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Abstract: Structural health monitoring techniques
based on vibration data have received increasing atten-
tion in recent years. Since the measured modal character-
istics and the transient motion of a beam exhibit low sen-
sitivity to damage, numerical techniques for accurately
computing vibration characteristics are needed. Here we
use a Meshless Local Petrov-Galerkin (MLPG) method
to analyze vibrations of a beam with multiple cracks. The
trial and the test functions are constructed using the Gen-
eralized Moving Least Squares (GMLS) approximation.
The smoothness of the GMLS basis functions requires
the use of special techniques to account for the slope dis-
continuities at the crack locations. Therefore, a set of
Lagrange multipliers is introduced to model the spring
effects at the crack locations and relate motions of the
intact beam segments. The method is applied to study
static and transient deformations of a cracked beam and
to determine its modal properties (frequencies and mode
shapes). Numerical results obtained for a simply sup-
ported beam are compared with experimental findings,
analytical predictions and finite element solutions.

keyword: MLPG method, multiple cracks, breathing
crack, Lagrange multipliers, meshless method, transient
analysis, modal analysis.

1 Introduction

Most load carrying systems and structures degrade or ac-
cumulate cracks during service. For safety reasons, it
is desirable that any existing cracks be detected and lo-
cated before they cause more serious damage and even-
tual system failure. Visual inspection is costly and te-
dious and often does not yield a quantifiable result. For
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some components visual inspection is virtually impossi-
ble. Therefore, the development of structural health mon-
itoring techniques has received increasing attention in re-
cent years (see e.g. Dimarogonas (1996)). Among these
techniques, it is believed that the use of vibration data of-
fers the most desirable alternative to actually dismantling
the structure. In this method one excites the structure ei-
ther in free vibration or in forced harmonic oscillations
and extracts the natural frequencies and, if possible, the
mode shapes. The main idea behind damage detection
schemes that rely on modal data is that a damage in the
system will manifest itself as changes in the modal char-
acteristics.

The structural health monitoring and diagnostics gener-
ally require accurate models for the structures, since the
measured modal characteristics generally do not change
much with damage; e.g. the changes in natural fre-
quencies due to cracks become significant only when the
structure is close to failure. As for the computational
costs involved in the identification procedure a good
compromise between accuracy and simplicity should be
a key feature of a mathematical model intended to be part
of the on-line health monitoring procedure. Therefore
in the last two decades, several investigators have been
working on the development of reliable and robust math-
ematical models of damaged structural elements, espe-
cially slender beams. The different theoretical modeling
techniques for cracked slender structures can be grouped
in two basic categories: i) “lumped flexibility” models;
and ii) “continuous” models.

The first category is based on the representation of a
crack as a lumped flexibility element (generally a spring),
without affecting the modeling of the undamaged re-
gions (see e.g. Gudmunson (1983) and Chondros &
Dimarogonas (1998) for modeling aspects; Ostachow-
icz & Krawczuk (1991) and Khiem & Lien (2004) for a
multiple cracks scenario; and Rizos, Aspragathos & Di-
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marogonas (1988) for the damage identification). The
determination of the equivalent lumped stiffness is usu-
ally performed in the framework of classical fracture me-
chanics, starting from the knowledge of the stress in-
tensity factors. On the other hand, the basic idea be-
hind the second modeling strategy is to obtain a contin-
uous, one dimensional model of the cracked beam at the
level of approximation of classical beam theory (see e.g.
Christides & Barr (1984) for modeling aspects; Shen &
Pierre (1990) and Shen & Pierre (1994) for computa-
tional insights; Chondros & Dimarogonas (1998) and
Chondros (2001) for comparisons between the lumped
flexibility and the continuous models; Carneiro & Inman
(2002) for the derivation of a continuous model includ-
ing shear deformations). The governing equations of the
one-dimensional cracked beam are derived via a varia-
tional principle, e.g. the Hu-Washizu-Barr method. The
modification of the stress field induced by the crack is in-
corporated through a local empirical function which as-
sumes an exponential decay with the distance from the
crack. This additional crack function can be determined
in several ways, but none of them seems to be satisfac-
tory. The adopted techniques range from crude numerical
analysis to experimental investigations passing through
qualitative fracture mechanics. For a complicated struc-
ture with multiple cracks, the solution of the govern-
ing equations of motion requires numerical techniques,
e.g. the finite element method (Gounaris & Dimarogo-
nas (1988) and Gounaris, Papadoupolos & Dimarogonas
(1996)) or the Myklestad approach Mahmoud, Zaid & Al
Harashani (1999).

In the development of these theoretical models, it is as-
sumed that the crack remains open during the vibration
period. However, unless a static preload exists, during
vibrations of the beam the state of stress in the cracked
section varies from tension to compression, i.e. the crack
opens and closes with time. This results in a modifica-
tion of the crack section stiffness, the extremal values
being the stiffness of the open crack and that of the in-
tact beam. Thus, the non-linear behavior of the clos-
ing crack introduces characteristics of the non-linear sys-
tems. However, for many practical applications, the sys-
tem can be considered bilinear, and the fatigue crack
can be introduced in the form of the so-called “breath-
ing crack” model which opens when the normal strain
near the crack tip is positive, otherwise it closes. The vi-
bration of a beam with a closing crack has been studied

in several works: in Chondros & Dimarogonas (2001)
and Shen & Chu (1992) a continuous cracked beam the-
ory is assumed and Galerkin procedures are applied; in
Sundermeyer & Weaver (1995) a lumped flexibility the-
ory is used and semi-analytical solutions are presented;
in Qian, Gu & Jiang (1990), Ruotolo, Surace, Crespo &
Storer (1996) and Pugno, Surace & Ruotolo (2000) a
finite element model of the cracked beam is used, where
reduced stiffness of an element accounts for the crack’s
presence by “smearing” the crack effect on an entire el-
ement; in Luzzato (2003) a “smeared crack” model is
compared with a finite element solution of a lumped flex-
ibility model.

In the present paper we propose an accurate numerical
technique for the analysis of a beam with multiple cracks
based on a meshless local Bubnov-Galerkin formulation
of the beam problem. Adopting the lumped flexibility
approach, each fatigue crack is modelled as a rotational
spring and several damage scenarios are addressed. We
study the modal characteristics of a beam with multiple
open cracks and its transient behavior when the cracks
are breathing.

Meshless methods such as the element-free Galerkin
(Belytschko, Lu & Gu (1994)) , hp- clouds (Duarte
& Oden (1996)), the reproducing kernel particle (Liu,
Jun & Zhang (1995)), the smoothed particle hydrody-
namics (Lucy (1977)), the diffuse element (Nayroles,
Touzot & Villon (1992)), the partition of unity finite
element (Melenk & Babuska (1996)), the natural ele-
ment (Sukumar, Moran & Belytschko (1998)), meshless
Galerkin using radial basis functions (Wendland (1995)),
the meshless local Petrov-Galerkin (MLPG) (Atluri &
Zhu (1998)), and the modified smoothed particle hy-
drodynamics (MSPH) (Zhang & Batra (2004)), and the
collocation method using multiquadrics basis functions
(Kansa (1990); Ferreira, Batra, Roque, Qian & Martins
(2005)) for seeking approximate solutions of partial dif-
ferential equations have become popular during the last
two decades because of the flexibility of placing nodes at
arbitrary locations and the ability to treat moving bound-
aries. All of these methods, except for the MLPG, the
collocation, and the MSPH, are not truly meshless since
the use of shadow elements is inevitable for the integra-
tion of the governing weak formulations (Atluri & Shen
(2002)). Recent literature (Atluri, Cho & Kim (1999)
and Raju & Phillips (2003)) shows increasing interest
in the analysis of beams by the use of MLPG methods.
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In Atluri, Cho & Kim (1999) the static analysis of thin
beams is presented using a Bubnov-Galerkin implemen-
tation of the MLPG method (named MLPG6 variant in
Atluri & Shen (2002)), i.e. the trial and the test func-
tions are chosen from the same space. In particular, the
conventional Moving Least Squares (MLS) approxima-
tion presented in Lancaster & Salkauskas (1981) is gen-
eralized to treat 4-th order boundary value problems and
the resulting Generalized Moving Least Squares (GMLS)
approximation is used to construct simultaneously the
test and the trial functions. In Raju & Phillips (2003)
the static analysis of thin beams is addressed by the use
of a Petrov-Galerkin implementation of MLPG method,
where the trial functions are constructed using the GMLS
approximation and the test functions are chosen from a
different space. The GMLS basis functions are gener-
ally continuously differentiable over the entire domain
which results in continuous derivatives of the trial solu-
tion. Thus the treatment of cracked beams necessitates
the use of special techniques to account for the slope dis-
continuities at the crack stations (a similar problem has
been studied in Batra, Porfiri & Spinello (2004) for heat
conduction in a bimaterial body). In the present paper
we use the MLPG6 variant and adopt a substructure ap-
proach, by making use of Lagrange multipliers to model
the spring effects at the crack locations and relate defor-
mations of the intact beam segments. Warlock, Ching,
Kapila & Batra (2002) employed the method of La-
grange multipliers to enforce traction boundary condi-
tions at a rough contact surface, and Batra and Wright
(1986) have used it to enforce the non-interpenetration
condition at a smooth contact surface.

The paper is organized as follows:

• In Section 2 we review the basic formulation of the
GMLS basis functions introduced in Atluri, Cho &
Kim (1999).

• In Section 3 we study the dynamics of a multiply
cracked beam with the MLPG method. The pres-
ence of cracks is accounted for by the introduction
of suitable Lagrange multipliers, which guarantee
the deflection continuity at the crack locations. The
static deformations, the transient behavior and the
modal properties are considered in the analysis. The
stability of the mixed formulation is discussed and
the inf-sup condition is proved.

• In Section 4 we consider effects of cracks opening

and closing during the beam vibration period; i.e.
we consider the transient analysis of a beam with
breathing cracks.

• In Section 5 we report results of numerical experi-
ments, and compare present results with those from
other numerical methods, exact solutions and/or ex-
perimental findings. Indeed, we compare the fi-
nite element and meshless methods in the analy-
sis of static deformations and in the estimation of
the modal properties, and we compare the meshless
method with the method proposed in Sundermeyer
& Weaver (1995) for the analysis of the transient
deformations of a beam with breathing cracks.

For the sake of brevity, the approach is presented for a
simply supported beam, although it has been found suit-
able also for other boundary conditions.

2 Generalized Moving Least Squares (GMLS) Basis
Functions

Meshless methods generally require local interpolation to
represent the trial function. Here we use the generalized
moving least squares approximation developed in Atluri,
Cho & Kim (1999). This technique generalizes that pro-
posed in Lancaster & Salkauskas (1981) by allowing for
the accurate reconstruction of a given trial function on
the entire domain, from the knowledge of its values and
of its first derivatives at some, suitably chosen, scattered
points.

Consider the one-dimensional function w having contin-
uous first derivative on the domain Ω. The (fictitious)
nodal values and (fictitious) derivatives at the scattered
points N = {x1,x2, ...,xN} in Ω are collected into the

two N-vectors ŵ = [ŵ1, ..., ŵN]T and ϑ̂ =
[
ϑ̂1, ..., ϑ̂N

]T
respectively, where the superscript T indicates transposi-
tion. The global approximation wh on Ω is defined as

w(x) � wh (x) = pT (x)a(x) , x ∈ Ω, (1)

where

pT (x) =
[
1,x,x2, ...,xm−1] (2)

is a complete monomial basis of degree m−1.

The m-vector a(x) = [a1 (x) , ...,am(x)]T is composed of
indeterminate coefficients, which vary with the abscissa
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x on the domain Ω. At each location x on Ω these coeffi-
cients are determined by a local least square approxima-
tion of w(x) on a small neighborhood Ωx of x. The local
approximation wx (x) is defined by

w(x) � wx (x) = pT (x)a(x) , x ∈ Ωx ⊂ Ω. (3)

wx x pT x a x

x xxi

wi

i

Figure 1 : Sketch of the GMLS approximation.

In a small neighborhood of a generic point x the co-
efficients ai are treated as the unknown constants of a
classical polynomial least square approximation. There-
fore, they are determined by minimizing the functional
Jx representing the weighted discrete H1 error norm (see
Atluri, Cho & Kim (1999); and defined by

Jx (a) =
N

∑
i=1

W (w)
i (x) [wx (xi)− ŵi]

2

+
N

∑
i=1

W (ϑ)
i (x)

[
w′

x (xi)− ϑ̂i
]2

, (4)

where the superimposed prime indicates derivative with
respect to the x coordinate. Functions W (w)

i and W (ϑ)
i

are weight functions of node i and are characterized by
the following properties: (i) they are continuous, (ii)
they equal one at x = xi, (iii) they vanish when x /∈(

xi −R(w)
i ,xi +R(w)

i

)
and x /∈

(
xi −R(ϑ)

i ,xi +R(ϑ)
i

)
, re-

spectively, and are positive elsewhere. The parameters

R
(w)
i and R(ϑ)

i measure semi-supports of the weight func-

tions W (w)
i and W (ϑ)

i respectively, Figure 1 shows the
GMLS approximation.

At a given location x only a few terms in summation (4)

do not vanish since the supports R(w)
i and R(ϑ)

i of the

weight functions W (w)
i and W (ϑ)

i are much smaller than
the size of Ω. This is used to reduce the memory allo-
cations when implementing the algorithm in a computer
code. Lower bounds of R(w)

i and R(ϑ)
i are stated in Atluri,

Cho & Kim (1999) for assuring the regularity of the
GMLS basis functions.

The stationarity of Jx with respect of a yields

A(x)a(x)= B(x)
[

ŵ
ϑ̂

]
, (5)

where the (m,m) and the (m,N) matrices A and B are
defined by

A(x)= PTW(w) (x)P+
(
P′)T W(ϑ) (x)P′,

B(x) =
[

PTW(w) (x) (P′)T W(ϑ) (x)
]
. (6)

Here W(w) and W(ϑ) are (N,N) diagonal matrices de-
fined by

W(w) (x) = DIAG
[

W (w)
1 (x) ... W (w)

N (x)
]
,

W(ϑ) (x) = DIAG
[

W (ϑ)
1 (x) ... W (ϑ)

N (x)
]
,

and P, P′ are (N,m) matrices of real numbers defined by

PT =
[

p(x1) ... p(xN)
]
,(

P′)T =
[

p′ (x1) ... p′ (xN)
]
.

Solving (5) for a(x) and substituting for a(x) in the
global approximation (3) we obtain the GMLS approx-
imation

wh (x, t) = ψ(w) (x)T ŵ +ψ(ϑ) (x)T ϑ̂, (7)

where the vectors of basis functions ψ(w) (x) and ψ(ϑ) (x)
are given by

ψ(w) = p(x)T A−1 (x)PTW(w) (x) ,

ψ(ϑ) = pT (x)A−1 (x)
(
P′)T W(ϑ) (x) . (8)

It is convenient to group the nodal variables and the
GMLS basis functions in the 2N-vectors ŝ and ψ, respec-
tively.

The smoothness of the GMLS trial functions is com-
pletely determined by the smoothness of the weight func-
tions, since the monomial basis is infinitely differen-
tiable. If α− 1 indicates the minimum order of differ-
entiability of all weight functions, then from (6) and (8)
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it is evident that the trial functions will be at least α−1
times differentiable.

In the present work, following Atluri, Cho & Kim
(1999) and Raju & Phillips (2003), we assume the same
Cα−1 (Ω) structure for all weight functions and no dis-
tinction is made between the deflection and the rotation
weight functions, namely

W (w)
i (x) = W (ϑ)

i (x)

=

⎧⎨
⎩
(

1−
(

x−xi
Ri

)2
)α

if x ∈ (xi −Ri,xi +Ri)

0 if x /∈ (xi −Ri,xi +Ri)
.(9)

In the analysis of thin beams with the meshless local
Bubnov-Galerkin method, we need derivatives of the
GMLS basis functions (8). The derivatives of the inverse
of the matrix A are computed from the identity:

AA−1 = 1.

Hence(
A−1
)′ = −A−1A′A−1(

A−1
)′′ = 2A−1A′A−1A′A−1 −A−1A′′A−1 .

Therefore, only the knowledge of the weight functions
and their derivatives is needed to compute the derivatives
of A−1.

3 Vibrations of a multiply cracked beam

3.1 Governing equations

A beam of length l, cross-sectional area A = h×b, mo-
ment of inertia I = bh3/12, Young’s modulus E, mass
density per unit volume ρV with n cracks located at points
c1,..., cn is considered. The simplest way to account,
with a reasonable accuracy, for effects of cracks on the
dynamic properties of a slender beam is to represent
cracks as lumped flexibility elements and to model the
intact regions as Euler-Bernoulli beams. Therefore, fol-
lowing Gudmunson (1983) and Chondros & Dimarogo-
nas (1998) cracks are modelled as n massless rotational
springs whose stiffnesses are denoted by ki. As a con-
sequence, we divide the beam into n + 1 sub-intervals
Ωi = [ci−1,ci] (c0 ≡ 0 and cn+1 ≡ l) of length li, intro-
duce the n + 1 local abscissas ξi and consider n + 1 de-
flection fields wi (ξi) . Figure 2 exhibits the geometry of
the cracked beam.

The vibrations of each undamaged beam segment are
governed by

KMwIV
i (ξi, t)+ρ ẅi (ξi, t) = pi (ξi, t) ,

ξi ∈ (0, li) , t > 0, (10)

where the rotatory inertia has been neglected and pi (ξi, t)
indicates an applied distributed transverse load and su-
perimposed dot means time derivative. The boundary
conditions for the generic i− th subinterval are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wi (li, t) = wi+1 (0, t) ,
w′′

i (li, t) = w′′
i+1 (0, t) ,

w′′′
i (li, t) = w′′′

i+1 (0, t) ,

w′′
i (li, t) = − ki

KM

(
w′

i+1 (0, t)−w′
i (li, t)

) . (11)

For the two boundary elements Ω1 and Ωn+1 the follow-
ing additional constraints are imposed:

{
w1 (0, t) = 0, w′′

1 (0, t) = 0,

wn+1 (ln+1, t) = 0, w′′
n+1 (ln+1, t) = 0

.

Following Chondros & Dimarogonas (1998), values of
the rotational spring constants ki can be found from the
section geometry, the crack depth ai and the material
properties:

ki =
1
αi

, αi =
6π
(
1−ν2

)
EI

Ic

(ai

h

)

xc1 c2 c3

k1 k2 k3

1 2 3 4

l

a1

a2 a3

h

l1 l2 l3 l4

Figure 2 : Sketch of a cracked beam and of its lumped
flexibility model.
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where ν is the Poisson ratio and

Ic (z) = 0.6272z2−1.04533z3 +4.5948z4

−9.9736z5 +20.2948z6−33.0251z7

+47.1063z8−40.7556z9 +19.6z10,

with z indicating severity of the i-th crack. This modeling
technique provides reasonable results as long as cracks
remain open during the vibration period. The crack open-
ing and closing (breathing crack) introduce weak non-
linearities in the beam motion and modify natural fre-
quencies of vibrations. In the following section we ana-
lyze the effect of breathing cracks by a meshless method
together with a classical time integration scheme.

3.2 Semi-discrete formulation

In order to derive a weak formulation of the aforemen-
tioned fourth-order problem suitable for numerical meth-
ods, we introduce the augmented Lagrangian, that is a
function of the deflection fields wi in the undamaged
beam segments, and the Lagrange multipliers λi:

L(w1, ...,wn+1,λ0, ...,λn+1)

=
1
2

n+1

∑
i=1

∫ li

0

[
ρ ẇ2

i −KM
(
w′′

i

)2 +2piwi

]
dξi

− 1
2

n

∑
i=1

ki
(
w′

i+1 (0)−w′
i (li)
)2

−
n

∑
i=1

λi (wi+1 (0)−wi (li))

−λ0w1 (0)−λn+1wn+1 (ln+1) , (12)

where we have omitted the dependence on time of the
deflection fields, Lagrange multipliers and applied load.
The Lagrange multipliers λ0 and λn+1 are used to impose
the displacement boundary conditions at the ends, while
the other Lagrange multipliers impose the continuity of
deflections at the crack locations. We emphasize that
the proposed formulation leads to continuous deflections
along the entire beam span. On the other hand, the conti-
nuity of the bending moments and of the shear forces at
the crack locations are satisfied only approximately. By
extremizing the Action on the set of isochronous motions

we obtain

n+1

∑
i=1

∫ t

0

∫ li

0

[
ρ ẅi δwi +KMw′′

i δw′′
i − piwi

]
dξidt

+
n

∑
i=1

ki
(
w′

i+1 (0)−w′
i (li)
)(

δw′
i+1 (0)−δw′

i (li)
)

+
∫ t

0

⎡
⎣ λ0δw1 (0)+λn+1δwn+1 (ln+1)

+
n

∑
i=1

λi (δwi+1 (0)−δwi (li))

⎤
⎦dt

+
∫ t

0

⎡
⎣ δλ0w1 (0)+δλn+1wn+1 (ln+1)

+
n

∑
i=1

δλi (wi+1 (0)−wi (li))

⎤
⎦dt

= 0. (13)

Next, we consider n + 1 distinct sets of scattered points

Ni =
{

ξi1 , ...,ξiNi

}
with ξi1 = 0, ξiNi

= li = ξ(i+1)1
, for the

subintervals Ωi, and derive independently n + 1 distinct
set of basis functions ψi (ξi) of the type (8). We denote
with N the total number of nodes scattered on the entire
beam and we emphasize that at each crack location two
overlapping nodes are placed. For convenience, these
trial functions are derived by assuming for each subin-
terval the same order for the monomial basis functions
in the GMLS approximation and the same form of the
weight functions (9). Furthermore, we denote by Ri j the
radius of the support of the j-th weight function of the
i-th subdomain. We consider test functions of the form:

δwi = ψi (ξi)
T µi,

where µi is a 2Ni-vector of arbitrary constants.

By substituting in (13) the GMLS approximation to-
gether with the considered test functions and by account-
ing for the arbitrariness of the real constants µi’s we ob-
tain the following semi-discrete formulation{

M
··
ŝ +Kŝ +Λλ = F

ΛT ŝ = 0
. (14)

The generalized displacement vector is comprised of
nodal displacements and rotations in all segments of the
beam:

ŝ =
[

ŝ1 · · · ŝi · · · ŝn+1
]T

.

The mass matrix M is a symmetric nonnegative definite
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block diagonal matrix

M =

⎡
⎢⎢⎣

m1 0 · · · 0
0 m2 0 · · ·
· · · 0 · · · · · ·
0 · · · · · · m(n+1)

⎤
⎥⎥⎦ ,

with

mi = ρ
∫

Ωi

ψi (ψi)
T dξi. (15)

Therefore, the beam segments are inertially uncoupled
by the lumped flexibilities appearing in the cracked beam
model but are elastically coupled.

The symmetric nonnegative definite stiffness matrix can
be decomposed as

K = K0+
n

∑
i=1

Kspr
i ,

where the block-diagonal stiffness contribution K0 is ob-
tained from the segments stiffness matrices following the
same procedure as that used for assembling of M from
the segments mass matrices:

K =

⎡
⎢⎢⎣

k1 0 · · · 0
0 k2 0 · · ·
· · · 0 · · · · · ·
0 · · · · · · k(n+1)

⎤
⎥⎥⎦ ,

with

ki = KM

∫
Ωi

(ψi)
′′ ((ψi)

′′)T dξi. (16)

On the other hand, the contribution of the i-th crack to the
beam stiffness Kspr

i has non-zero entries only in corre-
spondence of the i-th and (i+1)-th beam segments, i.e.:

Kspr
i =ki

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · · · · 0
· · · · · · · · · · · · ... · · ·
· · · · · · Ai Bi · · · · · ·
· · · · · · BT

i Ci · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where matrices Ai, Bi and Ci are are given by

Ai = (ψi)
′ (li)
(
(ψi)

′ (li)
)T

,

Bi = −(ψi)
′ (li)
(
(ψi+1)

′ (0)
)T

,

Ci = (ψi+1)
′ (0)
(
(ψi+1)

′ (0)
)T

.

The constraint matrix Λ is assembled by appending the
column vectors

Λ =
[

Λ0 Λ1 · · · Λi · · · Λn Λn+1
]
,

where

Λ0 =

⎡
⎢⎢⎣

a0

0
· · ·
0

⎤
⎥⎥⎦ , Λi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
· · ·
ai

bi

0
· · ·
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Λn+1 =

⎡
⎢⎢⎣

0
0
· · ·

bn+1

⎤
⎥⎥⎦ .

The column vectors with subscripts 0 and n + 1 arise
from the need to satisfy displacement boundary condi-
tions, while the one with subscript i is due to the i-th
crack. The subvectors are related to the test and the trial
functions as

a0 = ψ1 (0) , ai = −ψi (li) ,

bi = ψi+1 (0) , bn+1 = ψn+1 (ln+1) .

Finally, the force vector F is:

F =
[

f1 · · · fi · · · fn+1
]T

with

fi =
∫

Ωi

piψidξi. (17)

3.3 Inf-sup test

In order to achieve a stable and optimal procedure for
the MLPG method employing a set of Lagrange multi-
pliers, the considered mixed formulation for static prob-
lems should satisfy the ellipticity condition (on the space
of displacement fields satisfying the kinematic boundary
conditions) and the inf-sup condition (Bathe (1996)).
For this linear problem the ellipticity condition is read-
ily satisfied, while additional effort is needed to provide
criteria for satisfying the inf-sup condition, which reads:

inf
λ∈IRn+2

sup
wh∈W h

⎡
⎣ λ0wh

1 (0)+λn+1wh
n+1 (ln+1)

+
n

∑
i=1

λi
(
wh

i+1 (0)−wh
i (li)
)
⎤
⎦

‖λ‖‖wh‖
≥ β > 0,
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where wh 	= 0, β 	= 0, β is a constant independent of the
nodal locations and W h ⊂ H2 (0, l1)× ...× H2 (0, ln) is
the GMLS solution space. The norm of the approximate
deflection field is defined by:

∥∥wh
∥∥2

=
n+1

∑
i=1

∫ li

0

⎡
⎢⎣
(
wh

i

)2 + l2
((

wh
i

)′)2

+l4
((

wh
i

)′′)2

⎤
⎥⎦dξi

while the norm of the vector of scalars λ is

‖λ‖2 = λTλ.

When these two conditions are satisfied, the stability of
the MLPG formulation is guaranteed and optimal error
bounds are obtained for the chosen GMLS solution.

We show below that the inf-sup condition is satisfied
when m, the order of the monomial basis in (2), is greater
than 1. Indeed, in this case the GMLS approximation is
able to exactly reproduce affine functions (see (3) when
a(x) is a constant). Therefore, for a typical λ, we choose
deflection fields of the form⎧⎪⎨
⎪⎩

wh
i (ξi) = λi−1

(
1− ξi

li

)
, i = 1, ...,n

wh
n+1 (ξi) = λn +

λn+1−λn

ln+1
ξn+1

. (18)

The norm of this deflection is easily computed as:

∥∥wh
∥∥2

=
n+1

∑
i=1

λ2
i−1

(
li
3

+
l2

li

)
+λ2

n+1

(
ln+1

3
+

l2

ln+1

)

+λn+1λn

(
ln+1

3
−2

l2

ln+1

)
. (19)

Equation (19) may be alternatively rewritten in matrix
notation as:∥∥wh
∥∥2

= λTSλ,

where the (n+2) (n+2) matrix S, defined by

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
l1
3 + l2

l1

)
0 · · ·

0
(

l2
3 + l2

l2

)
0

· · · 0 · · ·
0 0 0
0 · · · · · ·

· · · 0
· · · 0
· · · · · ·(

ln+1
3 + l2

ln+1

)
1
2

(
ln+1

3 −2 l2

ln+1

)
1
2

(
ln+1

3 −2 l2

ln+1

) (
ln+1

3 + l2

ln+1

)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (20)

appears. The eigenvalues σ1, ...,σn+2 of S are:

σi =
(

li
3

+
l2

li

)
, i = 1, ...,n,

σn+1 =
ln+1

2
, σn+2 =

ln+1

6
+2

l2

ln+1
.

Hence S is a positive definite matrix and

maxσi ‖λ‖2≥∥∥wh
∥∥2≥minσi‖λ‖2 .

By substituting (18) in the argument of the inf-sup we
obtain⎡
⎣ λ0wh

1 (0)+λn+1wh
n+1 (ln+1)

+
n

∑
i=1

λi
(
wh

i+1 (0)−wh
i (li)
)
⎤
⎦

‖λ‖∥∥wh
∥∥ =

‖λ‖√
λTSλ

.

Hence, we have

sup
wh∈W h

⎡
⎣ λ0wh

1 (0)+λn+1wh
n+1 (ln+1)

+
n

∑
i=1

λi
(
wh

i+1 (0)−wh
i (li)
)
⎤
⎦

‖λ‖‖wh‖ ≥ ‖λ‖√
λTSλ

with λ still a variable. Therefore, for the mixed GMLS
approximation with m > 1, wh 	= 0, λ 	= 0, we have

inf
λ∈IRn+2

sup
wh∈W h

⎡
⎣ λ0wh

1 (0)+λn+1wh
n+1 (ln+1)

+
n

∑
i=1

λi
(
wh

i+1 (0)−wh
i (li)
)
⎤
⎦

‖λ‖‖wh‖

≥ inf
λ∈IRn+2

‖λ‖√
λTSλ

=
1√

maxσi
, (21)

and the inf-sup condition is satisfied.

3.4 Modal Analysis

The natural frequencies and mode shapes of the undam-
aged beam are obtained by searching for solutions of the
type

ŝ(t)= s̆exp(iωt) , λ(t)= λ̆exp(iωt) ,

of (14) and by discarding the applied loads. Therefore,
the following eigenvalue problem arises:{ −ω2Ms̆+Ks̆ +Λλ̆ = 0

ΛTs̆ = 0
. (22)
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Equation (22)2 provides 2 + n constraints on the mode
shapes s̆.We modify the eigenvalue problem (22) so that
the imposed constraints are automatically satisfied.

Let us consider the null space of ΛT, denoted by kerΛT.

When the inf-sup condition is satisfied the dimension of
the kernel of ΛT is

dimkerΛT = (2N −2−n) ,

since 2 + n Lagrange multipliers appear in this formula-
tion and the system is solvable (see Bathe (1996) for a
discussion of the relations between solvability and stabil-
ity conditions). Next, we introduce the matrix Y whose
columns constitute a basis for kerΛT, the dimensions of
Y are (2N × (2N −2−n)). By using the rectangular ma-
trix Y we can express the generic modal shape s̆ in terms
of the reduced (2N −2)-dimensional vector x by

s̆ = Yx, (23)

and automatically satisfy equation (22)2.

Premultiplying (22)1 by YT and by taking into account
(23) we obtain the reduced system

−ω2M∗ x+K∗ x = 0

where

M∗= YTMY, K∗ = YTKY.

Next, we solve for x, and obtain the complete vector
of unknowns using (23). We note that the kinematical
boundary conditions are automatically satisfied by the
introduction of Lagrange multipliers, while the natural
boundary conditions are satisfied only in the weak sense.
Furthermore we can always assume that

YTY = 1,

by choosing orthonormal basis for the null space of ΛT.

We note that the mass and the stiffness matrices of the
reduced system are symmetric and positive definite.

3.5 Free motion

We integrate the differential equations of motion (14)
with initial conditions{

ŝ (0) = ŝ0
·
ŝ (0) =

·
ŝ0

satisfying the boundary conditions

ΛTŝ0 = 0, ΛT
·
ŝ0 = 0,

and vanishing external load, by applying the Newmark
family of methods (see e.g. Hughes (1987)) to the re-
duced system

M∗ ··
x+K∗ x = 0,

with initial conditions:{
x(0) = YT ŝ0
·
x(0) = YT

·
ŝ0

.

This family of algorithms consists of the following recur-
sive relations:⎧⎪⎪⎨
⎪⎪⎩

M∗an+1 +K∗xn+1 = 0,

xn+1 = xn +∆tvn +
∆t2

2
[(1−2β)an +2βan+1] ,

vn+1 = vn +∆t [(1− γ)an + γan+1] ,

where an, vn and xn are approximations of
··
x(tn) ,

·
x(tn)

and x(tn) respectively, ∆t is the time step, and β and γ
are parameters.

4 Effects of crack opening and closing

During the vibration period of a cracked beam, the n
cracks will open and close in time depending on the vi-
bration amplitude. In order to model the effects of the
cracks opening and closing, we consider a bilinear be-
havior of each crack. When the i-th crack is open, the
i-th and (i+1)-th beam segments are elastically coupled
by the rotational spring ki (see the continuity conditions
(11)). On the other hand, when the i-th crack is closed,
the i-th and (i+1)-th beam segments are rigidly con-
nected and the boundary conditions become{

wi (li, t) = wi+1 (0, t) , w′′
i (li, t) = w′′

i+1 (0, t) ,
w′′′

i (li, t) = w′′′
i+1 (0, t) , w′

i (li, t) = w′
i+1 (0, t) .

.

The i-th single edge crack is assumed to be open or closed
depending on the sign of the curvature w′′

i+1 (0, t):

• if the crack is on the upper beam surface, the crack is
open when the curvature is negative and vice-versa,

• if the crack is on the bottom beam surface, the crack
is open when the curvature is positive and vice-
versa.
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When the i-th crack is closed the augmented Lagrangian
(12) needs to be modified by removing the strain energy
contribution from the spring ki and by introducing an ad-
ditional Lagrange multiplier ζi to enforce the continuity
of rotations at the crack location. Therefore, the equa-
tions of motion of the cracked beam are⎧⎪⎪⎨
⎪⎪⎩

M
··
ŝ +K0ŝ+

n

∑
i=1

δiK
spr
i ŝ+Λλ+

n

∑
i=1

(1−δi)ϒiζi = 0

ΛT ŝ = 0
(1−δi)ϒT

i ŝ = 0, i = 1, ...n,

,

(24)

where δi is equal to 1 or 0 if the i-th crack is open or
closed. The new vector ϒi is given by

ϒi =
[

0 · · · ci di 0 · · · 0
]T

,

where the subvectors are decomposed by:

ci = −(ψi)
′ (li) , di = (ψi)

′ (0) .

If q cracks are closed, the number of Lagrange multi-
pliers is 2 + n + q and the third set of equations in (24)
consists of q equations.

The instantaneous values of the δ’s depend on the sign
of curvature at the crack locations. The aforestated weak
formulation does not guarantee continuity of the curva-
ture along the beam span. Therefore, the generic δi can
be estimated either from the average curvature at the i-th
crack location, or from the curvature of any of the two
segments.

Vibration cycle is referred to as the time interval be-
tween two consecutive sign changes in the curvature at
any crack location; the so-called transition time separates
two consecutive vibration cycles. During each vibration
cycle, labelled by the index τ, the time integration of the
non-linear equations of motion can be performed by ap-
plying the Newmark family of methods to the reduced
equations during the τ-th cycle:

M∗
τ
··
xτ (t)+K∗

τ xτ (t)= 0. (25)

The set (25) of linear ordinary differential equations with
constant coefficients has been obtained with the same
procedure as that used for open cracks, provided that the
actual constraints are accounted for during the current vi-
bration cycle τ. Numerical integration gives estimates of
transition times only within the accuracy of the time step

∆t. If a transition occurs in between the J and J + 1 in-
tegration steps, which separate the vibration cycles τ and
τ+1, then the the initial conditions for the τ+1 vibration
cycle can be derived as follows:

{
xτ+1 (tJ+1) = Yτ+1

TYτxτ (tJ+1)
vτ+1 (tJ+1) = Yτ+1

TYτvτ (tJ+1)
, (26)

where columns of the matrix Yτ constitute an orthonor-
mal basis for kerΛT

τ . The left-hand side of equations (26)
are the projection of the solution xτ and vτ on the basis
of the solution at the subsequent cycle xτ+1 and vτ+1.

5 Computation and discussion of results

For investigating the characteristics of the proposed
method, several tests are performed on the sample prob-
lem of a simply supported beam with a single crack lo-
cated at the mid-span.

When the beam is subjected to a constant distributed load
p, the static deflection is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 (ξ1) =
pl2 (2k1l +3KM)

48KMk1
ξ1

− pl
12KM

ξ3
1 +

p
24KM

ξ4
1

w2 (ξ2) =
pl3 (5k1l +12KM)

384KMk1

− pl2

16k1
ξ2 − pl2

16KM
ξ2

2 +
p

24KM
ξ4

2

.

The exact modal properties of a beam with one open
crack are given in Sundermeyer & Weaver (1995). The
odd wave number, β, is a root of the trascendental char-
acteristic equation:

−4k1

KM
cos

(
lβ
2

)

+β
(

sin

(
lβ
2

)
−cos

(
lβ
2

)
tanh

(
lβ
2

))
= 0

while the even ones are

β =
rπ
l

, r = 2,4,6, ....
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The odd mode shapes are⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w1 (ξ1) = A [sin(βξ1)+α sinh(βξ1)]

w2 (ξ2) = A

⎡
⎢⎢⎣

sin

(
β
(

l
2
−ξ2

))

+α sinh

(
β
(

l
2
−ξ2

))
⎤
⎥⎥⎦ ,

α =
cos

(
lβ
2

)

cosh

(
lβ
2

) , (27)

while the even ones are{
w1 (ξ1) = Asin(βξ1)
w2 (ξ2) = Asin(β(ξ2 − l/2))

. (28)

The constant A is chosen by ensuring that

∫ l/2

0
(w1 (ξ1))

2 dξ1 +
∫ l/2

0
(w2 (ξ2))

2 dξ2 = 1.

The GMLS basis functions are generated by complete
monomials of degree 2 (m = 3). This choice is mo-
tivated by the need of satisfying the inf-sup condition,
guaranteeing an accurate GMLS reconstruction and of
reducing the computational time. For m = 3 the GMLS
trial functions require the inversion of a 3 × 3 matrix,
which can be done analytically once for all. Every beam
segment is discretized with the same number of nodes
N1 = N2, and the nodal spacing is uniform. The ra-
dius of support of each weight function is the same and
equals sl1/(N1 −1) = sl2/(N2 −1) , where s is the ratio
between the weight function radius and the distance be-
tween two adjacent nodes. In order to achieve smooth
approximate solutions, the power α in equation (9) is set
equal to 5. Increasing the order of differentiability of
the weight functions does not lead to additional computa-
tional effort, therefore it is generally advisable to exploit
high values of α. The numerical integrations needed for
computing the stiffness matrix, the mass matrix and the
load vector are performed using the non-element local
technique described in Atluri, Cho & Kim (1999) with
10 quadrature points in each subregion of intersection of
sub-domains.

We compare the MLPG results with those obtained from
the traditional Finite Element method (FEM), which may
be directly derived upon replacing the GMLS approxima-
tion with the Hermitian interpolation function (see e.g.

Hughes (1987)) in the stiffness matrix, in the mass ma-
trix and in the force vector. We emphasize that within
the FEM there is no need to use a mixed formulation
based on the introduction of Lagrange multipliers for pre-
scribing the boundary and the interface conditions. The
trial functions of the FEM possess the Kronecker Delta
property and the constraints are simply imposed by elim-
inating from the stiffness matrix, the mass matrix and
the force vector the entries corresponding to constrained
nodes.

We analyze deformations of an aluminum beam with the
following values of material and geometric parameters:

E = 72Gpa, ρV = 2800kg/m3, ν = 0.35,

l = 235mm, h = 23mm, b = 7mm,

a1 = 0.4h.

Experiments on this beam, with different crack severities
are reported in Chondros & Dimarogonas (1998), Chon-
dros & Dimarogonas (2001) and Chondros (2001).

5.1 Convergence Analysis

Convergence tests are performed for both the analysis of
static deformations and modal properties with s = 4.7.
To observe the convergence, three relative error norms
are used. They are defined below, where the superscript
h indicates the numerical solution (MLPG or FE) and the
superscript exact refers to the analytical solution.

• Relative L2 error norm:√
∑2

i=1
∫ li

0 (wh
i −wexact

i )2
dξi√

∑2
i=1
∫ li

0 (wexact
i )2dξi

,

• Relative H1 error norm:√√√√√√√√
∑2

i=1
∫ li

0

[(
wh

i −wexact
i

)2]
dξi

+∑2
i=1
∫ li

0

[
l2
((

wh
i

)′ − (wexact
i )′

)2
]

dξi√
∑2

i=1
∫ li

0

[
(wexact

i )2+l2((wexact
i )′)2

] ,

• Relative H2 error norm:√√√√√√√√√√√√

∑2
i=1
∫ li

0

[(
wh

i −wexact
i

)2]
dξi

−∑2
i=1
∫ li

0

⎡
⎢⎣ l2

((
wh

i

)′ − (wexact
i )′

)2

+l4
((

wh
i

)′′ − (wexact
i )′′

)2

⎤
⎥⎦dξi

√
∑2

i=1
∫ li

0

[
(wexact

i )2+l2((wexact
i )′)2

+l4((wexact
i )′′)2

] .
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In Figure 3, we report for static deformations of a beam
loaded by a uniformly distributed load on the top surface
the error norms for solutions computed with the FE and
the meshless methods. The results show that the con-
vergence rates of L2, H1 and H2 error norms for the two
methods are almost the same and approximately equal 4,
3 and 2 respectively. In general, the error of the MLPG
solution is lower than that of the FE solution.

Figure 4 shows the relative errors in the resonance fre-
quencies of the three lowest vibration modes. Also in
this case, the convergence rates for the two methods are
almost the same and approximately equal 4. Neverthe-
less, it may be seen that the magnitude of the error ob-
tained with the meshless approach is less than that with
the FEM.

Figures 5, 6 and 7 show respectively the convergence
rates of L2, H1 and H2 error norms for the three lowest
modes computed with the two numerical methods. The
results show that, also in this case, the convergence rates
of L2, H1 and H2 error norms for the two methods are al-
most the same and approximately equal 4, 3 and 2 respec-
tively. The magnitude of the error in the highest modes
achieved with the MLPG method is still lower than that
obtained with the FEM.

5.2 Variations of weight functions radii

From the above analysis, it is evident that when increas-
ing the number of nodes the MLPG method tends to
reach a stable convergence rate similar to the FEM. On
the other hand when only a few nodes are employed non
monotonic behaviors are exhibited and the MLPG solu-
tion is more accurate than the FE solution (see e.g. Figure
4). This is due to the fact that for coarse grids the lo-
cal feature of the MLPG method is lost and each node is
affecting almost all nodes, increasing the computational
time for evaluating every matrix entry but also consider-
ably improving the accuracy of the GMLS reconstruction
capability.

Here we investigate the behavior of the MLPG solution
when the number of nodes in each segment is kept con-
stant (4 nodes per segment) while the radius of the weight
functions is increased until each node is affecting all the
other ones (1.5 ≤ s ≤ 4).

Figure 8 shows the error in the static deflection computed
with the MLPG and the FE methods. It is clear that in-
creasing the radius of the weight functions leads to a sig-

nificant improvement of the MLPG solution. Indeed, for
s ≤ 3 the FE solution is more accurate than the MLPG
one, but when s > 3 the situation is completely reversed
and the MLPG method gives significantly less errors than
the FEM.

Figure 9 shows the error in the four lowest natural fre-
quencies computed with the MLPG and the FE methods.
Also in this case, an increase in the weight functions radii
leads to a great improvement. Whereas, the error in the
first natural frequency monotonically decreases with an
increase in the parameter s, the errors in other frequen-
cies do not decrease monotonically; however, they are
always much lower (about 100 times) than those for the
FE solution.

In Figure 10 we report the ratio of the exact first natural
frequency of the intact beam to that of the cracked beam
for different values of the crack depth a (solid line) and
its approximation by using the 4+4 nodes configuration
with s = 3. The open circles indicate experimental values
from either Chondros & Dimarogonas (1998) or Chon-
dros (2001). It is clear that the computed values agree
very well with the analytical ones; however, the two dif-
fer somewhat from the experimental values. This may
be due to an inaccurate mathematical model or to unre-
fined experimental measurements. Nevertheless, the ex-
perimental program aimed at validating the lumped flex-
ibility conducted first in Gudmunson (1983) on cracked
cantilever beams validates the mathematical model and
suggests that the discrepancies are due to experimental
errors. A possible source of errors is the realization of the
hinges for the vibration testing of the simply supported
beam. Indeed, from the experimental viewpoint, the re-
alization of hinges represents a much more challenging
problem than fixing the edges. Furthermore, while the
quoted experimental tests of Gudmunson (1983) were
conducted on beams cracked by saw-cuts, those of Chon-
dros & Dimarogonas (1998) and Chondros (2001) refer
to fatigue cracks. It is well known that the controlled in-
troduction of fatigue cracks involves several experimen-
tal difficulties not encountered in the saw cut method.

5.3 Transient analysis for a breathing crack

Here, we analyze free vibrations of the cracked beam
when the crack is assumed to breath. We assume that
the crack is located on the lower surface of the beam, the
beam is initially undeformed and is excited according to
the first mechanical mode shape of the intact beam. The
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Figure 3 : For a uniformly loaded beam, convergence of the error norms with a decrease in the nodal spacing or an
increase in the number of uniformly distributed nodes.
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Figure 4 : Convergence rates of the first three natural frequencies.
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Figure 5 : Convergence rates of the three lowest modes in L2 norm.
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Figure 6 : Convergence rates of the three lowest modes in H1 norm.
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Figure 7 : Convergence rates of the three lowest modes in H2 norm.

nonlinearity introduced by the bilinear behavior of the
breathing crack does not allow for a simple analytical so-
lution of the transient problem.

Accordingly, we compare our results with those obtained
by the algorithm of Sundermeyer & Weaver (1995). The
technique in Sundermeyer & Weaver (1995) relies on the
a priori knowledge of the mode shapes of the intact beam
and of the beam with the open crack and consists of con-
secutive calculations of the beam mode amplitudes. At
each vibration cycle the deflection is expressed in terms
of a finite number of mode shapes: if the crack is closed
the modal shapes of the intact beam are used, otherwise
the mode shapes of the cracked beam in (27) and (28) are
used. The transition times between the two crack states
are determined by continuously monitoring the sign of
the curvature at the crack location. The initial condi-

tions for free oscillations at each vibration cycle are de-
termined by simply converting the sets of natural coordi-
nates at the transition times. We note that at the instants
of crack opening and closing, several concomitant mode
shapes may arise since the mode shapes of the intact and
the cracked beam are in general not orthogonal.

The numerical integration of governing equations (25)
is performed by using the 4 + 4 nodes configurations
described in the previous subsection with s = 3 and
the damped unconditionally stable Newmark integration
scheme (see e.g. Hughes (1987)) with

β = 0.3025, γ = 0.6, ∆t = 1.04µs.

This choice of parameters introduces a small numerical
damping, which rapidly damps out undesired oscillations
at the transition instants. The transition times are com-
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puted by continuously monitoring the average curvature
at the crack location: i.e. the average between the curva-
tures of the two beam segments at the crack location.

In Figure 11 we compare the time evolutions of the de-
flection at the crack station computed with the proposed
technique and that presented in Sundermeyer & Weaver
(1995) with 25 mode shapes. Figure 12 compares the
time history of the relative rotation at the crack station
computed with the two methods. It is evident that the so-
lution with the MLPG method agrees very well with that
given in Sundermeyer & Weaver (1995).

5.4 Remarks

As is rather well known, Euler’s beam theory simulates
well deformations of a thin beam. For a thick beam one
should employ either the Timoshenko beam theory or
a higher-order shear and normal deformable beam the-
ory such as that proposed by Batra & Vidoli (2002).
Qian, Batra & Chen (2003a), Qian, Batra & Chen
(2003b), Qian, Batra & Chen (2004a), Qian, Batra &
Chen (2004b), Qian & Batra (2004) and Qian & Ba-
tra (2005) have studied by the MLPG method static and
dynamic deformations of both homogeneous and func-
tionally graded isotropic thick plates, and have compared
the performance of the MLPG1 and the MLPG6 formu-
lations. For a thick beam one will very likely need to
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modify the expression for the rotational spring constants
ki in equation (11).

We have considered cracks aligned along the depth of the
beam which is appropriate for a thin beam. For cracks ei-
ther parallel or inclined to the longitudinal centroidal axis
of the beam, one will need to modify the problem formu-
lation. Ching & Batra (2001), and Batra & Ching (2002)
have applied the MLPG method to determine crack-tip
fields in a pre-cracked plate deformed either statically or
dynamically.

Even though the CPU time required to compute an ele-
ment of the stiffness matrix in the MLPG6 formulation
adopted here has been rather large as compared to that
in the finite element method, Atluri, Han & Rajendran
(2004) have shown that it is not so in their mixed MLPG
formulation in which both displacements and strains are

interpolated with the MLS basis functions. Furthermore,
Atluri & Shen (2005) have demonstrated that the Euler-
Bernoulli beam equation can be solved by using the
standard MLS approximation and various mixed volume
MLPG methods which are computationally more effi-
cient than the FEM.

6 Conclusions

We have used the MLPG method to study vibrations
of a cracked beam. When studying dynamic problems
for cracked beams the penalty method does not seem to
be adequate since it leads to ill-conditioned problems.
Therefore, the treatment of vibrations of cracked beams
necessitates the use of Lagrange multipliers to account
for the relative rotation at the crack locations and satisfy
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(solid) and breathing crack with the proposed method (triangles).

the kinematic boundary conditions. The accurate estima-
tion of the relative rotation at the crack locations is cru-
cial for the identification process based on mode shapes
(see e.g. Rizos, Aspragathos & Dimarogonas (1988))
and for the transient analysis of a breathing crack (see
e.g. Sundermeyer & Weaver (1995)).

The stability of the method is assessed by analytically
proving the inf-sup condition. The MLPG method is ini-
tially applied to compute the modal characteristics (both
frequencies and mode shapes), and to analyze the tran-
sient and static deformations of beams with multiple
open cracks. The derivation of reduced systems, where
the imposed constraints are automatically satisfied, has

been presented. It is also extended to treat the effects
of breathing cracks on the dynamics of a cracked beam.
Each crack is modeled as a bilinear spring with spring
constant changing according to the value of the beam cur-
vature at the crack location. Computational details for the
derivation of the initial conditions at each vibration cycle
have been provided. The numerical time integration is
performed by the use of Newmark family of methods,
and the spatial integration in the MLPG formulation em-
ploys Gaussian quadrature.

Numerical results for a simply supported beam are pre-
sented and compared with those obtained from analyti-
cal, finite element and semi-analytical methods. In par-
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Table 1 : Comparison of the MLPG method and FEM for the vibrations of a cracked beam.
MLPG FEM

Weak formulation Local Global
Information needed
about the nodes

Locations only
Locations and
connectivity

Subdomains
Not necessarily
disjoint

Disjoint

Trial functions

Relatively complex and
difficult to express (GMLS)
but easy to generate as
closed-form expressions

Hermite polynomials

Integration rule Higher order Lower order

Mass matrix
Symmetric, banded,
positive definite

Symmetric, banded,
positive definite

Stiffness matrix
Symmetric, banded,
positive semi-definite

Symmetric, banded,
positive semi-definite

Assembly of equations
Required only
for connecting
different intact segments

Required

Stresses and strains
Smooth everywhere
in the intact segments

Good at integration
points

Addition of nodes Easy Difficult
Determination of time step
size for stability
in transient analysis

Relatively easy Relatively easy

Imposition of essential
boundary conditions

Lagrange multipliers
are needed

Simple rows, columns
deletions are needed

CPU time for computing
a single matrix entry

Considerable Little

Number of nodes required
for high accuracy

Few High

CPU time for a prescribed
accuracy on the modal properties
or on the static deformations

Moderate Moderate

ticular, results of the MLPG method are compared with
those of the FEM for both the static and the beam modal
analysis. The convergence rates of the MLPG formula-
tion are similar to those of the FEM, but for a fixed num-
ber of degrees of freedom the MLPG results are generally
more accurate than the FE ones. Furthermore, the accu-
racy of the MLPG method may be controlled by modify-
ing the supports of the weight function used in the GMLS
approximation. It is shown that with few nodes and
very large supports extremely accurate estimates of both
the static deformations and the modal properties may be
achieved. This represents a very favorable feature of the

MLPG method with respect to the FEM. When compar-
ing the computational time of the MLPG method with
the computational time of the FEM for a fixed number
of nodes the FEM clearly wins but, when the accuracy
is also considered the comparison is not so bad. Indeed,
very few nodes in the MLPG method may be satisfactory
for highly accurate numerical solutions valid over wide
frequency ranges. The possibility of using a reduced
number of degrees of freedom is desirable when analyz-
ing transient deformations with breathing cracks. Indeed,
the use of small stiffness and mass matrices greatly alle-
viates the computational time when solving these non-
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linear transient problems. The MLPG predictions are in
very good agreement with those of the method of Sunder-
meyer & Weaver (1995), which is based on the knowl-
edge of the exact cracked beam mode shapes and is dif-
ficult to extend to more complicated structures, such as
cracked frames. Furthermore, the possibility of retain-
ing reduced order numerical models may be crucial in
identification or optimization processes when algorithms
should be built based on the number of degrees of free-
dom.

The present implementation of MLPG method represents
an interesting alternative to the classical FEM for the
analysis of cracked beams (see Table 1 for a summary
of comparison between the two methods).
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