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Finite Element Approaches to Non-classical Heat Conduction in Solids

S. Bargmann and P. Steinmann1

Abstract: The present contribution is concerned with
the modeling and computation of non-classical heat con-
duction. In the 90s Green and Naghdi presented a new
theory which is fully consistent. We suggest a solution
method based on finite elements for the spatial as well
as for the temporal discretization. A numerical example
is compared to existing experimental results in order to
illustrate the performance of the method.
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1 Introduction

Motivated by experiments hyperbolic theories of ther-
moelasticity which lead to a wave-type heat conduction
were developed in recent years. This paper deals with
the thermal aspect following the approach suggested by
Green and Naghdi in [Green and Naghdi (1991, 1992,
1993)].

In 1946 Peshkov was the first to propose the possibility
of heat propagation as thermal waves in solids [Peshkov
(1946)] after having detected this phenomenon in fluid
helium II in 1944 [Peshkov (1944)]. The existence of
the so called second sound in solids was proven in 1966
by Ackermann, Bertram, Fairbank, and Gyuer (1966) for
solid He4. So far second sound was also detected in solid
He3 and in the dielectric crystals of NaF and Bi. It can
only be observed in a small range at low temperatures.

The theory of Green and Naghdi is rather unusual as it
relies on a general entropy balance instead of an entropy
inequality. Besides that they introduce a new quantity

α =
∫ t

t0
T (xxx,τ)dτ+α0, (1)

with T and xxx being the empirical temperature and the spa-
tial coordinates, resp.. α is called the thermal displace-
ment. Green and Naghdi’s non-classical theory is based
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on three different constitutive equations for the heat flux,
labeled type I, II and III. The linearized theory I corre-
sponds to Fourier’s law, consequently, the classical the-
ory is fully embedded. Type II entails a hyperbolic heat
equation which allows the transmission of heat as ther-
mal waves without energy dissipation. One of the obvi-
ous errors of the diffusion equation is the paradox of infi-
nite wave propagation speed. Both, type II and III (being
an extension of II which involves energy dissipation), al-
low heat transmission at finite speed and therefore are
likely to be more naturally suitable than the usual theory
of Fourier.

Several results on different theoretical aspects of the
theory of Green and Naghdi have been published.
Chandrasekharaiah (1996a,b) worked on the uniqueness,
Nappa (1998) on spatial behavior in the linear the-
ory. Iesan (1998) focused on type II. Quintanilla and
Straughan published a number of papers, e.g. on sta-
bility [Quintanilla (2001b)] and instability [Quintanilla
(2001a,b)] of solutions, existence [Quintanilla (2002)] or
acceleration waves [Quintanilla and Straughan (2004)].
Maugin and Kalpakides addressed themselves to the La-
grangian and the Hamiltonian formulation [Maugin and
Kalpadikes (2002a,b)] of Green and Naghdi’s theory.
Only a handful of papers appeared using aspects of the
theory of Green and Naghdi for numerical modeling, see
e.g. Misra, Chattopadhyay, and Chakravorty (2000), Puri
and Jordan (2004) or Allam, Elsibai, and AbouElregal
(2002). As far as we know there exist no publications
concerning the computational modeling of original sec-
ond sound heat pulse experiments with the Green-Naghdi
approach.

The aim of our contribution is the numerical treatment of
Green and Naghdi’s theory. It is structured as follows.
First we reiterate the basic ideas and equations of Green
and Naghdi (1991). Section 3 focuses on spatial and
temporal discretization. Then the linear theory of heat
conduction for isotropic and homogeneous materials is
applied to a rigid conductor in a range of low tempera-
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tures where heat pulses appear due to a sudden change
in temperature. Finally the results are compared to given
experimental data.

2 Theory of Heat Conduction in Solids

During the second half of the last century there has been
reasonable interest in the theory of heat conduction in
solids. The detection of second sound and the unnatural
property of Fourier’s law that heat waves may propagate
with infinite speed entailed several considerations. Nev-
ertheless the problem of an exact theoretical model has
not yet been solved. In [Green and Naghdi (1991)] Green
and Naghdi introduce a theory which attracted interest
as heat propagates as thermal waves at finite speed and
does not necessarily involve energy dissipation. Another
recent non-classical model was developed by Kosinski,
Cimmmelli and Frischmuth [Cimmelli and Kosiński
(1991); Frischmuth and Cimmelli (1996)] by defining an
internal state variable called semi-empirical temperature.
Chandrasekharaiah (1998) and Tzou (1995) modify
Fourier’s law with two different time translations for the
temperature gradient as well as for the heat flux which
leads to a dual-phase-lag thermoelasticity. Hetnarski and
Ignaczak (1996) use an energy function and a heat flux
which both depend on an elastic heat flow in addition to
the temperature and the strain tensor.

Only some of the latest ideas are mentioned above as
there exist excellent and very detailed overviews of the
development, which was done by reviewing a great num-
ber of publications, in Joseph and Preziosi (1989, 1990)
and in Tamma and Namburu (1997). The focus of this
paper is the Green-Naghdi-model which in the opinion
of the authors is a very promising theory.

Heat conduction in a finite body (a stationary rigid solid)
B is considered. We restrict ourselves to the case of an
isotropic and homogeneous conductor. The position of a
point x is denoted by xxx in the fixed configuration.

In order to measure a “mean” thermal displacement mag-
nitude a scalar α = α (xxx, t) is defined by

α =
∫ t

t0
T (xxx,τ)dτ+α0, (2)

where T represents the temperature and α0 is the initial
value of α at the reference time t0. α is called thermal

displacement and

α̇ = T (3)

holds.

Furthermore a positive scalar θ being an increasing func-
tion of T is introduced

θ = θ (T ;a∗) , (4)

a∗ being a set of constants.

We assume the balance of entropy stated in Green and
Naghdi (1977):

∂
∂t

∫
B

ρηdV =
∫

B
ρ [s+ξ]dV −

∫
∂B

pppnnndA. (5)

The corresponding local form reads

ρη̇ = ρ [s+ξ]−divppp, (6)

where ρ is the body’s density, η the entropy density per
unit mass, s the external rate of entropy supply per unit
mass, ξ ≥ 0 the internal rate of entropy production per
unit mass and ppp the entropy flux vector.

From multiplying by the scalar quantity θ we obtain

ρθη̇ = ρθ [s+ξ] + ppp∇θ−div(θppp) . (7)

The heat flux vector qqq is then related to the entropy flux
vector ppp by the classical assumption

qqq := θppp. (8)

Thus we receive

ρθη̇ = ρθ [s+ξ] + ppp∇θ−divqqq. (9)

In order to develop a complete theory Green and Naghdi
(1991) showed that the following energy equation is valid
for all heat and thermal processes

ρψ̇+ρθ̇η+ ppp∇θ+ρθξ = 0 (10)

with ψ being the specific Helmholtz free energy.

In the following we introduce different constitutive equa-
tions for ψ, θ, η, ppp, ξ for the three types of heat conduc-
tion.
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2.1 Type I

In the case of heat flow of type I it is assumed that ψ, θ,
η, ppp, ξ are functions of the temperature T and the tem-
perature gradient ∇T :

ψ = ψ(T,∇T) , θ = θ (T,∇T) ,

η = η(T,∇T) , ppp = ppp(T,∇T) ,

ξ = ξ(T,∇T) .

(11)

Applying (11) to (10) yields

ρ
[

∂ψ
∂T

∂T
∂t

+
∂ψ

∂∇T
∂∇T

∂t

]
+ρ

[
∂θ
∂T

∂T
∂t

+
∂θ

∂∇T
∂∇T

∂t

]
η

+ ppp

[
∂θ
∂T

∂T
∂xxx

+
∂θ

∂∇T
∂∇T
∂xxx

]
+ρθξ = 0

(12)

which again is valid for all heat and thermal processes.
As a consequence it must hold for every Ṫ , ∇Ṫ and ∇2T .
Setting first all three terms equal to zero, then Ṫ , ∇Ṫ
equal to zero and ∇2T nonzero and third Ṫ = 0 and ∇Ṫ
nonzero, leads to the conclusions that ppp∇θ+ρθξ = 0 and
that the Helmholtz energy ψ as well as as the positive
scalar θ only depend on the temperature T and not on its
gradient ∇T . Without loss of generality we set T ≡ θ.

If the following relations are postulated

η = c lnT

qqq = −k∇T,
(13)

where c and k denote, resp., the non-negative constant
specific heat and the constant thermal conductivity, the
entropy equation (9) reads

ρcṪ = ρT s+k∆T. (14)

By substituting the external rate of heat supply per unit
mass r = T s the classical Fourier heat conduction results

ρcṪ = ρr +k∆T. (15)

2.2 Type II

The theory of type II involves heat transmission as ther-
mal waves at finite speed without energy dissipation.
Again constitutive equations are specified for ψ, θ, η, ppp,
ξ. All of them are assumed to depend on the temperature

T , the thermal displacement α and the thermal displace-
ment gradient ∇α:

ψ = ψ(T,α,∇α) , θ = θ (T,α,∇α) ,
η = η(T,α,∇α) , ppp = ppp (T,α,∇α) ,
ξ = ξ(T,α,∇α) .

(16)

Analogously to heat flow of the Fourier type, the set of
equations (16) is inserted into the energy equation (10):

ρ
[

∂ψ
∂T

∂T
∂t

+
∂ψ
∂α

∂α
∂t

+
∂ψ

∂∇T
∂∇T

∂t

]

+ρ
[

∂θ
∂T

∂T
∂t

+
∂θ
∂α

∂α
∂t

+
∂θ

∂∇T
∂∇T

∂t

]
η

+ppp

[
∂θ
∂T

∂T
∂xxx

+
∂θ
∂α

∂α
∂xxx

+
∂θ

∂∇T
∂∇T
∂xxx

]
+ρθξ = 0.

(17)

Green and Naghdi (1991) proved θ must be independent
of the thermal displacement gradient ∇α and suggest the
following linearized assumptions:

θ = a+bT

ppp =
1
θ

qqq = −ρk
b

∇α

η = c lnθ
ξ = 0

(18)

where a and b denote positive constants.

Consequently the entropy equation (9) results in

ρcbṪ = ρr +ρ
a
b

k∆α, (19)

neglecting the nonlinear terms.

In the case of a constant external rate of heat supply per
unit mass (ṙ = 0) and a positive thermal conductivity (k >

0) the time derivative of (19) is the well-known standard
wave equation

T̈ =
ak
cb2 ∆T, (20)

which represents waves propagating undamped with a
speed of

v =

√
ak
cb2 . (21)

Note that Green and Naghdi (1991) deduce the entropy
flux vector ppp from a potential in the same way the stress
tensor is derived in mechanics:

ppp = − ρ
∂θ
∂T

∂ψ
∂∇α

= −ρk
b

∇α (22)
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as ψ = c [θ−θ lnθ]+ 1
2k∇α∇α.

2.3 Type III

In case of heat flow of type III a dependency of ψ, θ, η,
ppp, ξ on the temperature T , the thermal displacement α
and their gradients ∇T and ∇α is assumed:

ψ = ψ(T,α,∇T,∇α), θ = θ (T,α,∇T,∇α) ,
η = η(T,α,∇T,∇α), ppp = ppp (T,α,∇T,∇α),
ξ = ξ(T,α,∇T,∇α).

(23)

As in the previous two approaches the constitutive rela-
tions (23) are substituted into the energy equation (10)
and the following relations are concluded in Green and
Naghdi (1991) :

θ = a+bT +dα
qqq = θppp = −k1∇α+k2∇T

η =
b2α+b3T

b
ξ = 0.

(24)

a, b, b2, b3, d are positive constants. The temperature
equation for the third heat flow is found by inserting (24)
into the entropy equation (9) and retaining only linear
terms

ρ
a
b

[
b2α̇+b3Ṫ

]
= ρr +k1∆α+k2∆T. (25)

3 Finite Element Discretization

In this section we provide detailed information about the
finite element discretization we use. We apply a dis-
cretization method, using a standard Bubnov-Galerkin
finite element method in space and a Galerkin finite ele-
ment formulation in time.

3.1 Spatial

To construct the weak form the temperature equations
(15), (19) and (25) are weighted with a test function δT
and integrated over the domain B . After applying the
divergence theorem we obtain in case of type I

∫
B

δT ρcṪ dV +
∫

B
∇δT k∇T dV

=
∫

B
δT ρrdV −

∫
∂B

δT k∇TnnndA
(26)

or for type II∫
B

δT ρcbṪ dV +
∫

B
∇δT ρ

a
b

k∇αdV

=
∫

B
δT ρrdV −

∫
∂B

δT ρ
a
b

k∇αnnndA
(27)

or for type III
∫

B
δT ρ

a
b

[
b2α̇+b3Ṫ

]
dV +

∫
B

∇δT [k1∇α+k2∇T ]dV

=
∫

B
δT ρrdV −

∫
∂B

δT [k1∇α+k2∇T ]nnndA

(28)

The domain B is discretized into nel spatial elements
and the geometry xxx is interpolated elementwise by shape
functions Ni at the i = 1, . . . ,nen node point positions.

B =
nel⋃

e=1

Be xxxh |Be=
nen

∑
i=1

Nixxxi (29)

Following the isoparametric concept we interpolate the
unknowns, the temperature T and the thermal displace-
ment α, with the same shape functions Ni as the ele-
ment geometry xxx. Furthermore, according to the Bubnov-
Galerkin method, the test function δT is discretized with
these test functions Ni, too.

αh|Be =
nen

∑
i=1

Niαi

T h|Be =
nen

∑
i=1

NiTi

δT h|Be =
nen

∑
i=1

NiδTi

(30)

Thus we receive the following expressions for the dis-
crete gradients of the unknowns ∇α, ∇T and of the test
function ∇δT :

∇αh|Be =
nen

∑
i=1

αi∇Ni

∇T h|Be =
nen

∑
i=1

Ti∇Ni

∇δT h|Be =
nen

∑
i=1

δTi∇Ni.

(31)

Consequently, we obtain the following semi-discretized
temperature equations for type I-III:

CCCρc · Ṫ̇ṪT (t)+KKKk ·TTT (t) = FFFsource −FFFI (32)
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CCCρcb · Ṫ̇ṪT (t)+KKKρ a
b k ·ααα (t) = FFF source−FFFII (33)

CCCρ a
b b2 · α̇̇α̇α (t)+CCCρ a

b b3 · Ṫ̇ṪT (t)+KKKk1 ·ααα (t)+KKKk2 ·TTT (t)

= FFF source−FFFIII
(34)

The capacity matrices are of the format:

CCC• =
nel

AAA
e=1

∫
Be

Ni •N jdV

in the sense that e.g.

CCCρc :=
nel

AAA
e=1

∫
Be

NiρcN jdV (35)

The conductance matrices are expressed as

KKK• =
nel

AAA
e=1

∫
Be

∇Ni •∇N jdV.

On the right-hand side the heat load vector due to external
heat bulk source

FFF source =
nel

AAA
e=1

∫
Be

NiρrdV

and those due to specified nodal temperatures

FFFI =
nel

AAA
e=1

∫
∂Be

Nik∇TnnndA FFFII =
nel

AAA
e=1

∫
∂Be

Niρ
a
b

k∇αnnndA

FFFIII =
nel

AAA
e=1

∫
∂Be

Ni [k1∇α+k2∇T ]nnndA

are obtained.

The operator
nel

AAA
e=1

denotes the assembly over all element

contributions at the element nodes.

3.2 Temporal

Each of the temperature equations (15), (19) and (25) has
to be discretized in time as well. In order to perpetu-
ate the consistency of the theory to the numerical aspect
we resort to a Galerkin finite element method in time as
well. At this point we distinguish between the discontin-
uous Galerkin (dG) method and the continuous Galerkin
(cG) method. The former one is ascribed to Lasaint and
Raviart (1974) while the latter one is acclaimed to Hulme
(1972).
For deeper studies of both methods see e.g. Eriksson,
Estep, Hansbo, and Johnson (1996). Betsch and Stein-
mann have published several papers [Betsch and Stein-
mann (2000a,b, 2001)] on the energy conserving proper-
ties of the cG method in elastodynamics.

3.2.1 Discontinuous Galerkin Method

Retaining the terminology of Eriksson in Eriksson, Es-
tep, Hansbo, and Johnson (1996) the expression “dG(k)
method” signifies that the trial as well as the test func-
tions are of discontinuous piecewise polynomials of de-
gree k. The identical function spaces are an advantage
in the error analysis and gain improved stability prop-
erties for parabolic problems [Eriksson, Estep, Hansbo,
and Johnson (1996)].

The time interval of interest I = [t0, t0 +tT ] is divided into
a finite number nt of elements such that
∫ t0+tT

t0
[. . .]dt =

nN

∑
i=1

∫ ti

ti−1

[. . .]dt (36)

and t0 < t1 < .. . < tnt = t0 + tT . Each t ∈ In = [tn−1, tn]
can be transformed to τ ∈ Iτ = [0,1] via the mapping

τ(t) =
t − tn−1

tn − tn−1
. (37)

The trial functions α(τ)α(τ)α(τ) and T (τ)T (τ)T (τ) are approximated on
each subinterval In by smooth Lagrange polynomials of
degree k

αααh (τ) |In =
k+1

∑
i=1

Mi (τ)αααi TTT h (τ) |In =
k+1

∑
i=1

Mi (τ)TTT i (38)

which are discontinuous across the element boundaries
and given by

Mi (τ) =
k+1

∏
j=1; j �=i

τ−τ j

τi −τ j
, 1 ≤ i ≤ k +1. (39)

The time derivatives take the format

Ṫ̇ṪT h (τ) |In =
1
hn

k+1

∑
i=1

M′
i (τ)TTT i, (40)

with hn = [tn − tn−1] being the length of the interval.

The test functions δααα and δTTT are elements of the same
space as the trial functions such that they take the form

δαααh (τ) |In =
k+1

∑
i=1

Mi (τ)δαααi δTTT h (τ) |In =
k+1

∑
i=1

Mi (τ)δTTT i.

(41)

A jump, thus a discontinuity, in the master element Iτ
has to be admitted in order to prevent that the trial func-
tions are over-determined at the nodal values, see Fig. 1.
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τ = 0 τ = 1 τ

T1

T0

T2

Figure 1 : The continuity condition is relaxed. Therefore
one generally gets a jump [TTT h]0 = TTT 1 −TTT 0. Here the
discontinuity on the linear master element Iτ is shown

[TTT h]0 = TTT 1−TTT 0 denotes the amount of the jump at τ = 0.
TTT 0 is the known value at the local node τ = 0 from the
previous time step.
The starting point of the time finite element method is,
like in the space finite element method, the weak form.
We now formulate the dG(k) approximation for heat flow
of the Fourier type:
find a trial function TTT (t) such that

∫ 1

0
δTTT

[
CCCρcṪ̇ṪT +KKKkTTT −FFF source +FFFI

]
dτ

+δTTT 1

[
TTT h

]
0
= 0,

(42)

for all test functions δTTT .

Taking into account the finite element approximations
(38) and (41), we obtain the following set of algebraic
equations:

k+1

∑
j=1

∫ 1

0
MiCCCρcM′

jdτTTT j +hn

∫ 1

0
MiKKKkM jdτTTT j

+hnδi1

[
TTT h

]
0
= hn

k+1

∑
j=1

∫ 1

0
Mi [FFFsource−FFF I]dτ

(43)

for all i = 1, . . .,k + 1, where we introduced the Kro-
necker Delta δi1.

The discontinuous Galerkin and the finite element ap-
proximation of type II read

∫ 1

0
δTTT

[
CCCρcbṪ̇ṪT +KKKρ a

b kααα−FFF source +FFFII

]
dτ

+δTTT 1

[
TTT h

]
0
= 0

(44)

resp.

k+1

∑
j=1

∫ 1

0
MiCCCρcbM′

jdτTTT j

+hn

∫ 1

0
MiKKKρ a

b kM jdτααα j +hnδi1

[
TTT h

]
0

=hn

k+1

∑
j=1

∫ 1

0
Mi [FFFsource−FFF II]dτ ∀i = 1, . . . ,k +1

(45)

whereas those of type III are given by

∫ 1

0
δTTT

[
CCCρ a

b b2α̇̇α̇α+CCCρ a
b b3Ṫ̇ṪT +KKKk1ααα+KKKk2TTT −FFF s +FFFIII

]
dτ

+δTTT 1

[
TTT h

]
0
= 0

(46)

resp.

k+1

∑
j=1

∫ 1

0
MiCCCρ a

b b2 M′
jdτααα j +

∫ 1

0
MiCCCρ a

b b3M′
jdτTTT j

+hn

∫ 1

0
MiKKKk1 M jdτααα j +hn

∫ 1

0
MiKKKk2M jdτTTT j +hnδi1

[
TTT h

]
0

=hn

k+1

∑
j=1

∫ 1

0
Mi [FFFsource−FFF III]dτ ∀i = 1, . . .,k +1.

(47)

As we discretize ααα as well as TTT the relation between ααα
and TTT has to be discretized, too. The weak form of (3)

hn

∫ 1

0
δααα [α̇̇α̇α−TTT ]dτ+δααα1

[
αααh

]
0
= 0 (48)

leads to the discrete system

k+1

∑
j=1

∫ 1

0
MiM

′
jdτααα j −hn

∫ 1

0
MiM jdτTTT j +hnδi1

[
αααh

]
0
= 0

∀i = 1, . . .,k +1.

(49)

3.2.2 Continuous Galerkin Method

The cG(k) method uses trial functions consisting of con-
tinuous piecewise polynomials of degree k and test func-
tions consisting of discontinuous piecewise polynomials
of degree k−1. Therefore the number of algebraic equa-
tion is decreased by one in comparison to the dG method.
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The trial functions ααα (τ) and TTT (τ) are again approxi-
mated by

αααh (τ) |In =
k+1

∑
i=1

Mi (τ)αααi TTT h (τ) |In =
k+1

∑
i=1

Mi (τ)TTT i (50)

which this time are continuous across the element bound-
aries. The nodal shape functions of the test functions δααα∗
and δTTT ∗ are of reduced degree k − 1 such that δαααh∗ and
δTTT h∗ are of the following format

δαααh (τ) |In =
k

∑
i=1

M̃iδαααi
∗ δTTT h (τ) |In =

k

∑
i=1

M̃iδTTT i
∗. (51)

The reduced nodal shape functions M̃i are defined by the
relation

α̇̇α̇αh (τ) =
1
hn

k+1

∑
i=1

M′
i (τ)αααi =

1
hn

k

∑
i=1

M̃i (τ) α̃̃α̃αi, (52)

where the α̃̃α̃αis are linear combinations of the αis (see also
Tab. 1).

The cG(k) approximation of heat flow of type I is given
by

hn

∫ 1

0
δTTT

[
CCCρcṪ̇ṪT +KKKkTTT −FFF source +FFFI

]
dτ = 0, (53)

the one of type II by

hn

∫ 1

0
δTTT

[
CCCρcbṪ̇ṪT +KKKρ a

b kααα−FFF source +FFFII

]
dτ = 0 (54)

and the one of heat flow of type III yields

hn

∫ 1

0
δTTT [CCCρ a

b b2α̇̇α̇α+CCCρ a
b b3Ṫ̇ṪT +KKKk1ααα+KKKk2TTT

−FFF source +FFFIII ]dτ = 0.

(55)

The relation (3) between ααα and TTT follows:

hn

∫ 1

0
δααα [α̇αα−TTT ]dτ = 0. (56)

Regarding the arbitrariness of the test functions and in-
serting the relations (50), (51) and (52) into the weak
form (54) of the temperature equation leads to the listed
system of equations for type I:

k+1

∑
j=1

∫ 1

0
M̃iCCCρcM′

jdτTTT j +hn

∫ 1

0
M̃iKKKkM jdτTTT j

= hn

k+1

∑
j=1

∫ 1

0
M̃i [FFF source−FFFI ]dτ ∀i = 1, . . .,k.
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Analogously, we receive the algebraic set of equations
for type II

k+1

∑
j=1

∫ 1

0
M̃iCCCρcbM′

jdτTTT j +hn

∫ 1

0
M̃iKKKρ a

b kM jdτααα j

= hn

k+1

∑
j=1

∫ 1

0
M̃i [FFF source−FFFII ]dτ ∀i = 1, . . .,k

(58)

and type III:

k+1

∑
j=1

∫ 1

0
M̃iCCCρ a

b b2M′
jdτααα j +

∫ 1

0
M̃iCCCρ a

b b3M′
jdτTTT j

+hn

∫ 1

0
M̃iKKKk1M jdτααα j +hn

∫ 1

0
M̃iKKKk2M jdτTTT j

= hn

k+1

∑
j=1

∫ 1

0
M̃i [FFF source−FFFIII]dτ ∀i = 1, . . .,k.

(59)

In order to obtain a well-defined set of algebraic equa-
tions for both types of heat conduction equation (56) has
to be discretized as well:

k+1

∑
j=1

∫ 1

0
M̃iM′

jdτααα j −hn

∫ 1

0
M̃iM jdτTTT j = 0. (60)

4 Numerical Example

In this section we present a numerical example in order
to demonstrate the applicability of the proposed method.
We study a rigid conductor of sodium fluoride (NaF)
where the phenomenon of second sound was observed
in a small temperature interval around 15K. An isotropic
and homogeneous material is assumed and the material
parameters were taken from Gmelin (1993). We apply
the derived system of equations to a 1D-NaF-bar at 15K
with a length of l = 8.3 mm.

ρ = 2866

[
kg
m3

]
c = 2.774

[
W

kgK

]

k = 20500

[
W
mK

]
k1 = 20500

[
W
mK

]

k2 =
k1

10000

[
W
mK

]
l = 8.3 [mm]

r = 0−no external heat source

(61)

Initially the bar is set at equilibrium. Then we raise the
temperature at the left side of the specimen by a short

Table 2 : heat conduction problem: computational algo-
rithm for one typical time step

Given: initial conditions: ααα, TTT at time n
time step size: hn

set time iteration number = n
Find: ααα, TTT at time n+1
(1) spatial discretization:

compute CCC•,KKK•,FFFsource,FFFI ,FFFII ,FFFIII

(2) temporal discretization:
compute time integrals for n+1∫ 1

0 M̃iCCC•M′
jdτ,

∫ 1
0 M̃iM jdτ,

∫ 1
0 M̃iM′

jdτ, . . .
(3) build algebraic system of equations

HHH
( TTT

ααα

)
=

( FFFeq1

FFFeq2

)
HHH : matrix consisting of corresponding

time integrals

eq1: (43), (58) or (59)

eq2: (60)

(4) solve algebraic system of equations( TTT
ααα

)
= HHH−1

( FFFeq1

FFFeq2

)

heat impulse with a height of 1.0K. The thermal dis-
placement ααα is chosen to be equal to 0 on the entire
bar.The observation time is 6µs. We chose 200 finite ele-
ments in space and 80 in time in each of the examples.

4.1 Type I

Fig. 2 shows the temperature distribution according to
Fourier’s law generated by the dG(1)-method. The tem-
perature is plotted as a function of space and time. It can
be seen that the heat does not propagate as a wave.

In order to solve parabolic initial value problems the dis-
continuous Galerkin method gives bettter stability prop-
erties than the continuous Galerkin method [Eriksson,
Estep, Hansbo, and Johnson (1996)]. In case of the
parabolic Fourier temperature equation the cG-method
does not lead to a reasonable solution at all.

4.2 Type II

Hardy and Jaswal (1971) specify the velocity of second
sound in NaF at 15K to 19.531 ·10−4 m

µs . We set the con-

stant a := 1
ρ and therefore receive b≈ 103, using equation
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Figure 2 : Heat conduction in NaF, type I, dG approximation. Heat does not propagate as a wave.

Figure 3 : Heat conduction in NaF, type II, cG approximation. Heat propagates as a wave. Oscillations enforce a
stabilization.
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(21). The heat flow of type II proves to be instable - a re-
sult which was also derived theoretically in the non-linear
case by Quintanilla in Quintanilla (2001a). Fig. 3, which
was generated by the cG-method, shows oscillations.

Thus we apply a Streamline-Upwind-Stabilization-
Method, see also Appendix A. Fig. 4 shows the stabilized
heat flow of type II.

A wave speed of 19.531 · 10−5 m
µs is related to an arrival

time of 4.1µs in the considered specimen. The arrival
point in this model is 4.25µs. As it has been mentioned
before, heat flow of type II does not involve energy dissi-
pation. As a consequence, the wave propagates endlessly
between the two sides of the bar.

The dG approximation proves to be even more unstable.
The quality of the solution depends too strongly on the
intial conditions and the number of elements. For most
tries a wrong solution is received. Although type II is
originally a theory without energy dissipation, the dG
approximation shows a slight diffusive behavior. This
is due to the (numerical) damping properties of the dG
method. The dG method is not energy conserving. Be-
cause of the discontinuous dG test functions the algebraic
system to be solved has twice the size of the cG algebraic
system.
Therefore the cG method seems to be the better choice
for a theory without energy dissipation.
Fig. 5 shows heat conduction in NaF of type II generated
by a dG method. The result is more stable than the cG
approximation, but numerical oscillations can be seen in
the beginning of the computation. We used 45 temporal
and 50 spatial elements as the solution achieved with 200
temporal and 80 spatial elements was wrong.

4.3 Type III

In the case of heat flow of type III we set a := c, b2 = 0
and b3 = 1. Consequently, b must be equal to 10−6. We
used the same amount of elements as in the type II case
(again 80 spatial and 200 temporal) and did not apply
any stabilization method. Note that although k1

k2
= 10000

1
the method is stable. The arrival point is perfectly met.
This heat conduction model involves dissipation. Thus
the wave amplitude decreases and the wave becomes dif-
fusive. Depending on the ratio k1 : k2 the model of type
III is more or less diffusive. Even with the selected ra-
tio of 10000 : 1 the diffusion is clearly visible (see Fig. 6
and Fig. 7). Both, cG and dG, lead to a satisfactory solu-
tion. The amplitude of the dG approximation is slightly

smaller than the one of the cG solution. This is due to
numerical damping effects of the dG method.

We chose the length of the bar to be 8.3 mm in order
to be able to compare our numerical results to those ob-
tained by Cimmelli and Frischmuth with their approach
in Cimmelli and Frischmuth (1996) and Frischmuth and
Cimmelli (1996). We found a good correspondance with
arrival times and the height of the heat impulse at the left
end of the bar. Inbetween the amplitude differs due to the
different theoretical models.

5 Conclusions

The objective of this paper was the investigation and
comparison of heat conduction following the approach
of Green and Naghdi. Motivated by the fully consis-
tent theory and the basic general development, we be-
gan by reviewing their equations of non-classical heat
conduction and then introduced discretization methods
which are based on finite elements in space and in time.
As predicted by Eriksson, Estep, Hansbo, and Johnson
(1996) the dG method is better suited for parabolic prob-
lems whereas the cG methods works better for hyperbolic
problems. It turned out that due to the instability of type
II we had to use a Streamline-Upwind-Stabilization for
this kind of heat flow. As Eriksson, Estep, Hansbo, and
Johnson (1996) predictes, also in the case of heat prop-
agation dG proves to be better suitable for the parabolic
problem and cG better for the hyperbolic one.
As expected, Fourier’s law is inapplicable to heat con-
duction in NaF at the considered temperature. Type II
and III describe the behavior of second sound adequately.
The heat propagates at finite speed and as waves. Our
numerical results agree very well with experimental data
(see Jackson and Walker (1970, 1971)) as well as with the
numerical results of Cimmelli and Frischmuth (1996);
Frischmuth and Cimmelli (1996). In contrast to other
theories the approach of Green and Naghdi does not nec-
essarily involve energy dissipation.
In our opinion their elegant theory is very promising and,
agreeing with Green and Naghdi, “perhaps a more nat-
ural candidate for its identification as thermoelasticity”
[Green and Naghdi (1993)]. In this paper the applica-
bility to thermal problems of the theory was shown by
means of a numerical example and the expected results
were achieved.

Acknowledgement: The financial support by the Ger-
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Figure 4 : Type II, approximated by cG and stabilized with a Streamline-Upwind-Method, does not involve energy
dissipation.

Figure 5 : Type II, approximated by dG, does involve small energy dissipation.
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Figure 6 : Heat conduction in NaF, type III, cG approximation, permits propagation of heat as a diffusive wave.
This heat flow is perfectly stable.
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This heat flow is perfectly stable.
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Appendix A: Stabilisation of type II

In case of heat conduction in NaF, type II, numerical er-
rors cause oscillations. Therefore we apply a stabiliza-
tion technique. The basic weak form of type II reads:
∫

I

∫
B

δT
[
ρcb2Ṫ −k∆α

]
dVdt = 0 (A1)

Most stabilization methods add a so-called stabilization
term ST to the original equation:
∫

I

∫
B

δT
[
ρcb2Ṫ −k∆α

]
dVdt +ST = 0 (A2)

In the following we shortly introduce different stabilia-
tion approaches. In all cases the main idea is a perturba-
tion of the test function.
Streamline-Upwind-methods use test functions of the
kind

δT = δT +εaaa∇T, (A3)

with ε being called the stabilization parameter and aaa
being an arbitrary vector. Simple Streamline-Upwind-
methods apply the perturbation only to one part of the
equation (e.g. to the advection term of an advection-
diffusion-equation). In our case, we receive:

ST = εaaa
∫

I

∫
B

∇δT ρcb2Ṫ dVdt. (A4)

Integrating by parts and neglecting the boundary terms,
the heat equation modified by SU-stabilization reads:

ρcb2 [1−εaaa∇] Ṫ −k∆α = 0. (A5)

Choosing ε = −5 ·10−6 results in Fig. 4

Applying the pertubation to −k∆α leads to the stabiliza-
tion term

ST = εaaa
∫

I

∫
B

∇δT [−k∆α]dVdt (A6)
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Figure 8 : Type II, stabilized with SUPG
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Figure 10 : Temperature is plotted versus time in the unstabilized case at x= 7mm. The oscillations of the solution
are clearly visible.
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Figure 11 : Stabilized problem: Temperature is plotted versus time at x= 7mm. The SUPG-solution reveals diffusive
characteristics: the amplitude of the original wave is larger than the reflected wave’s one. Also it still contains
oscillations. The SU-solution contains almost no dissipation and shows improved damping behavior. The time-
stabilized solution does not seem to be appropriate since the solution is diffusive, amplitudes are damped too much
and wave lengths become too large.
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resp. to the modified heat equation

ρcb2Ṫ −k [1−εaaa∇]∆α = 0 (A7)

but not to a satisfactory solution.

An enlargement of the SU-method was developed
by Hughes, the Streamline-Upwind/Petrov-Galerkin-
method (SUPG). The test function (A3) is applied to the
entire heat equation:

ST =
∫

I

∫
B

εaaa∇δT
[
ρcb2Ṫ −k∆α

]
dVdt (A8)

After integrating by parts and neglecting the boundary
terms, the heat equation modified by SUPG-stabilization
reads:

ρcb2 [1−εaaa∇] Ṫ −k [1−εaaa∇]∆α = 0. (A9)

Again we receive a stabilized heat flow:

The SUPG-stabilized heat flow (see Fig. 8) stills contains
small numerical errors, e.g. the amplitude of the wave is
slightly oscillating.

As the heat equation is transient the test function can be
perturbated in time instead of in space as well:

δ̂T = δT +ε�δṪ . (A10)

If we apply this test function to −k∆α, reflecting the spa-
tial SU-method, we receive:

ST =
∫

I

∫
B

ε�δṪ [−k∆α]dVdt = 0. (A11)

It can be shown that for ε = k2
k1

equation (A2) is equivalent
to heat flow of type III:

ρcb2Ṫ −k

[
1−ε� ∂

∂t

]
∆α = 0. (A12)

Consequently, we receive a heat flow which is dissipative
although type II originally is not, see Fig. 9.

The two-dimensional plots of the temperature history, see
Fig. 10 and Fig. 11, and those of temperature plotted ver-
sus place, see Fig. 12 and Fig. 13, show the numerical
difficulties encountered and the effects of the different
stabilization approaches. Fig. 10 and Fig. 12 demonstrate
the oscillating cG-solution of type II heat flow. Fig. 11
and Fig. 13 reveal the behavior of SU, SUPG and time-
stabilization whereas SU proves to be the most appropri-
ate stabilization method.

Neither applying the perturbation to ρcb2Ṫ nor applying
(A10) to (A1), following the way of SUPG, leads to a
reasonable solution. The stabilization terms read

ST =
∫

I

∫
B

ε�δṪ ρcb2Ṫ dVdt (A13)

resp.

ST =
∫

I

∫
B

ε�δṪ
[
ρcb2Ṫ −k∆α

]
dVdt (A14)

whereas the modified heat equations

ρcb2
[

1−ε� ∂
∂t

]
Ṫ −k∆α = 0 (A15)

resp.

ρcb2
[

1−ε� ∂
∂t

]
Ṫ −k

[
1−ε� ∂

∂t

]
∆α = 0 (A16)

are to be solved.


