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3-D Modeling of a composite material reinforced with multiple thickly coated
particles using the infinite element method

D.S. Liu 1,2, C.Y. Chen 2, D.Y. Chiou 3

Abstract: A three-dimensional heterogeneous infinite
element method (HIEM) for modeling inclusions with
interphases in composite materials is presented. This
special element is formulated based on the conventional
finite element method (FEM) using the similarity stiff-
ness property and matrix condensation operations. An
HIE-FE coupling scheme is also developed and imple-
mented using the commercial software ABAQUS to con-
duct the elastostatic analysis. The proposed approach
was validated first to study heterogeneous material con-
taining one spherical inclusion. The displacement and
stress variations around the inclusion vicinity are verified
against conventional FEM. The proposed approach was
next applied to analyze the effective modulus of single-
particle and 2×2×2-particles cubic models with the pres-
ence of interphases. The effects of varying the modulus
and thickness of the interphase are also examined. The
influences of multiple inclusion orientation arrangements
are investigated. The results show that different model
orientation arrangements can have marked influences on
the effective elastic modulus evaluation for particulate-
reinforced composites.

keyword: Particulate-reinforced composites, Hetero-
geneous material, Infinite element method, Modeling
multiple particles.

1 Introduction

One of the main engineering problems is predicting the
mechanical behaviors of heterogeneous materials (ex.
particulate-reinforced and fiber-reinforced composites),
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in which the constituent material properties are differ-
ent and heterogeneous. Many researchers have expended
great effort to develop various modeling and calculation
techniques involving heterogeneous materials with inclu-
sions.

Zhang and Katsube (1995) proposed a hybrid finite el-
ement approach for the mechanical analysis of hetero-
geneous materials with randomly dispersed inclusions or
voids. In this method an n-sided polygonal super-element
containing an inclusion was developed from a modified
hybrid functional based on the Hellinger-Reissner prin-
ciple. In the element formulation, classical elasticity so-
lutions were required to incorporate the approximating
functions. Using these functions the irregular stress and
displacement distributions around the inclusion could be
well represented. However, different hybrid functions are
required for the matrix and inclusion, respectively. The
analytical approach for complex inclusion geometry usu-
ally results in difficult mathematical calculations, mak-
ing the classical elasticity solutions not easily available.
Furthermore, no works have attempted to model the in-
terphases that play important roles in the overall mechan-
ical behavior of composite materials.

The boundary element method (BEM) has also been
applied to the micro-mechanical behaviors of compos-
ite materials with thin films or coatings [Luo, Liu and
Berger (1998), Luo, Liu and Berger (2000), Liu, Xu and
Luo (2000), Chen and Liu (2001)]. Recently, Okada,
Fukui and Kumazawa (2004) successfully modeled the
distributed particles by using the analytical solutions for
ellipsoidal particles and obtained the effective mechan-
ical properties of particulate composite materials hav-
ing up to 1000 particles. However, to derive the BEM
boundary integral equation formulation, a fundamental
solution function that satisfies the governing differential
equation in the domain is required as a basic function for
an approximate solution. Furthermore, numerous numer-
ical integrations must be performed and the subsequent
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global coefficient matrix formed from BEM is usually
fully populated and non-symmetrical, leading to increas-
ing direct solution computational expense for the coeffi-
cient matrix.

The conventional finite element method (FEM) has
been used to solve the mechanical behaviors of fiber-
reinforced composites [Lagache, Agbossou, Pastor and
Muller (1994), Wacker, Bledzki and Chate (1998)] and
particulate-reinforced composites [Agrwal and Brout-
man (1974), Wu and Dong (1995)] with interphases.
A three-dimensional multi-inclusion unit cell with ran-
domly positioned and oriented particles was developed
by Böhm, Han and Eckschlager (2004). However, the
corresponding CPU time and PC memory storage re-
quirement is huge for an accurate mechanical field so-
lution. Moreover, for problems with interphases, a thin
layer of very fine finite elements is used to model the
interphase between the inclusion and matrix. With the
decrease in interphase thickness, a large number of ele-
ments are needed to avoid element mesh with the large
aspect ratio. This may cause deteriorated FE solutions
with excessive prohibitive investment in terms of the
computational cost and analytical effort. To avoid the dif-
ficulty of building a FE model for particulate composite
material, an element overlay technique has been devel-
oped to investigate the problems of samples containing
many distributed voids and filled particles [Okada, Liu,
Ninomiya, Fukui and Kumazawa (2004)]. However, the
solutions are very sensitive to the size of the local ele-
ment (the element contained particle), and a large num-
ber of integration points are used demanding a consider-
able amount of computational time.

Liu and Chiou (2003) recently focused their attention
on the developments of 2-D and 3-D infinite element
method (IEM). The IEM approach was implemented
into computer codes to deal with various types of clas-
sical elasticity and singularity problems. The related
background and information on this matter are summa-
rized in [Silvester and Cermark (1969), Thatcher (1975),
Thatcher (1978), Guo (1979), Ying (1995)].

The IEM analysis is limited to cases in which the con-
stituent material properties of the medium in the IE sub-
domain are assumed homogeneous. Therefore, a het-
erogeneous infinite element method for modeling two-
dimensional heterogeneous materials is developed [Liu
and Chiou (2005)].

In this study the heterogeneous infinite element method

is extended to deal with three-dimensional elastostatic
problems in which the constituent material proper-
ties are heterogeneous. For that reason, modeling
three-dimensional heterogeneous composite material re-
inforced with multiple thickly coated particles is our in-
terest. A numerical example is evaluated first to predict
the displacement and stress variation around the imbed-
ded inclusions. The proposed method is also verified
against finite element solutions. Both single particle and
2×2×2 particle models containing inclusions with the
surrounding interphase are considered. The effects of
varying interphase modulus and thickness in determin-
ing the effective Young’s modulus are investigated. The
orientation arrangement effects of the inclusions on the
effective Young’s modulus are then discussed. Our con-
clusions are given last.

2 3-D heterogeneous infinite element method
(HIEM) formulation

The heterogeneous infinite element method (HIEM) for-
mulation for 3-D elastostatic problems is presented in
this section. Let us consider a special element in which
an elastic inclusion or a void of arbitrary geometry exists
(in this section, the geometry is hexahedral), as shown
in Fig. 1(a). Our objective is to establish the relationship
between the element’s nodal forces and displacements, to
formulate the element stiffness matrix. As shown in Figs.
1(b) and (c), the domain over the special element is de-
composed into two sub-domains with different material
characteristics, which represent: (i) the interphase sub-
domain with boundaries Γ0 and Γs; (ii) the inclusion sub-
domain with boundary Γs. Γ0 and Γs, are the element’s
outer boundary with neighboring elements and the inner
interface boundary between the interphase and inclusion
sub-domains. In the following formulation, the material
properties are assumed linearly elastic, isotropic, but het-
erogeneous from individual sub-domains. The separate
formulations for these two sub-domains are derived (in-
dex notation is used here) as follows:

2.1 Formulation in the interphase sub-domain

The similar partition concept [Guo (1979)] is applied to
the interphase region shown in Fig. 2. First, the primary
domain boundary surface, Γ0, is properly distributed us-
ing a number of n master nodes and discretized into vir-
tual eight-node hexahedral elements. Second, by choos-
ing the global origin O located in the inclusion region,
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Figure 1 : Element decomposition: (a) original hetero-
geneous infinite element; (b) interphase region; (c) inclu-
sion region

as a similar partition center, and taking a certain number
of chosen element-layers s and a certain proportionality
constant k ∈ (0,1) which are compatible, similar surfaces
Γ1, Γ2, · · ·, Γs, of Γ0 are constructed with center O ac-
cording to the proportionality constants k1, k2, · · ·, ks,
respectively. The region bounded between Γi−1 and Γi is
called the i-th element-layer (i = 1, 2, · · ·, s), where s is
the number of chosen element-layers. Third, each indi-
vidual Γi is regularly discretized as Γ0. The nodal num-
ber and node coordinates on each individual Γi can be de-
termined from the master node coordinates with geomet-
rically similar conditions. Fourth, every element-layer
is auto-meshed into eight-node hexahedral elements that
are similar to one another in a radial direction.

When the first element-layer is considered, the element
stiffness matrix of each hexahedral element can be calcu-
lated and assembled into an element-layer stiffness ma-
trix using the conventional FE formulation. The stiffness
matrix of the “first element-layer” can be calculated and
expressed as[

Ka −AT

−A Kb

]
6m × 6m

(1)

where Ka, Kb, and A are the sub-matrices of the stiffness
matrix with identical dimension 3m×3m. AT is the trans-
pose of A. The nodal displacement vector δi of the nodes
of Γi is defined as

δi ≡
[

ui
1 vi

1 wi
1 · · · ui

m vi
m wi

m

]T
(2)
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Figure 2 : Infinite element mesh for the interphase region

The nodal force vector fi of nodes on Γi is defined as

fi ≡
[

f i
1x f i

1y f i
1z · · · f i

mx f i
my f i

mz

]T
(3)

The i-th element-layer stiffness matrix presents the nodal
force and displacement vector relationships between Γi−1

and Γi. Treating the first element-layer as an example, we
have[

Ka −AT

−A Kb

]
·
[

δ0

δ1

]
=

[
f0

f1

]
(4)

Two algebraic equations are extracted from Eq. 4 as fol-
lowing

Kaδ0 −AT δ1 = f0 (5)

−Aδ0 +Kbδ1 = f1 (6)

where δ0 and f0, denote the nodal displacements and
tractions on Γ0, respectively. According to the similar-
ity principle, it is obvious that the stiffness matrices of
all of the element-layers are directly proportional to the
element size. Hence, we can express the stiffness matri-
ces of the s element-layers (from 1st element-layer to s-th
element-layer) as s sets of algebraic equations, namely

for layer 1[
Ka −AT

−A Kb

]
·
[

δ0

δ1

]
=

[
f0

f1

]
(7)

for layer 2

k ·
[

Ka −AT

−A Kb

]
·
[

δ1

δ2

]
=

[ − f1

f2

]
(8)
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for layer 3

k2 ·
[

Ka −AT

−A Kb

]
·
[

δ2

δ3

]
=

[ − f2

f3

]
(9)

...

for layer s

ks−1 ·
[

Ka −AT

−A Kb

]
·
[

δs−1

δs

]
=

[ − fs−1

fs

]
(10)

Extracting with every algebraic equation, adding the sec-
ond equation for the i-th element-layer and the first equa-
tion for the (i+1)-th element-layer, and letting P = kKa +
Kb, we have

Kaδ0 −AT δ1 = f0 (11)

−Aδ0 +Pδ1 −kAT δ2 = 0 (12)

...

−ki−1Aδi−1 +ki−1Pδi −kiAT δi+1 = 0 (13)

...

−ks−2Aδs−2 +ks−2Pδs−1 −ks−1AT δs = 0 (14)

−ks−1Aδs−1 +ks−1Kbδs = fs ≡ Fs (15)

2.2 Formulation in the inclusion sub-domain

The partition processes for the inclusion region, shown
in Fig. 3, are followed in a manner similar to that for
the interphase region. The inner boundary Γs of the in-
terphase region is exactly the outer boundary of the in-
clusion region. By choosing the global origin O as the
similar partition center and taking another proportional-
ity constant ρ and element-layer p, similar surfaces Γs+1,
Γs+2, · · ·, Γs+p of Γs are generated with center O accord-
ing to the proportionality constants ρ1, ρ2, · · ·, ρp, re-
spectively. The region bounded between Γ j−1 and Γ j is
called the j-th element-layer (j = s+1, s+2, · · ·, s+p).

We also express the stiffness matrix of the p element-
layers (from (s+1)-th element-layer to (s+p)-th element-
layer) as s sets of algebraic equations, namely

for layer s + 1[
Kc −BT

−B Kd

]
·
[

δs

δs+1

]
=

[ − fs

fs+1

]
(16)

for layer s + 2

ρ ·
[

Kc −BT

−B Kd

]
·
[

δs+1

δs+2

]
=

[ − fs+1

fs+2

]
(17)
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Figure 3 : Infinite element mesh for the inclusion region

for layer s + 3

ρ2 ·
[

Kc −BT

−B Kd

]
·
[

δs+2

δs+3

]
=

[ − fs+2

fs+3

]
(18)

...

for layer s + p

ρp−1 ·
[

Kc −BT

−B Kd

]
·
[

δs+p−1

δs+p

]
=

[ − fs+p−1

fs+p

]

(19)

Extracting every algebraic equation, adding the second
equation for the j-th element-layer and the first equation
for the (j+1)-th element-layer, and letting Q = ρKc +Kd ,
we have

Kcδs −BT δs+1 = − fs (20)

−Bδs +Qδs+1 −ρBT δs+2 = 0 (21)

...

−ρ j−(s+1)Bδ j−1 +ρ j−(s+1)Qδ j −ρ j−sBT δ j+1 = 0 (22)

...

−ρp−2Bδs+p−2 +ρp−2Qδs+p−1−ρp−1BT δs+p = 0 (23)

−ρp−1Bδs+p−1 +ρp−1Kdδs+p = fs+p ≡ Fs+p (24)

Let Ms+p = Kd and Fs+p = fs+p, the three IEM parame-
ters in iteration form representing for the inclusion region
can be inferred:

Mi = Q−ρBT M−1
i+1B (25)



3-D Modeling of a composite material 183

Fi = BT M−1
i+1Fi+1 (26)

δ j = ρ−( j−(s+1))M−1
j

(
ρ( j−(s+1))Bδ j−1 +Fj

)
(27)

where i = s+1, s+2, s+3. . . , s+p-1; and j = s+1, s+2,
s+3. . . , s+p.

From Eq. 27 , we have

δs+1 = M−1
s+1 (Bδs +Fs+1) (28)

By substituting Eq. 28 into Eq. 20, we get

Kcδs −BT
[
M−1

s+1 (Bδs +Fs+1)
]
= − fs (29)

Rearrange Eq. 29 and we have

(
Kc −BT M−1

s+1B
)

δs =
[
BT M−1

s+1Fs+1 +(− fs)
]

(30)

Eq. 30 can be expressed in concise form as

K(inclusion)δs = F(inclusion) (31)

where K(inclusion) and F(inclusion) denote the combined
stiffness matrix and associated loading vector for
the inclusion region, respectively. Along the inclu-
sion/interphase interface Γs; however, the displacement
compatibility and force equilibrium must be satisfied.
Therefore, the Eqs. 15 and 31 are combined and we have

−ks−1Aδs−1 +
(
ks−1Kb +K(inclusion)

)
δs

= BT M−1
s+1Fs+1 ≡ Fs(modi f ied)

(32)

Eq. 32 can be expressed as another form

−ks−1Aδs−1 +ks−1Kb(modi f ied)δs = Fs(modi f ied) (33)

Again, letting Ms = Kb(modi f ied) and Fs = Fs(modi f ied), the
three IEM parameters in iteration form representing for
the interphase region can be inferred as follows:

Mi = P−kAT M−1
i+1A (34)

Fi = AT M−1
i+1Fi+1 (35)

δ j = k−( j−1)M−1
j

(
k j−1Aδ j−1 +Fj

)
(36)

where i = 1, 2, 3. . . , s-1; and j = 1, 2, 3. . . , s.

Since Ms and Fs are known, then Ms−1, Ms−2, · · · , M1;
Fs−1, Fs−2, · · · , F1 can be iterated using Eqs. 34 and 35,
respectively. From Eq. 36, we have δ1 = M−1

1 (Aδ0 +F1).

Substituting δ1 into Eq. 11, we obtain the most important
formula for 3-D HIEM. That is(
Ka −AT M−1

1 A
) ·δ0 =

(
AT M−1

1 F1 + f0
)

(37)

Eq. 37 can be expressed in concise form as

KZδ0 = FZ (38)

Where KZ and FZ denote the combined element stiffness
matrix and associated combined loading vector, respec-
tively. Once FZ is determined, δ0 can be obtained from
Eq. 38. Then δ1, δ2, · · · , δs, δs+1, · · ·, and δs+p can be
obtained sequentially from Eqs. 36 and 27.

Comparing Eq. 38 with the results from the previous
work [Liu and Chiou (2003)], we obtain parallel state-
ments for the homogeneous and heterogeneous IEM rep-
resentation. The combined element stiffness matrix KZ

term preserves the effects of involving material hetero-
geneity. The combined loading vector FZ term contains
both the outer and inner surface traction effects. With the
HIEM, only master nodes on the boundary need to be de-
fined. All of the inner-layer elements and nodes are con-
densed and transformed into only one combined element
with master nodes along outer boundary Γ0 only. This
is called the “Heterogeneous Infinite Element (HIE)”, as
schematically shown in Fig. 4. It can be viewed as a
process of element elimination. The inner elements and
nodes seem “imaginary and virtual”, but they “really” ex-
ist and work in HIEM manipulations.

Heterogeneous 
Infinite Element

0
Γ

0
Γ

s
Γ

O

Figure 4 : Schematic diagram of Heterogeneous Infinite
Element formation

From the physical point of view, the KZ term can be
treated as the equivalent stiffness matrix of the HIE with
a dimension of 3m × 3m. Although the total degree
of freedom of KZ is largely reduced, the mesh refine-
ment and material heterogeneity effect are maintained
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and does not increase any corresponding round-off errors
because of the specific matrix condensation process. The
corresponding PC memory storage requirement is also
significantly reduced. Moreover, to compute KZ , only
to calculate the first element-layer stiffness matrix in the
interphase and inclusion regions with the chosen propor-
tionality constants k and ρ and the number of element-
layer s and p are required.

3 Integration of HIE-FE coupling scheme with com-
mercial FEM software

Following the identical pattern to the IE-FE coupling
scheme [Liu and Chiou (2003)], the HIE-FE coupling
scheme is also developed. Fig. 5 schematically shows
the coupling scheme in which a global model is parti-
tioned into two domains, Ω and D, modeled using the
HIE and FE, respectively. Furthermore, the HIE-FE cou-
pling scheme used in this study is carried out using the
commercial FEM software ABAQUS/Standard.

All related HIEM numerical procedures were pro-
grammed and executed in the MATLAB v.5.3 language
[Kwon and Bang (2000)]. After the HIEM mathemati-
cal manipulations, the special element we call “Heteroge-
neous Infinite Element (HIE)” is generated (see Section
2). The HIE is regarded as a regular finite element and its
element properties are obtained from the pre-determined
HIE stiffness matrix KZ . The HIE definition is not in-
cluded in the ABAQUS element library; therefore, the
HIE is designated as a “user-defined element” that rep-
resents a geometric part of the model. In the ABAQUS
codes, the user-defined elements are introduced using the
*USER ELEMENT option. In general cases a linear
user-defined element can be defined as a stiffness ma-
trix. The stiffness matrix can be distilled from the Mat-
lab results (KZ) and defined using the *MATRIX option.
The numerical property values associated with the linear
user-defined elements are defined using the *UEL PROP-
ERTY option and, optionally, the *MATRIX option. For
further details on this implementation, please refer to the
ABAQUS user’s manual [Hibbitt, Karlsson and Sorensen
(2002)].

4 Validation of the 3-D HIE-FE model

Fig. 6 shows the HIE-FE computational model with one
three-dimensional elastic cube inclusion with thickness,
width, and height dimensions (120 mm×120 mm×120

mm). where D represents the HIE sub-domain, and Ω
represents the FE sub-domain. Uniform tensile stress,
σ0= 100 N/mm2, are applied to the cube. The material
properties of the cube and the inclusion are: Young’s
modulus Em = 105 N/mm2 and Ep = 103 N/mm2, respec-
tively.

D

HIE
domain

FE domain

conventional finite 
element

coupling 
interface

common 
nodes

0Γ

Ω

+

Figure 5 : Schematic diagram of HIE-FE coupling
method

In the HIE-FE model, the cube is partitioned into 1008
conventional eight-node solid elements as in the FE sub-
domain (matrix region) and one 194-node heterogeneous
infinite element (radius = 50 mm) with an inclusion as in
the HIE sub-domain, respectively. The HIE sub-domain
contains the spherical inclusion (inclusion region) and its
surrounding material (interphase region). In this case, the
material properties defined in the interphase region are
identical to those in the matrix region, so that no inter-
phase is modeled and perfect bonding between the inclu-
sion and the block is assumed. Here, the main function of
the interphase region is to accurately capture the irregular
stress distribution close to the inclusions.

The corresponding HIEM parameters for the inclusion
and interphase regions are: proportionality constant λp =
0.8 and λm = 0.9726549474; and number of element-
layers sp = 50 and sm = 50. After HIEM formulation
the HIE stiffness matrix is calculated and assembled into
the global stiffness matrix formed in FE sub-domain. An
HIE and conventional FEM combination is established
through the commercial software ABAQUS/Standard.

To compare the validity and performance of our proposed
HIEM, FEM is used to determine the displacement and
stress in the interphase region. Because we want to cap-
ture the displacement and stress variation around vicinity
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(b) cube cross-section 
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(a) cube schematic plot
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Figure 6 : A cube with a small inclusion under uni-
form tensile stress used HIE-FE computational model:
(a) cube schematic plot; (b) cube cross-section schematic
plot; (c) HIE cross-section schematic plot

of the inclusion well, FEM have to use more elements
and nodes in the interphase region as Fig. 7 (b). Fig.
7 (a) shows the less nodes and elements are need in the
HIE-FE computational mode.

The graphs comparing the nodal displacement fields
along x, y, and z axis obtained from the FEM and the
present HIE solution are shown in Figs. 8-10, respec-
tively. The results are shown to be in very good agree-
ment.

Fig. 11-13 show the normalized stresses along x, y, and
z axis in the interphase region. It can be observed that
our proposed HIEM results have some difference from
FEM, but the solution trend is the same. It is because
that HIEM obtains the node stress values from gauss in-
tegral points using the average, which is different from
the commercial FEM software. The solution curves pro-
duced using our proposed HIEM are smoother than that
produced using FEM, namely the stress variation around
the inclusion vicinity is well captured using the proposed
method.

(a)
The HIE-FE

computational model

(b)
The FE

computational model

Figure 7 : Three-dimensional 1/4 model: (a) The HIE-
FE computational model; (b) The FE computational
model

These figures clearly show that the displacements and
stresses predicted from the proposed method are shown
to be in good agreement with produced by the finite el-
ement method. The results imply that the proposed spe-
cially formulated element can be used for representing
any heterogeneous material including either porous ma-
terials or materials with rigid inclusions.

5 The effective Young’s modulus for composite ma-
terial

Our proposed HIEM is applied to model 3-D compos-
ite material reinforced with multiple thickly coated parti-
cles (inclusions). For study convenience the constituents
are assumed to be isotropic. Perfect bonding is assumed
at the interfaces between particle and interphase and be-
tween interphase and matrix. Spherical inclusions are as-
sumed to be packed a cube.

The effect of varying interphase material properties on
determining the effective Young’s modulus of the thickly
coated particle composite is studied. In Fig. 14, the ef-
fective Young’s modulus in the x-direction is determined
by

Ẽ =
σ
ε

=
σ

δ
/

L
(39)
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Figure 9 : Displacement along y axis
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Figure 10 : Displacement along z axis
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Figure 11 : Normalized stress along x axis
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Figure 12 : Normalized stress along y axis
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Figure 13 : Normalized stress along z axis
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Figure 14 : Cubic single particle model under a uniform
stretch
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Figure 15 : Cubic models with thickly coated particles
(inclusions): (a) single particle model; (b) 2×2×2 parti-
cles model

where ε = δ
/

L is the strain in the x-direction. The stress
σ is calculated as

σ =
∫

A σdA
A

=
1
A

n

∑
i=1

σAi (40)

where σ is the stress in an element and Ai is the area of
the element on the face EFGH and n is the total number
of such elements.

5.1 Influences of the Young’s modulus on interfaces

Two types of cubic models are illustrated in this section,
namely the single particle model and the 2×2×2 parti-
cles model both of which include the thickly coated (in-
terphase), as shown in Fig. 15 (a) and (b). The 2×2×2

particles HIE-FE model is composed of eight the single
particle model.

The cubic single particle model is first subjected a unit
stretch δ in the x-direction as shown in Fig. 14. A
spherical particle (inclusion) of radius a, surrounded with
a thin coating (interphase) having a uniform thickness
h, is embedded within the cubic model (matrix) with
length L. The dimensions are: a = 8.5 µm, h = 1 µm,and
L = 21.31 µm. The properties of the constituent mate-
rials considered are listed in Tab. 1. The interphase
Young’s modulus is a changing in the range between
4.0 and 12.0 GPa. The IEM parameters of the inclusion
and interphase regions, respectively, are: λin = 0.8 and
λm = 0.9889390635; sin = 50 and sm = 10. In the sin-
gle particle HIE-FE model, a total of 362 master nodes
are used to simultaneously model the inclusion and in-
terphase regions in the HIE sub-domain, and 1680 eight-
node solid elements in the FE sub-domain.

As Fig. 15 (b), in the 2×2×2 particles HIE-FE model
which is composed of eight the same the single particle
model, a total of 2896 master nodes are used with 362
ones on each of the eight HIE sub-domains, and 13488
eight-node solid elements in the FE sub-domain. Only
one inclusion with its HIE stiffness matrix needs to be
calculated for the others.

Tab. 2 shows the effective Young’s modulus obtained us-
ing the single particle model and the 2×2×2 particles
model. It is clearly shown in Fig. 16 that subsequently
increasing the interface Young’s modulus and the num-
ber of inclusions involved in the model would lead to in-
creasing the effective Young’s modulus.

Table 1 : The properties of the constituent materials for
the cubic model

Constituent
Materials

Young’s
Modulus (GPa)

Poisson’s
ratio

Particle (inclusion) E(p) = 84.0 ν(p) = 0.22
Coating (inter-
phase)

E(in) =
4.0∼12.0

ν(in) = 0.34

Matrix E(m) = 4.0 ν(m) = 0.34

5.2 Influences of the thickness on interphase

In the previous section, the interphase thickness is con-
sidered as a constant value of h = 1µm. Next, the effect
of varying interphase thickness on determining the effec-
tive Young’s modulus is investigated. The thickness for
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Table 2 : Results of the effective Young’s modulus Ex (GPa) for different interphase Young’s modulus in the two
types of cubic models

Interphase Property E(in) (GPa) 4.0 6.0 8.0 12.0
Model 1. (single) 6.5725 7.0755 7.3885 7.7611
Model 2. (2×2×2) 6.8019 7.3486 7.6879 8.0905

Table 3 : Results of the effective Young’s modulus Ex (GPa) for different interphase thickness in the two types of
cubic models

Interphase Thickness h(µm) 1.0 0.7 0.5 0.2
Model 1. (single) 7.0755 7.0046 6.9732 6.9108
Model 2. (2×2×2) 7.3486 7.2642 7.2360 7.1609

1 2

HIE-FE Model

6

7

8

9

E
ff

ec
ti

ve
 Y

o
u

n
g

's
 m

o
d

u
lu

s 
(G

P
a) E(in) = 12.0 GPa

E(in) = 8.0 GPa
E(in) = 6.0 GPa
E(in) = 4.0 GPa

Figure 16 : The Influences of interface Young’s
modulus on the effective Young’s modulus
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Figure 17 : The Influences of interface thickness on
the effective Young’s modulus

the interphase is changing in the range from 1.0 to 0.2µm.
Identical constituent material constants as listed in previ-
ous section are used except the interphase Young’s mod-
ulus is considered E(in) = 6.0 GPa.

Tab. 3 shows the effect of different interphase thick-
nesses on the effective Young’s modulus for the single
particle model and the 2×2×2 particles model. The
thickness influence on the effective Young’s modulus for
the single particle model and the 2×2×2 particles model
is shown in Fig. 17. Corresponding to the figure, we can
observe that with increasing the interface thickness and
the number of inclusions involved in the model would
lead to increasing the effective Young’s modulus.

5.3 Influences of the orientation arrangements of the
inclusions

In this section, the effects of the orientation arrangements
of the inclusions on the effective Young’s modulus are
investigated.

Assuming the same color spherical particles as a part,
three specific difference in directional angles (θ = 0 ˚ ,
22.5 ˚ , 45 ˚ ) between the part and the part are taken into
account as Fig. 18 (a)-(c). The 2×2×2 spherical par-
ticles (inclusions) of radius a, surrounded with a thin
coating (interphase) having a uniform thickness h, are
embedded within the solid model (matrix) with thick-
ness, width, and height dimensions (3L×3L×2L). The
dimensions are: a = 8.5 µm, h = 0.5 µm, d = 6 µm and
L = 21.31 µm, and the material properties used for the
analysis are given in Tab. 4 .
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Table 4 : The properties of the constituent materials for
the solid model

Constituent
Materials

Young’s
Modulus (GPa)

Poisson’s
ratio

Particle (inclusion) E(p) = 84.0 ν(p) = 0.22
Coating (inter-
phase)

E(in) = 6.0 ν(in) = 0.34

Matrix E(m) = 4.0 ν(m) = 0.34

ah
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3L

3L

2L

(a) 0 degree

(b) 22.5 degree (c) 45 degree

45 deg.

y
x

z
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Figure 18 : Three specific difference in directional an-
gles between the two particle parts: (a) 0 degree (model-
1); (b) 22.5 degree (model-2); (c) 45 degree (model-3)

In the HIE-FE model, only one inclusion with its HIE
stiffness matrix is needed be calculated for the others. A
total of 362×8 master nodes are used to model in the HIE
sub-domain. A total of 23226, 30415 and 25855 four-
node tetrahedral elements are used with θ = 0 ˚ , 22.5 ˚
and 45 ˚ in the FE sub-domain, respectively.

A comparison of the effective Young’s modulus in the x-
direction of the HIE-FE model with different orientation
of inclusion is tabulate in Tab. 5. It can be see that model
NO.1 possesses the highest effective Young’s modulus of
the all; in the contrarily, the lowest modulus occurs when
the difference of directional angles equal to 45 degree.
It is also clearly shown that the maximum difference be-
tween the highest and lowest values is estimated about
5.02%. In general, with the increase of the difference
of directional angle, the effective Young’s modulus may

consequently decrease. As a result, the effective Young’s
modulus is closely dependent on the orientation arrange-
ments of the inclusions in these models.

6 Conclusion

Complete 3-D HIEM algorithms were well developed
based on the similarity partition concept and particular
matrix manipulations. In this work, one of the major
contributions is to construct the 3-D HIEM numerical
procedures merged with heterogeneity effects. Another
contribution is converting the “3-D HIEM” into the con-
cept of “3-D HIE”. An innovative 3-D HIE-FE coupling
scheme that associates with the HIE and the conventional
FE through the commercial FEM software ABAQUS is
also outlined.

The proposed method for investigating the mechanical
response of heterogeneous materials with embedded in-
clusions was demonstrated. A special element contain-
ing an inclusion was developed to model the heterogene-
ity effects. The element formulations were derived us-
ing conventional FEM with similarity concept and matrix
condensation operations. The resulting element stiffness
matrix only involves master node degrees of freedom
over the element’s boundary. Because identical stiffness
holds for similar isoparameter elements, only one inclu-
sion with its HIE stiffness matrix is required to be cal-
culated once and it is also valid for the other ones. This
makes numerical evaluation of the element stiffness ma-
trix relatively easy and efficient. This leads to significant
reduction in total degrees of freedom without sacrificing
accuracy in solutions. The proposed method is verified
against finite element solutions. Excellent agreement is
obtained and irregular stress distribution surrounding the
inclusions can be accurately captured.

The proposed “3-D HIE” method was extended to model
the inclusions in particulate-reinforced composites with
the presence of the interphases. The HIE can be viewed
as an element with boundary-only discretization. The
approach provides flexibility in parametric study of the
interphase, since, when the geometry, size, or material
property of the interphase are changed, only a small
change for the FE mesh is required. In addition, the influ-
ences of interphase thickness and material properties of
inclusions on the effective Young’s modulus have been
investigated. Numerical results show that the thickness
and material properties of the interphases can have sig-
nificant effects on the mechanical behavior of the com-
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Table 5 : Three specific difference in directional angles between the two particle parts: (a) 0 degree (model-1); (b)
22.5 degree (model-2); (c) 45 degree (model-3)

2×2×2 particles model
Model 1 Model 2 Model 3

Inclusion Orientation
Effective Young’s modulus (GPa) 6.1963/1.0 6.0992/0.98 5.8998/0.95

posites, such as effective Young’s modulus.

The numerical results showed that the effective Young’s
modulus also depends on the orientation arrangements
of inclusions with interphases. Since only one inclusion
with its HIE stiffness matrix is required for calculation
once and it is also valid for the other ones, it is more
easier and efficient to model 3-D composite material re-
inforced with arbitrarily multiple thickly coated particles
(inclusions) than FEM. The corresponding CPU time and
PC memory storage on these computations were also sig-
nificantly reduced.

The proposed method provides another accurate and effi-
cient numerical technique for the modeling and analysis
of the inclusions in heterogeneous materials. Thermal
loading in the present HIEM and extension of the 3-D
model to couple with genetic algorithm to study the para-
metric optimization design will be interesting topics and
can be carried out readily.
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