

Abstract: Time-dependent numerical simulations of
the flow through a spherical bulge in a 90-degree asym-
metrical bend have been performed for Reynolds num-
bers in the range 100-400. The present results have
demonstrated that the flow reaches asymptotically steady,
symmetrical solutions for Reynolds numbers up to 300,
whereas a value of 400 for this parameter leads to un-
steadiness. The computed flow behavior at this higher
Reynolds number has shown to be characterized by an
intermittent transition between small-amplitude, irregu-
lar oscillations and large-amplitude bursts occurring at a
low frequency. In addition, the unsteady flow was asym-
metrical and exhibited swirl switching.

keyword: Unstable flow, symmetry-breaking, inter-
mittency, spherical bulge, asymmetrical bend.

1 Introduction

It is well known that impinging jets and flows in cavity-
type geometries are prone to exhibit self-sustained os-
cillations [Rockwell and Naudascher (1978)]. Both pe-
riodic [Ghaddar, Korczak, Mikic and Patera (1986);
Pereira and Sousa (1993)] and aperiodic cavities [Rock-
well (1977); Pereira and Sousa (1995)] have been shown
to develop an oscillatory flow behavior when a certain
value of the Reynolds number is exceeded. On the other
hand, the classical example of a diverging channel (with
the sudden expansion as a limit case) is also known to
present hydrodynamic instabilities that may lead to dif-
ferent types of bifurcations [Drazin (1999)]. Symmetry-
breaking of the flow, giving rise to non-unique solutions,
arise in such flows through a supercritical pitchfork bi-
furcation [Fearn, Mullin and Cliffe (1990); Durst, Pereira
and Tropea (1993); Drikakis (1997)]. In addition, tran-
sition from a steady solution to periodic flow has been
reported to occur in channels with expanded sections as
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a consequence of a Hopf bifurcation [Sobey and Drazin
(1986); Mizushima, Okamoto and Yamaguchi (1996)].

The flow through a bulge in a bend may be geometri-
cally classified as a cavity-type problem, displaying a
three-dimensional, gradual expansion and contraction of
the flow along the main channel. Furthermore, the con-
fined jet produced at the entrance of the bulge even-
tually impinges at the opposite surface, thus provid-
ing an additional source of instability in this flow. In
fact, impingement-type geometries usually exhibit well-
organized oscillation patterns [Rockwell and Naudascher
(1979)]. It is widely accepted in the literature that the oc-
currence of organized phenomena in confined geometries
is due to a feedback effect. Initial disturbances convected
by the flow interact with the impingement point, produc-
ing a feedback that ultimately results in the establishment
of a periodic cycle.

The practical interest of the present work can be found in
two distinct fields of research: in vitro studies of hemo-
dynamics and pharmacokinetics.

Concerning the first application, the relevance of this par-
ticular geometry arises from the fact that it can be seen
as a simplified model of a saccular aneurysm. Flows
through bends display regions where rapid changes in
wall shear stresses occur, making such areas of a ves-
sel particularly vulnerable to abnormal biological re-
sponses [Ku (1997); Berger and Jou (2000)]. Although
a Newtonian fluid was considered here and the effects of
compliant walls and pulsatile inlet flow were not taken
into account at this stage, the numerical simulations car-
ried out for the present investigation are in the same
range of Reynolds number as the blood flow in intra-
cranial arteries [Liou and Liou (1999)]. Studies of hy-
drodynamic stability [Yip and Yu (2001)], chaotic mix-
ing [Butty, Gudjonsson, Buchel, Makhijani, Ventikos and
Poulikakos (2002)] and flow dynamics [Valencia (2004)]
in aneurysm models have been reported in the literature,
demonstrating the importance of these problems.
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The second application stems from the observation that
the present geometry faithfully reproduces the induction
port (throat) of a standard apparatus used in the pharma-
cological assessment of the performance of dry powder
inhalers [Hallworth and Westmoreland (1987)]. The de-
vice is the basis of one of the widest used reference meth-
ods for in vitro testing of inhaled aerosols, as described in
the various Pharmacopoeias. Compendial methods have
the advantage that these have been validated in many lab-
oratories but are often not based on the latest technology
[Mitchell and Nagel (1997)], which supports the need
for further investigation. In this case, it can be easily
demonstrated that the dynamics of the gas flow will have
a significant impact on the deposition characteristics of
the aerosol in the testing device. The Reynolds numbers
of interest for this application are generally higher than
those reported for hemodynamic problems, say higher
than 1000. However, inspiratory flow rates associated to
children or asthmatic patients lead to flows characterized
by significantly lower Reynolds numbers.

The present work addresses the unstable behavior exhib-
ited by the flow through a spherical bulge in a 90-degree
asymmetrical bend. Time-dependent numerical solutions
of the Navier-Stokes equations have been obtained for
Reynolds numbers in the range 100-400, employing a
finite-volume method. A physical interpretation of the
flow dynamics based on the theory of dynamical systems
has been provided as well.

2 Numerical formulation

2.1 Governing equations

The mass and momentum conservation equations gov-
erning the unsteady flow of an incompressible, Newto-
nian fluid were solved numerically. Denoting the fluid
density by ρ, the velocity vector by v and the stress ten-
sor by τ, these equations can be written in vector form,
independently of the coordinate system, as

∇ · (ρv) = 0, (1)

∂
∂t

(ρv)+∇ · (ρv : v −τ) = 0, (2)

where the stress tensor , from Stokes’ hypothesis, is given
by

τ = −
(

p+
2
3

µ∇ ·v
)

i+µ
(
∇v+∇t v

)
. (3)

In Eq. (3) µ is the dynamic viscosity, p is the pressure
and i stands for the unit tensor of second order.

2.2 Discretization procedure and method of solution

Steady and time-dependent flow solutions have been
obtained employing the finite-volume method to dis-
cretize the equations on a structured, non-orthogonal,
non-staggered grid system. The numerical method is
second-order accurate in space and in time, using Crank-
Nicholson and Adams-Bashforth time-stepping proce-
dures to advance diffusion and convective terms in time,
respectively.

Denoting by φ j a generalized dependent variable calcu-
lated at a control volume j, the semi-implicit procedure
can be expressed as follows:

φn+1
j = φn

j +
1
2

(
3Cn

j −Cn−1
j

)
+

1
2

(
Dn+1

j +Dn
j

)
, (4)

where Cn
j and Dn

j are the terms resulting from the appli-
cation of the discretization procedure to the convective
and diffusion parts of the governing equations, respec-
tively, evaluated at time level n. The pressure field is ob-
tained from the solution of a Poisson equation obtained
by combining Eqs. (1)-(2). Additional details regarding
the numerical method were given by Pereira and Sousa
(1999). In the foregoing paper it was also demonstrated
that this numerical method has the capability of provid-
ing accurate predictions of steady and oscillatory regimes
for confined vortex breakdown flows up to Re = 3100,
employing similar grid resolutions.

In the present case, a 90-degree asymmetric bend exhibit-
ing a spherical bulge with an inlet diameter ratio of 16/9
was considered. The bend is asymmetric because the out-
let channel has a smaller diameter than the inlet duct and
its axis is displaced by a small amount with respect to the
axis of the sphere. The diameter ratio between the two
ducts is 35/54 and the ratio of the axis displacement to
the main channel diameter is 1/15. The boundaries defin-
ing the exact geometry of the physical domain where nu-
merical solutions of the governing equations have been
sought were obtained from digital images of cut planes
through a glass model. These were produced by laser
light sheet illumination, as shown for example in Fig. 1.

A hybrid elliptic-algebraic procedure has been adopted
for the generation of the numerical grid, aiming to dis-
cretize the physical domain in finite volumes. Two dif-
ferent levels of discretization have been considered in the
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Figure 1 : Digital image of a cut plane through a glass
model produced by laser light sheet illumination
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Figure 2 : Geometry of the physical domain and numer-
ical grid (only odd lines of the coarse discretization are
shown for clarity)

numerical simulations: coarse (32×32×70 grid nodes)
and fine (62×62×138 grid nodes). Figure 2 illustrates
both the numerical grid and the main geometrical details
of the physical domain.

For the three-dimensional geometry under consideration,
it was possible to produce good quality grids by using
the aforementioned procedure. However, grid generation
may become a major stumbling block in the extension
of this investigation to more complex geometries, such

as those encountered in the study of real aneurysms. A
solution may be found in the use of meshless methods
[Atluri (2005)], a class of numerical techniques that rely
on global interpolation on non-ordered spatial point dis-
tributions. Among the various possibilities, the Meshless
Local Petrov-Galerkin (MLPG) methods seem to consti-
tute an adequate choice. These have been mainly pro-
posed for elasto-statics [Shen, Han and Atluri (2003)].
Despite this fact and through the MLPG “mixed” ap-
proach, Atluri, Han and Rajendran (2004) have devel-
oped a meshless finite-volume technique, which is a
counterpart to the mesh-based finite-volume method em-
ployed throughout this numerical study.

No-slip boundary conditions were applied to all domain
surfaces, with the exception of the inlet and outlet sec-
tions. At the inlet, a uniform, time-independent w-
velocity profile was prescribed. The velocity magnitude
was adjusted from case to case according to the desired
value of the Reynolds number Re (based on the inlet ve-
locity and diameter) for the simulation. On the other
hand, a Sommerfeld radiation condition [Kobayashi,
Pereira and Sousa (1993)] was implemented at the outlet
section, aiming to minimize undesired wave reflections
from this boundary.

If a time-dependent boundary condition is applied to
simulate pulsatile inlet flow, further refinement of the
time step may be required to resolve the peak accelera-
tions during one oscillation cycle. Shahcheraghi, Dwyer,
Cheer, Barakat and Rutaganira (2002) have employed a
numerical method similar to the present one (also de-
manding the solution of a Poisson equation for pressure)
with the purpose of simulating three-dimensional pul-
satile flow in a human aortic arch. In the foregoing paper
the authors have found that a resolution of 360 time steps
per cycle was required, which increased computational
costs. Nevertheless, convergence problems were not re-
ported therein.

3 Results and discussion

3.1 Steady symmetrical solutions

Initial simulations carried out for increasing values of the
Reynolds number in the range 100-300 yielded asymp-
totically steady solutions of the flow. These are shown
in Fig. 3, in terms of in-plane velocity vectors, for the
y− z meridional plane of the spherical bulge. The figure
portrays purely symmetrical flow patterns with increas-
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Re = 300Re = 200Re = 100

Figure 3 : Steady flow patterns at the y−z meridional plane of the spherical bulge as a function of Reynolds number
(velocity vectors have been scaled)

ing complexity. Upon reaching the spherical bulge, the
flow separated from the walls, giving rise to the establish-
ment of two large, three- dimensional vortical structures.
The fluid in the central region displayed jet-like velocity
profiles and it was seen impinging on the wall opposite
to the inlet channel. As the Reynolds number increased,
the vortical structures occupied a larger area inside the
bulge. The strength of these vortices increased with the
Reynolds number. However, the velocity of the imping-
ing jet decreased in the sketched plane for Re = 300, as a
result of a larger out-of-plane jet curvature.

Eventually, the fluid left the spherical bulge by the out-
let channel with strong secondary motion. The classical
twin-vortex structure encountered in bends was further
intensified by existence of the bulge. In addition, despite
the action of viscous effects, the reduced section of the
outlet channel also acted to increase the angular momen-
tum characterizing secondary motion vortices.

3.2 Time-dependent solution

It was found that the time series obtained for time-
dependent flow contained a low-frequency component.
Due to the long computational time required for the sim-
ulations to cope with a large disparity in time scales, the
flow solution presented and discussed in this section has
been first obtained employing the coarse grid. Numeri-
cal grid independence was investigated by comparing the
results produced by coarse and fine spatial discretization,
employing the latter for shorter periods of simulation.

The numerical simulations performed for Re = 400 did
not reach a steady state. In contradistinction to the
solutions previously obtained, the v-velocity trace at a

monitor point located in the x − z meridional plane of
the spherical bulge displayed long transients of small-
amplitude, irregular oscillations, which were violently
disrupted by shorter periods of large-amplitude bursts, as
shown in Fig. 4. In addition, this figure proves that the
symmetry of the flow was broken.

It is undeniable that the intermittence illustrated in Fig.
4 exhibits a certain degree of organization. Namely,
the bursts appeared at an approximately constant non-
dimensional frequency ω = 0.018. There is an obvi-
ous exception to the aforementioned behavior, which oc-
curred at t ≈ 120.

The characteristic secondary flow pattern previously de-
scribed for the steady solutions, the so-called Dean vor-
tices, were still present at this higher Reynolds number.
However, although during most of the time these vortices
exhibited small differences in strength and therefore only
a small departure from symmetry in the flow, this topol-
ogy changed radically when bursting took place.

The event occurring at t ≈ 120 evidenced the alternat-
ing domination of one of the Dean vortices in the flow.
This phenomenon, termed as “swirl switching”, has been
experimentally observed in turbulent flow through a 90-
degree bend [Tunstall and Harvey (1968)]. In that case, it
was reported that the flow differs from the classical twin-
vortex secondary flow and is an essentially unsteady, bi-
stable flow switching at a low frequency. These two sta-
ble configurations were described as mirror images of
each other.

Figure 5 substantiates the view above by portraying
two instantaneous flow maps recorded at equivalent
stages of bursts occurring before and after swirl switch-



Numerical Simulations of Unstable Flow 215

0 100 200 300
t

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

v

Re = 400

Counterclockwise

Clockwise

Figure 4 : Time trace of the v-velocity component at a monitor point located in the x− z meridional plane of the
spherical bulge for Re = 400

Re = 400

Figure 5 : Instantaneous flow maps at the y− z meridional plane of the spherical bulge for Re = 400, before swirl
switching (left) and after swirl switching (right)

ing. Referring again to Fig. 4, it can be seen that
the counterclockwise-rotating vortex dominated the flow
during the first stages. After swirl switching, it was the
turn of the clockwise vortex to take over the flow.

Tunstall and Harvey (1968) presumed that separated flow
at the inner wall and probably a turbulent flow regime
were the necessary conditions for the swirl switching to
occur. In the geometry under investigation, flow sepa-
ration may appear naturally due to the presence of the
spherical bulge. Furthermore, the flow at Re = 400 shows
clearly transitional characteristics, as it will be discussed
later. Experimental evidence of the phenomenon for this
particular geometry was also given by Mendes, Pinto and

Sousa (2004), although a higher Reynolds number has
been considered in the study. Figure 6 illustrates these
flow visualization experiments.

Contrary to what one might expect, the mutation from a
steady state to a time-dependent behavior did not show,
in this case, many similarities with the corresponding
change in the flow over a cavity or through a sudden ex-
pansion. Namely, the steady symmetry-breaking via su-
percritical pitchfork bifurcation [Fearn, Mullin and Cliffe
(1990)] and the establishment of a time-periodic flow re-
sulting from a Hopf bifurcation [Ghaddar, Korczak, Mi-
kic and Patera (1986); Sobey and Drazin (1986)] were
not observed here.
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Figure 6 : Experimental flow visualization of swirl
switching in the present geometry (compare with Fig. 5)

On the other hand, the low-frequency bursting phe-
nomenon encountered at Re = 400 revealed a remark-
able resemblance with the oscillatory flow characteris-
tics exhibited by wide-angle diffusers with transitory stall
[Rockwell (1983)] and airfoils near stalling conditions
[Zaman, McKinzie and Rumsey (1989)]. The typical
non-dimensional frequencies ω reported in these studies
are in the range 0.01-0.02, as for the present case. In ad-
dition, the aforementioned flows have been described to
switch abruptly from unstalled to stalled conditions, the
latter of these states often corresponding to bursting of a
separation bubble.

Cherry, Hillier and Latour (1984) have pointed out that
the appearance of low-frequency fluctuations in separa-
tion bubbles is a characteristic feature of separated flows
in general. Although the origin of this low-frequency
motion is not yet fully understood, it has been hypoth-
esized that it may be due to a global instability closely
related to an entrained-return flow mechanism [Rockwell
(1983)]. Thus, this type of instability essentially mani-
fests itself at the reattachment region of a separated shear
layer, giving rise to oscillations which may result from
the imbalance between entrained flow and that returned
to the separation zone upon reattachment.

Figure 7 depicts the differences between instantaneous
flow patterns associated to the period of small-amplitude
oscillations and that representative of a bursting event, at
the x− z meridional plane. It can be seen that, whereas
the former was characterized by the occurrence of an im-
pingement point located nearby the entrance of the outlet
channel (arrow in Fig. 7), thereby defining a large recir-

culation bubble inside the spherical bulge, the latter dis-
tinguished itself by the absence of this flow structure. In
fact, when a burst took place, the fluid entering the bulge
washed out completely the recirculation bubble, thus im-
pinging on the surface opposite to the inlet channel. Tak-
ing into account the observed flow features, the global in-
stability mechanism described in the previous paragraphs
seems to provide a plausible physical explanation for the
low-frequency component displayed in Fig. 4.

An attempt to interpret the events described herein based
on the theory of dynamical systems has been made as
well. Beginning by postulating that transition from the
laminar to the turbulent regime is occurring at Re = 400,
the following step would be to identify the transition sce-
nario.

Basically four different models describing the route
to turbulence [Lichtenberg and Lieberman (1992)] are
usually considered: Landau model, Ruelle-Takens-
Newhouse model, Feigenbaum model and Pomeau-
Manneville model. The flow characteristics observed
present a few similarities with the transition to intermit-
tent chaotic behavior explained by the model of Pomeau-
Manneville. According to Lichtenberg and Lieberman
(1992), intermittent transitions to turbulence have been
reported to occur in many experiments. However, they
also note that it is not clear that the intermittent tran-
sition between two states of a bi-stable system may be
described by the Pomeau-Manneville model.

Perhaps a more suitable explanation may be found by
considering a different route, termed as “crisis-induced
intermittency” by Grebogi, Ott, Romeiras and Yorke
(1987). Crises are a common manifestation of chaotic
dynamics for dissipative systems, which have also been
seen occurring in many experiments and numerical stud-
ies. In the present case, intermittency corresponded to
the episodic switching between two sustained behaviors,
namely bursting and a chaotic orbit between the bursts.

Aiming to determine whether the time-dependent solu-
tion really displays a chaotic behavior, a computation
of the leading Lyapunov exponent has been carried out
for Re = 400 using the methodology proposed by Wolf,
Swift, Swinney and Vastano (1985). One of the main
characteristics of chaotic motion is the strong depen-
dence of the solution on initial conditions. The largest
Lyapunov exponent provides a measurement of how un-
stable a given flow history is. Thus, it carries information
about the time scale in which the system becomes unpre-
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Re = 400

Figure 7 : Instantaneous flow maps at the x− z meridional plane of the spherical bulge for Re = 400, depicting
small-amplitude oscillations (left) and a bursting event (right)
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Figure 8 : Temporal convergence of the leading Lyapunov exponent for Re = 400

dictable or, in other words, the rate at which the system
creates or destroys information.

Figure 8 shows the temporal convergence of the leading
Lyapunov exponent. In order to give confidence to this
result, besides investigating its stationarity, checks of the
exponent estimate were performed as a function of em-
bedding dimension, delay time and evolution time be-
tween replacements. The final estimate obtained for this
exponent was λ ≈ 0.014 bits/s.

The determination of a positive Lyapunov exponent con-
firmed the existence of chaotic behavior. In addition, the
magnitude of this exponent, expressed in bits of infor-
mation per second, quantified the divergence of nearby
trajectories in phase space. As a basis for a comparison,

the value of the leading Lyapunov exponent characteriz-
ing the chaotic state exhibited by the physiological con-
trol system described by Mackey and Glass (1977) was
λ = 0.0063 bits/s. Hence, it would take the present flow
less than half of the time required by the foregoing sys-
tem to become unpredictable.

4 Conclusions

Unsteady numerical simulations of the flow through a
spherical bulge in a 90-degree asymmetrical bend have
been carried out for Reynolds number in the range 100-
400. The results obtained have shown that the flow
reaches asymptotically steady, symmetrical solutions for
Reynolds numbers up to 300.



218 Copyright c© 2005 Tech Science Press CMES, vol.9, no.2, pp.211-219, 2005

By contrast, the flow behavior at a Reynolds number
value of 400 has shown to be characterized by long tran-
sients of small-amplitude, irregular oscillations, which
were violently disrupted by shorter periods of large-
amplitude bursts. However, such intermittent behavior
exhibited an organized pattern, as the bursting events oc-
curred at an approximately constant non-dimensional fre-
quency ω = 0.018.

The low-frequency bursts observed seemed to be due to
a global instability closely related to an entrained-return
flow mechanism. In addition, it was shown that the strik-
ing symmetry-breaking of the flow inside the bulge seen
in the time-dependent solution was the result from the al-
ternating domination of one of the Dean vortices, usually
termed as swirl switching.

The theory of dynamical systems also helped to inter-
pret the physical behavior of the flow. An explanation for
the observed phenomena was found on the occurrence of
crisis-induced intermittency. The estimate of the leading
Lyapunov exponent computed for the flow was consistent
with a transition to intermittent chaotic behavior.
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