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Elastic waves in a hybrid multilayered piezoelectric plate

X. Han1, H. Ding∗2, and G. R. Liu1

Abstract: An analytical-numerical method is pre-
sented for analyzing dispersion and characteristic surface
of waves in a hybrid multilayered piezoelectric plate.
In this method, the multilayered piezoelectric plate is
divided into a number of layered elements with three-
nodal-lines in the wall thickness, the coupling between
the elastic field and the electric field is considered in each
element. The associated frequency dispersion equation is
developed and the phase velocity and slowness, as well as
the group velocity and slowness are established in terms
of the Rayleigh quotient. Six characteristic wave surfaces
are introduced to visualize the effects of anisotropy and
piezoelectricity on wave propagation. Examples provide
a full understanding for the complex phenomena of elas-
tic waves in hybrid multilayered piezoelectric media.

keyword: Smart materials, Piezoelectric, Elastic
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1 Introduction

The studies on wave propagation in piezoelectric media
are essential for the application of piezoelectric materi-
als, such as the design and manufacture of the ultrasonic
piezoelectric motor. Wave propagation and vibration in
pure piezoelectric media have been reported. Bleustein
(1969) gave some models of wave propagation in infinite
piezoelectric plates. Curtis and Redwood (1973) stud-
ied the transverse surface waves in piezoelectric mate-
rials. Sun and Cheng (1974) investigated the acoustic
surface waves in a piezoelectric cylinder with metallic
overlay. Investigations have been also undertaken for the
characteristic analysis of various waves in piezoelectric
media. The references listed herein (Pauley and Dong,
1976; Lewis, 1985; Shiosai, 1986; Toda and Mizutain,
1988; Honein et al., 1991; Liu and Tani1994Siao and
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Dong, 1994; Zhang et al., 1998; Adler, 2000; Gopinathan
et al., 2000; Vel and Batra, 2001; Wang, 2001; Liu H et
al., 2002; Liu et al., 2003; Han and Liu, 2003; Han et
al., 2004; Liu and Wang, 2005) are some examples of the
contributions in this area.

To visualize the effects of anisotropy on wave propaga-
tion, Liu et al. (1991) and Liu and Xi (2001) introduced
a set of six characteristic wave surfaces for composite
laminates: phase velocity surface (PVS), phase slowness
surface (PSS), phase wave surface (PWS), group veloc-
ity surface (GVS), group slowness surface (GSS) and
group wave surface (GWS). This paper attempts to ex-
plore such unique and important wave properties of hy-
brid multilayered piezoelectric plates, and to clear visu-
alize the dispersion behavior and characteristics of wave
surface. In the investigation, the laminated plate is di-
vided into layered elements with three-nodal-lines along
the wall thickness. The Hamilton principle is used to de-
velop the dispersion equations, then the phase velocity
and slowness as well as the group velocity and slowness
are established in terms of the Rayleigh quotient. The
effects of piezoelectricity, the wave propagation modes,
and the frequency and group velocity dispersion behav-
iors as well as characteristic wave surfaces are discussed
via numerical examples.

2 Basic equation

Consider a hybrid multilayered piezoelectric plate with
thickness H as shown in Fig. 1. The constitutive relations
expressing the coupling between the elastic field and the
electric field can be written as:

σσσ = cεεε−eTE
D = eεεε+gE

(1)

where σσσ is stress tensor, εεε strain tensor, D electric dis-
placement vector, and E electric field vector, c, e and g
are the elastic, piezoelectric and dielectric material ma-
trices, respectively.
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The electrical field E is related to the electrical potential
ϕ by

E = −gradϕ (2)
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Figure 1 : A hybrid multilayered piezoelectric plate and
its nth isolated layer element

and the mechanical strain εεε to the mechanical displace-
ment U by

εεε = LdU (3)

where Ld is the differential operator matrix and can be
written as

LT
d =

⎡
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∂
∂x 0 0 0 ∂

∂z
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0 ∂
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⎤
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or

Ld = Ldx
∂
∂x

+Ldy
∂
∂y

+Ldz
∂
∂z

(5)

where Ldx, Ldy and Ldz are also (6×3) matrices and can
be obtained by inspection of Eq. (5).

The electric behaviour is described by Maxwell’s equa-
tion considering that the piezoelectric media are insulat-
ing:

divD = 0 (6)

3 Formulation

Suppose that the hybrid multilayered piezoelectric plate
is subdivided into N layered elements in the thickness di-
rection, the thickness of the nth element is denoted by
hn. The mass density, elastic coefficient matrix, piezo-
electric and dielectric material constant matrices on the
lower, middle and upper surface of the nth element are
denoted by ρn, cn = (ci j)n (i, j = 1, ...,6), en = (ei j)n (i =
1,2,3; j = 1, ...,6), gn = (gi j)n (i, j = 1,2,3), respec-
tively.

Approximating the displacement U and electric static po-
tential ϕϕϕ within an element as

U(x,y, z, t)= Nd(z)d(x,y, t) (7)

ϕϕϕ(x,y, z, t) = Nφ(z)φφφ(x,y, t) (8)

where d and φφφ are nodal displacement and nodal electric
potential vectors,

dT = {dT
l dT

m dT
u } (9)

ϕϕϕT = {ϕϕϕT
l ϕϕϕT

m ϕϕϕT
u }

in which dT
i = {u v w}i (i = l,m,u).

Ndand Nφ in Eqs. (7) and (8) are the respective shape
function matrices given by

Nd = [(1−3z+2z2)I4(z− z2)I(2z2 − z)I] (10)

Nφ = [(1−3z+2z2)4(z− z2)(2z2 − z)] (11)

in which z = z/hn, and I is a 3 × 3 identity matrix.

The governing equations of the nth element may be de-
veloped by means of Hamilton’s principle,

δ
∫

Ldt = 0 (12)

in which δ denotes the first order variation and La-
grangian term L is determined by

L = Ek −Es +Ed +W (13)

with Elastic energy Es

Es =
1
2

∫ hn

0
εεεTσσσdz (14)

and Dielectric energy Ed

Ed =
1
2

∫ hn

0
ET Ddz (15)
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and Kinetic energy Ek

Ek =
1
2

∫ hn

0
ρnUT Üdz (16)

where the superscript T denotes the transposed matrix.
W is generated by external mechanical or electrical exci-
tation with the form of

W = dT F+φφφT Qz (17)

where F is a nodal external force vector, and Qz is a nodal
charge vector in the z direction.

Substituting Eqs. (13)-(17) into Eq. (12) and using Eqs.
(1)- (8), we obtain a set of differential equations with re-
spect to x, y and t for the nth element.

Tn = Mnψ̈ψψn +KDnψψψn (18)

where

KDn =
[

ADn CDn

CT
Dn −GDn

]
, Mn =

[
Msn 0
0 0

]
(19)

TT
n = {FT

n QT
zn}, ψψψT

n = {dT
n φφφT

n } (20)

and

ADn = −A1n
∂2

∂2x
−A2n

∂2

∂x∂y
−A3n

∂2

∂2y

+A4n
∂
∂x

+A5n
∂
∂y

+A6n (21)

where the second subscript n denotes the element num-
ber. Matrices CDn and GDn can be expressed in the same
way if Ain (i = 1, ....,6) in right hand of Eq. (21) is re-
placed by Cin and Gin, respectively.

Assembling the matrices of all elements, we get the
global system differential equations for the whole plate:

Tt = Mtψ̈ψψt +KDtψψψt (22)

where

KDt =
[

ADt CDt

CT
Dt −GDt

]
, Mn =

[
Mst 0
0 0

]
(23)

TT
t = {FT

t QT
zt}, ψψψT

t = {dT
t φφφT

t } (24)

and the subscript t indicates the matrices correspond to
the whole plate.

During the process of assembling elements, we make use
of the following interface conditions

du
n = dl

n+1 ϕϕϕu
n = ϕϕϕl

n+1 for 1 < n < N −1 (25)

in which the subscripts denote the element numbers, and
the superscripts denote the lower and upper surfaces of
the element.

We introduce the Fourier transformations with respect to
the horizontal coordinates x and y as follows:

ψ̃ψψt(kx,ky, t) =
∫ ∞

−∞

∫ ∞

−∞
ψψψt(x,y, t)e−ikxxe−ikyydxdy (26)

where i =
√−1,and kx and ky are the wave numbers for

wave propagation in the x and y-axis, respectively. The
application of Fourier transformations by Eq. (26) to
Eq. (22), leads to the following governing equation in
the wave number domain:

T̃t = Mt
¨̃ψψψt +Ktψ̃ψψt (27)

In this equation, T̃t , ¨̃ψψψt and ψ̃ψψt are the transformations of
Tt , ψ̈ψψt and ψψψt , respectively, and Kt is given by

Kt =
[

At Ct

CT
t Gt

]
(28)

where At is the mechanical stiffness matrix given by

At = k2
x A1t +kxkyA2t +k2

y A3t

+ ikxA4t + ikyA5t +A6t (29)

The piezoelectric coupling matrix, Ct , and dielectric
stiffness matrix, Gt , are of the same form as Eq. (29),
with A replaced by C and G, respectively.

For the eigenvector solution of Eq. (27), the circular fre-
quency for the mth mode can be written in terms of the
Rayleigh quotient as

ω2
m =

ψψψL
mKtψψψR

m

ψψψL
mMtψψψR

m
(30)

where ψψψL
m and ψψψR

m are the mth transposed left and right
eigenvectors.

To visualize the effects of anisotropy on wave propaga-
tion, Liu et al. (1991) introduced a set of six characteris-
tic wave surfaces: phase velocity surface (PVS), phase
slowness surface (PSS), phase wave surface (PWS),
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Figure 2 : Group velocity for wave propagation in
the multilayered piezoelectric plate ((a) β = 0o; (b)
β = 45o)
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Figure 3 : Dispersion relationship for wave prop-
agation in the multilayered piezoelectric plate ((a)
β = 0o; (b) β = 45o)

group velocity surface (GVS), group slowness surface
(GSS) and group wave surface (GWS). These definitions
are adopted here to visualize the characteristic surfaces
of waves for the hybrid multilayered piezoelectric lami-
nated plate. The mathematical expressions for these char-
acteristic wave surfaces can be obtained based on the
conception of references (Liu et al. (1991); Liu and Xi
(2001)).

4 Numerical examples

Based on the foregoing formulation, a FORTRAN pro-
gram has been developed. In this section, numerical re-
sults are presented for the frequency and dispersion rela-

tionship as well as characteristic surfaces of waves in the
hybrid multilayered piezoelectric laminated plate. The
following dimensionless parameters are used:

cs =
√

cc
44

/
ρc , r = r

/
H,

ω = ωH
/

cs, k = kH,

ϕ = ϕ
/

ϕ0, ϕ0 = (ec f0H)
/
(gcc44),

ec = C
/

m2, gc = 10−10F
/

m (31)

where cc
44 , ρc,ec and gc stand for the reference elas-

tic constant, mass density, piezoelectric and dielectrical
properties, respectively. In this study, they are taken as
the corresponding material properties on the lower sur-
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face of the laminate under consideration.

A hybrid multilayered piezoelectric plate with three lam-
inas is studied. Each lamina with same thickness is made
of graphite-epoxy, PVDF, and PZT-5A (Vel and Batra
2000; Tang et al., 1996), respectively. Material proper-
ties of these three materials are listed in Table 1. In our
calculation, each sub-layer is evenly divided into 4 layer
elements, as such there are totally 12 layer elements for
the entire structure. The piezoelectricity effect is firstly
investigated by comparing the natural frequencies of the
multilayered plate with or without the piezoelectric ma-
terial. Their natural frequencies are listed in Table 2.
From the table, we can see that the effect of piezoelectric-
ity does not influence the overall shapes of correspond-
ing frequency, but only changes its corresponding val-
ues slightly. The change is only occurs at some specified
mode.

The computation of group velocity spectra is carried out
for the hybrid multilayered piezoelectric plate. Figure 2
illustrates the group velocity spectra for waves propagat-
ing in this hybrid multilayered piezoelectric plate. The
dispersion of waves in this hybrid multilayered piezo-
electric plate is also investigated. Figure 3 illustrates the
dispersion curves. The propagation directions of waves
are chosen as β = 0o, 45o, respectively. β = 45o is used
to show the effect of a wave propagating in any direc-
tion. The wave propagation for all the modes in the case
of the plate is dispersive. The characteristic surfaces are
calculated and the 1rd and 2nd modes are selected and
plotted in Figure 4. A full understanding for the com-
plex phenomena of elastic waves in hybrid multilayered
piezoelectric media can be clearly drawn from this figure.

5 Conclusions

The frequency and group velocity dispersion behaviors,
and characteristic surfaces of waves in hybrid multi-
layered piezoelectric plate have been investigated. The
method of approach is formulated within the framework
of the three-dimensional elasticity theory, and is thus ac-
curate in comparison with ones using various plate theo-
ries. The coupling between elastic field and the electric
field is considered in each element. The characteristic
wave surfaces give a full understanding for the complex
phenomena of elastic waves in the hybrid multilayered
piezoelectric media. The inhomogeneity as well as the
anisotropy effect can be observed from these six wave
surfaces.
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Figure 4 : The characteristic surface for a hybrid mul-
tilayered piezoelectric plate (k = 7.78, (a) 1st mode; (b)
2nd mode

Acknowledgement: This paper has been financially
supported by the Special Funds for Major State Basic Re-
search Project under Grant No.2002CB412706; Knowl-
edge Innovation Project of Chinese Academy of Sciences
under Grant No.KJCX2-SW-L2.

References

Ericl, Adler (2000): Bulk and surface acoustic waves in
anisotropic solids. International Journal on High Speed
Electronics and Systems, Vol. 10, pp. 653-648.

Bleustein, J.L. (1969): Some simple models of wave
propagation in an infinite piezoelectric plates. J. Acoustic
Soc. Am, Vol. 45, pp. 614-620.

Curtis, R.G.; Redwood, M. (1973): Transverse surface



54 Copyright c© 2005 Tech Science Press CMES, vol.9, no.1, pp.49-55, 2005

Table 1 : Material property of the PZT-5A, PVDF and graphite-epoxy

Property PZT-5A 00 PVDF 00 Graphite-epoxy
c11 (GPa) 99.201 238.2400 183.4430
c22 (GPa) 99.201 23.6000 11.6600
c33 (GPa) 86.856 10.6400 11.6620
c12 (GPa) 54.016 3.9800 4.3630
c13 (GPa) 50.778 2.1900 4.3630
c23 (GPa) 21.100 1.9200 3.9180
c44 (GPa) 21.100 2.1500 2.8700
c55 (GPa) 21.100 4.4000 7.1700
c66 (GPa) 22.593 6.4300 7.1700
e31 (cm−2) -7.209 -0.1300 0.0000
e32 (cm−2) -7.209 -0.1450 0.0000
e33 (cm−2) 15.118 -0.2760 0.0000
e24 (cm−2) 12.32 -0.0090 0.0000
e15 (cm−2) 12.322 -0.1350 0.0000
g11 (10−10Fm−1) 153.000 1.1068 153.0000
g22 (10−10Fm−1) 153.000 1.1068 153.0000
g33 (10−10Fm−1) 153.000 1.1068 153.0000

Table 2 : Dimensionless natural frequencies of the lowest six modes for the hybrid multilayered piezoelectric plate
with or without piezoelectric property (θ = 0)

k piezoelctric M1 M2 M3 M4 M5 M6

7.78
with 3.968 4.403 5.005 5.896 5.964 6.949
without 3.962 4.403 5.005 5.896 5.933 6.949

15.62
without 7.456 8.706 9.198 9.640 9.725 10.470
with 7.444 8.706 9.198 9.632 9.725 10.470

waves in piezoelectric materials carrying a metal layer of
finite thickness, J. Appl. Phys., Vol. 44, pp. 2002-2007.

Gopinathan, S.V.; Varadan, V.V.; Varada, V.K.
(2000): A review and critique of theories for piezoelec-
tric laminates, Smart Mater. Struct., Vol. 9, pp. 24-48.

Han, X.; Liu, G.R. (2003): Elastic waves in a function-
ally graded piezoelectric cylinder, Smart Mater. Struct.,
Vol. 12, pp. 962-971.

Han, X.; Liu, G.R.; Ohyoshi, T. (2004): Dispersion and
characteristic surfaces of waves in hybrid multilayered
piezoelectric circular cylinders, Computational Mechan-
ics, Vol. 33, pp. 334-344.

Honein, B.; Braga, A.M.B.; Herrmann, G. (1991):
Wave propagation in piezoelectric layered media with
some applications. Proceedings of the conference on re-

cent advances in active control of sound and vibration,
Technomic.

Lewis, M.F. (1985): On Rayleigh waves and related
propagating acoustic waves. In Rayleigh-wave theory
and application, Ash, E A and Paige E G S ed. Springer-
Verlag.

Liu, G.R.; Dai, K.Y.; Han, X.; Ohyoshi, T. (2003): Dis-
persion and characteristic wave surfaces in functionally
graded piezoelectric plates, J. Vib and Sound, Vol. 268,
pp. 131-147.

Liu, G.R.; Tani, J.; Ohyoshi, T.; Watanabe, K. (1991):
Characteristic wave surfaces in anisotropic laminated
plates. J. Vib. Acoust, Vol. 113, pp. 279-285.

Liu, G.R.; Tani, J. (1994): Surface waves in function-
ally gradient piezoelectric plates. J. Vib. and Acoust. Vol.



Elastic waves in a hybrid multilayered piezoelectric plate 55

116, pp. 440-448.

Liu, G.R.; Xi, Z.C. (2001): Elastic waves in anisotropic
laminates, CRC press.

Liu, J.; Wang, Z.K. (2005): The propagation behavior
of love waves in a functionally graded layered piezoelec-
tric structure, Smart Mater. Struct., Vol. 14, pp. 137-146.

Liu, H.; Wang, T.J.; Kuang, Z.B. (2002): Effect of a
biasing electric field on the propagation of symmetric
waves in piezoelectric plates,Int. J. Solids Struct., Vol.
39, pp. 2031-2049.

Pauley, K.E.; Dong, S.B. (1976): Analysis of plane
waves in laminated piezoelectric plates, Wave Electron-
ics, Vol. 1, pp. 265-185.

Siao, J.C.T.; Dong, S.B.; Song, J. (1994): Frequency
spectra of laminated piezoelectric cylinders, ASME J.
Vib. And Acoust., Vol. 116, pp. 364-370.

Shiosai, T.; Mikamura, Y.; Takeda, F.; Kawabata,
A. (1986): High-coupling and high-velocity SAW using
ZnO and AlN Films on a glass substrate. IEEE Tran.
UFFC. Vol. 33-3, pp. 324-330.

Sun, C.T.; Cheng, N.C. (1974): Piezoelectric waves on
a layered cylinder,J. Appl. Phys., Vol. 23, pp. 83-88.

Tang, Y.Y.; Noor, A.K.; Xu, K. (1996): Assessment of
computational models for thermoelectroelastic multilay-
ered plates, Comput. Struct., Vol. 61, pp. 915-933.

Toda, K.; Mizutain, K. (1988): Propagation character-
istics of plate waves in a Z-cut X-propagation LiTaO3

thin plate. Transactions of the institute of electronics, in-
formation and communication engineering, J71-A-6, pp.
1225-1233.

Vel, S.S.; Batra, R.C. (2000): Three-dimensional analy-
sis solution for hybrid multilayered piezoelectric plates,
ASME J. Appl. Mech., Vol. 67, pp. 558-567.

Wang, Q. (2001): Wave propagation in a piezoelectric
coupled cylindrical membrane shell, Int. J. Solids Struct.,
Vol. 38, pp. 8207-8218.

Zhang, T.Y.; Qian, C.F.; Tong, P. (1998): Linear elec-
troelastic analysis of a cavity or a crack in a piezoelectric
material. J. Solids Struct., Vol. 35, pp. 2121-2149.




