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Computational Applications of the Poincaré Group on the Elastoplasticity with
Kinematic Hardening

Chein-Shan Liu 1

Abstract: Using a group-theoretical approach in the
Minkowski space we explore kinematic hardening rules
from a viewpoint of the Poincaré group. The resultant
models possess two intrinsic times qa

0 and qb
0; the first qa

0
controls the on/off switch of plasticity, and the second
qb

0 controls the pace of back stress during plastic defor-
mation. We find that some existent kinematic hardening
rules, including the modifications from the Armstrong-
Frederick kinematic hardening rule, can be categorized
into type I, type II and type III, which correspond respec-
tively to qb

0 = 0, qb
0 = qa

0 and qb
0 �= qa

0. Based on group
properties, the numerical computations of models’ re-
sponses are derived, which can automatically update the
stress points located on the yield surface at every time
step without needing of iteration, and some examples are
plotted to show models’ behaviors.

keyword: Elastoplasticity, kinematic hardening rule,
Poincaré group, numerical computation, Minkowski
space

1 Introduction

Group theory as a mathematical tool to study symme-
try has an abundance of applications from various fields.
Numerous problems in engineering sciences possess cer-
tain symmetry properties. If we can manage to recognize
them, a mathematical treatment adjusted to the symmetry
properties may lead to a considerable simplification.

With this in mind, internal symmetries approach of the
elastoplastic models equipped with the von Mises yield
criterion have been developed by Hong and Liu (1999a,
2000), Liu and Hong (2001), Mukherjee and Liu (2003),
and Liu (2001a, 2003a, 2004a, 2004b). Then, Liu
(2004c) and Liu and Chang (2004, 2005) extended these
studies to the Drucker-Prager model, quadratic yielding
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model and convex plastic model. These authors explored
the internal symmetry groups of the constitutive mod-
els of perfect elastoplasticity with or without considering
large deformation, visco-elastoplasticity, isotropic work-
hardening elastoplasticity, mixed-hardening elastoplas-
ticity, the Drucker-Prager plasticity as well as the models
with yield functions quadratic or convex, to ensure that
the consistency condition is exactly satisfied at each time
step once the computational schemes can take these sym-
metries into account.

The perfectly plastic model is the simplest one to use
(Hong and Liu, 1997, 1998), but can’t predict the ex-
perimentally observed Bauschinger effect of most met-
als in cyclic loading tests. The Bauschinger effect refers
to a particular type of directional anisotropy in stress
space induced by plastic deformation: an initial plas-
tic deformation of one direction reduces the subsequent
yield strength in the opposite direction. To model the
Bauschinger effect, both Ishlinsky (1954) and Prager
(1955, 1956) simultaneously suggested the kinematic
hardening rule. This rule asserts that the yield surface
translates as a rigid body in stress space during plastic
deformation. Consequently, the shape and size of yield
surface remain unchanged in the subsequent plastic de-
formation.

Although the kinematic hardening rule proposed by
Prager can account of the Bauschinger effect within a
certain degree of accuracy, the difficulties appear when
applied it to model the realistic material behavior un-
der complex loading conditions. The main drawback
of Prager’s kinematic hardening rule is that the back
stress doesn’t saturate. Then, Armstrong and Frederick
(1966) have proposed a kinematic hardening rule modi-
fied from the Prager kinematic hardening rule by adding
a recovery term in the governing differential equation
of back stress. There are several reasons to adopt the
Armstrong-Frederick kinematic hardening rule in the
modeling of cyclic plasticity (Moosbrugger and Morri-
son, 1997; Chaboche, 1993; McDowell, 1985; Moos-
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brugger and McDowell, 1989; Moosbrugger, 1993; Mc-
Dowell and Moosbrugger, 1992; Ohno and Wang, 1991):
able to be incorporated into a thermodynamical frame,
able to model nonlinear uniaxial Bauschinger effect, able
to model nonproportional strain loading response, con-
necting to a micromechanical process, and more sig-
nificantly having a connection to the two-surface and
multiple-surface models. On the other hand, there are
also several numerical schemes been developed to in-
tegrate the Armstrong-Frederick model, for example,
Lubarda and Benson (2002), Wang, Hu and Sawyer
(2000), Sawyer, Wang and Jones (2001), Chaboche and
Cailletaud (1996), and Liu and Li (2005).

However, in order to increase the prediction capabil-
ity of the models which using back stress to simulate
the hardening phenomena of materials, many nonlinear
kinematic hardening rules have been proposed in the
past several decades. One of these efforts is that the
model proposed by Armstrong and Frederick (1966) has
been extended and refined through the works of Eisen-
berg and Phillips (1968), Chaboche (1977, 1986, 1989,
1991, 1994), Voyiadjis and Kattan (1990,1991), Ohno
and Wang (1993, 1994), Jiang and Kurath (1996), Moos-
brugger and Morrison (1997), and so on. Sometimes,
the kinematic hardening effect is also important in the fi-
nite strain plasticity model (Atluri, 1984; Im and Atluri,
1987; Karšaj, Sansour and Sorić, 2005).

Hong and Liu (1999b) have investigated the constitutive
model of bilinear elastoplasticity by using the method
of symmetry group. In doing so they have found that
the internal symmetry inherent in the Prager model is
a Poincaré group on the Minkowski space. On the
other hand, Hong and Liu (2001a) have distilled a per-
fectly plastic model from a primitive model that the
Lorentz group admitted by enforcing two basic princi-
ples of plasticity: causality in the truncated future cone of
the Minkowski spacetime of augmented states, and con-
trollability and non-generativity in a reachable, bounded
space of states. In addition these studies, there are no
reports in the open literature to investigate the plastic-
ity models endowed with nonlinear kinematic hardening
rules from a group-theoretic approach and the compu-
tations by utilizing the symmetry groups. To benefit a
symmetry study of mechanical problems, we attempt to
investigate the kinematic hardening models of elastoplas-
ticity from a viewpoint of the Poincaré group, and uti-
lize the group properties to facilitate the computations of

models’ behaviors.

The most models developed are based on one intrinsic
time of the conventional types as discussed by Watanabe
and Atluri (1986) and Im and Atluri (1987). In this paper
one will find that the introduction of two intrinsic times
in the theory of plasticity is a very natural result from
the viewpoint of Poincaré group. The nonlinear kine-
matic hardening models advocated by Chaboche (1994)
and Ohno and Wang (1993, 1994) can be covered. They
are the modifications of the Armstrong-Frederick kine-
matic hardening rule to suppress the over dynamic re-
covery effect of back stress.

This paper is arranged as follows. In Section 2 we start
from a Poincaré group to derive the flow model, which
not only considers the effect of kinematic hardening but
also accounts of large deformation effect. In Section 3
the models with two intrinsic times are given and then
compared with some existent elastoplastic models with
nonlinear kinematic hardening rules. In Section 4 we ad-
dress the numerical computations of the newly proposed
models. In Section 5 we introduce a smoothing technique
developed by Liu (2003b) to improve the model behav-
ior. Then, we draw some conclusions in Section 6.

The concept of internal spacetime as advocated by Hong
and Liu (1999a, 1999b, 2000) to model materials’ plas-
tic behaviors bears certain similarities with the external
spacetime structure originated from the Einstein’s land-
mark theory of special relativity (Hong and Liu, 2001b).
Both spacetimes are of the Minkowskian type and the
action groups are both of the Lorentzian type, but with
different dimensions.

Through this study it would be clear that these seeming
diverse kinematic hardening rules can be unified into a
single equation in the Minkowski space, of which the
group action is a Poincaré group. This group extends the
action of the Lorentz group, allowing the cone moving
in the material internal spacetime. The new aspect may
extend the conventional internal time concept of plastic-
ity (Watanabe and Atluri, 1986; Im and Atluri, 1987) to
an internal spacetime concept of plasticity. So far, we
can study plasticity theory from a highlight of materials’
spacetime structure.
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2 Poincaré group: the model with corotational
stress rate and kinematic hardening

As the title indicates, let us first give a brief sketch of the
Poincaré group in this section. We attempt to construct
a causal differential equations system in an appropriate
space, on which the temporal component flows forward
and causes precede effects. Zeeman (1964) was able
to show that the causality assumption in the Minkowski
spacetime renders a composition of a translation, a dila-
tion, and a proper orthochronous Lorentz transformation.
In the present paper we will focus on the composition of
a translation and a proper orthochronous Lorentz trans-
formation.

2.1 The Poincaré group and its Lie algebra

It is known that the semi-direct product of the transla-
tion group T (n,1) with the proper orthochronous Lorentz
group SOo(n,1) results in the proper orthochronous
Poincaré group ISOo(n,1), of which T (n,1) is an invari-
ant subgroup and SOo(n,1) is a proper subgroup. An el-
ement of ISOo(n,1) is a pair of linear operators {Xb|G}
with Xb ∈ T (n,1) and G ∈ SOo(n,1) satisfying (Liu,
2001b)

GT gG = g, (1)

det G = 1, (2)

G0
0 > 0, (3)

in which the superscript T denotes the transpose, det is
the shorthand of determinant, G0

0 is the 00th component
of G and

g :=
[

In 0n×1

01×n −1

]
(4)

is a metric tensor of the Minkowski space M
n+1. In

above, In is the identity matrix of order n. It deserves
to note that the 00th component of g is −1 rather than
+1 for the metric tensor In+1 of the n + 1-dimensional
Euclidean space E

n+1. The action of ISOo(n,1) on M
n+1

is a Lorentz transformation G followed by a translation
Xb:

X(t) = {Xb(t)|G(t)}X(0) := G(t)X(0)+Xb(t). (5)

Here, t is a parameter, and the group formulated is a
single-parameter subgroup. Using this formula the mul-
tiplication and inversion of group actions in ISOo(n,1)

are found to be

{Xb(t2)|G(t2)}{Xb(t1)|G(t1)}
={G(t2)Xb(t1)+Xb(t2)|G(t2)G(t1)},

(6)

{Xb(t)|G(t)}−1 = {−G−1(t)Xb(t)|G−1(t)}, (7)

for all G(t1),G(t2),G(t) ∈ SOo(n,1) and
Xb(t1),Xb(t2),Xb(t) ∈ T (n,1).

In order to derive the commutation relations of the real
Lie algebra of ISOo(n,1) it is convenient embedding
ISOo(n,1) into the special linear group SL(n + 2,R) via
the following mapping:

{Xb(t)|G(t)} �→
[

G(t) Xb(t)
01×(n+1) 1

]
. (8)

Thus, the operation in Eq. (5) can be recast to the follow-
ing matrix Lie group operation:[

X(t)
1

]
=

[
G(t) Xb(t)

01×(n+1) 1

][
X(0)

1

]
, (9)

which can be further split into[
X(t)

1

]
=

(
T(t)|L(t)

)[
X(0)

1

]
(10)

with

(
T(t)|L(t)

)
denoting the matrix multiplication of

T(t) and L(t):

T(t) :=
[

In+1 Xb(t)
01×(n+1) 1

]
,

L(t) :=
[

G(t) 0(n+1)×1

01×(n+1) 1

]
.

(11)

This group action has the following algebraic properties:

T(t1)T(t2) = T(t2)T(t1), (12)(
T(t2)|L(t2)

)(
T(t1)|L(t1)

)
=

(
T(t2)L(t2)T(t1)L−1(t2)|L(t2)L(t1)

)
.

(13)

The former indicates that T(t) is an invariant subgroup
of the Poincaré group, and the latter shows that the rea-
son why the Poincaré group is a semi-direct product of
the translation group and the Lorentz group. Both T(t)
and L(t) are non-compact, and so is the Poincaré group.
Because T(t) is an abelian subgroup, the Poincaré group
is not semi-simple.
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The real Lie algebra iso(n,1) of the Poincaré group
ISOo(n,1) is most easily set up by using T(t) and L(t)
defined above. Now, by adopting the argument of ele-
mentary responses as for the Lorentz group derived in
a previous paper (Section 10 in Hong and Liu, 1999a),
the basis elements of iso(n,1) are given as follows. The
n(n+1)/2 basis elements of the real Lie algebra iso(n,1)
corresponding to the homogeneous Lorentz group is of
the form

li j :=
[

ai j 0(n+1)×1

01×(n+1) 0

]
, (14)

where ai j, 0 ≤ i < j ≤ n, is the basis elements of the real
Lie algebra of the Lorentz group SOo(n,1) with

ai j :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
...

. . . . . . . 1 . . .
...

...
. . . −1 . . . . . . .

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

for 1 ≤ i < j ≤ n, and with n basis elements of the type

ai0 :=

⎡
⎢⎢⎢⎢⎣

...
...

. . . . . . . 1
...

...
. . . 1 . . . .

⎤
⎥⎥⎥⎥⎦ (16)

for 1 ≤ i ≤ n. Similarly, the n + 1 basis elements of the
Lie algebra iso(n,1) corresponding to the translation is
given by

ki :=

⎡
⎢⎢⎢⎢⎣

...
...

. . . . . . . 1
...

...
. . . . . . .

⎤
⎥⎥⎥⎥⎦ (17)

for 0≤ i≤ n, where ki is equal to 0(n+2)×(n+2) except that
the ith entry of the last column is +1.

The basis elements (14) and (17) obey the commutation
relations

[li j, lkl] = η jklil +ηil l jk −ηikl jl −η jl lik,

[li j,kk] = ηikk j −η jkki,

[ki,k j] = 0

(18)

for i, j,k, l = 1,2, . . .,n,0, with η defined by

η :=
[

g 0(n+1)×1

01×(n+1) 1

]
. (19)

Any continuous square matrix function B(t) ∈ iso(n,1)
of order n + 1 is thus a linear combination of the basis
elements (14) and (17):

B(t) = ∑
0≤i< j≤n

Ai j(t)li j + ∑
0≤i≤n

Ki(t)ki (20)

with entries Ai j = −A ji for 1 ≤ i ≤ j ≤ n, Ai0 = A0i for
1 ≤ i ≤ n and A00 = 0. Consequently, we have a single-
parameter linear differential equations system with the
coefficient matrix B:

d
dt

[
X(t)

1

]
= B(t)

[
X(t)

1

]

=
[

A(t) K(t)
01×(n+1) 0

][
X(t)

1

]
.

(21)

Taking the above first row leads to

Ẋ(t) = A(t)X(t)+K(t), (22)

where both A(t) and K(t) are continuous functions.

2.2 A causal system

From Eq. (5) it follows that

X(t1) = G(t1)X(0)+Xb(t1), (23)

for some parameter t1. Substituting the inverse of the
above equation for X(0) into Eq. (5) again we obtain

X(t) = [G(t)G−1(t1)]X(t1)+Xb(t)

− [G(t)G−1(t1)]Xb(t1).
(24)

Owing to the closure property of the Lie group,
[G(t)G−1(t1)] also belongs to SOo(n,1). When t1 is put
very close to t, [G(t)G−1(t1)] is very close to the identity
of SOo(n,1); moreover, in view of Eqs. (2) and (3), the
group manifold is analytic, and hence,

A(t) :=
∂
∂t

[G(t)G−1(t1)]
∣∣∣∣
t1=t

= Ġ(t)G−1(t) (25)

defines a string of tangent vectors on the tangent
space at the identity of the group manifold, more pre-
cisely, a continuously-singly-parametrized series of one-
dimensional subalgebra of the real Lie algebra so(n,1) of
the Lorentz group SOo(n,1).
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Differentiating Eqs. (1) and (24), setting t1 = t, and then
using Eq. (25) yield

AT g+gA = 0, (26)

Ẋ(t) = A(t)X(t)+ Ẋb(t)−A(t)Xb(t). (27)

The flow generated by such an iso(n,1) is the congruence
of curves resulting from solving the dynamical system
(27). Due to Eq. (25), G(t) is the fundamental solution of
the system of ordinary differential equations (27). From
Eq. (26), gA is skew-symmetric; and, therefore, we may
let

A :=

[
ΩΩΩ q̇qq

qy
q̇qqT

qy
0

]
, (28)

where ΩΩΩ is a skew-symmetric spin tensor, qy := Q0
a/ke is

the yield strain, and ke > 0 and Q0
a > 0 are respectively

the elastic modulus and yield stress. Refer Eq. (36a) in
Hong and Liu (1999a).

Comparing Eqs. (27) and (22) yields

Ẋb(t) = A(t)Xb(t)+K(t). (29)

On the other hand, if we let

Xa(t) := X(t)−Xb(t) (30)

�

�

�

X2

X0

X1

↖ path of Xb

Figure 1 : Moving cones with vertex Xb in the aug-
mented state space, the translation of the vertex point is
due to kinematic hardening in the state space of Q.

in Eq. (24), then we obtain

Xa(t) = [G(t)G−1(t1)]Xa(t1). (31)

By the same token, when differentiating the above equa-
tion with respect to t, setting t1 = t, and then using
Eq. (25) we obtain

Ẋa(t) = A(t)Xa(t). (32)

From Eqs. (1) and (31) it is easy to prove that

XT
a (t)gXa(t) = XT

a (t1)gXa(t1) (33)

is an invariant; hence, we suppose that

XT
a gXa = −r, (34)

where r < 1 is a material constant specifying the isotropic
hardening. It is a hyperboloid, an n-dimensional pseudo-
Riemannian submanifold of constant curvature, which
admits the Minkowski metric. If the constant r = 0,
Eq. (34) is the cone, whose vertex point Xb can move in
the space of X; see Fig. 1. If r > 0, it represents two
copies of the Minkowskian spheres in the interior. If
r < 0, it is a hyperbolic space in the exterior. Figure 2
shows a geometric representation of the above three ob-
jects. In Section 5 we will consider a smoothing model
whose underlying space is an interior upper hyperboloid
in the Minkowski sphere.

2.3 A mathematical model in the space of X

The flows equations (22), (32) and (29) derived in the
space of (X,Xa,Xb) were based on the Poincaré group,
collected together as follows:

Ẋ = AX+K, (35)

Ẋa = AXa, (36)

Ẋb = AXb +K. (37)

The problems encountered in the engineering applica-
tions are often posed as follows. Given a set of controls,
q̇ and ΩΩΩ as given in A by Eq. (28), and a vector source
function of the translation K, find the response state of
X. For the given A and K it is a matter to solve the non-
homogeneous differential equation system (35). Usually,
we search a complementary solution of Eq. (36) denoted
by Xa and then a particular solution of Eq. (37) denoted
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� �=⇒ truncated

�

�

�

X2
a

X0
a

X1
a

�

�

�

truncated hyperboloid
of two sheets, 0 < r < 1

truncated cone, r = 0

truncated hyperboloid
of one sheet, r < 0

�

�

�
X2

X0

X1

Xb

Figure 2 : The three geometric sets of XT
a gXa = −r and X0

a ≥ 1. Depending on the value of r the set is truncated
hyperboloid of two sheets, truncated cone, or truncated hyperboloid of one sheet.

by Xb, and thus the general solution X of Eq. (35) is ex-
pressed as the following sum of complementary solution
and particular solution:

X = Xa +Xb. (38)

The above equations constitute a two-layer system:
Eq. (36) is the first layer and Eq. (37) is the second
layer. Whatever, how to identify the source function of
the translation K becomes a major task in the material
modeling of kinematic hardening. Because A is an input
and Xa is an output of the first layer obtained by solving
Eq. (36) with a prescribed initial condition Xa(ti), it is
reasonable to let

K = K(A,Xa,Xb). (39)

The dependence of K on Xb is for considering the non-
linear effect of Xb through the differential equation (37)
and for reflecting the nonlinear kinematic hardening ef-
fect to be discussed below. It can be seen that K not only
depends on the control inputs of Ω and q̇ but also the out-
put of the first layer of the system: qa

0, Qa. Therefore, K
depends on the rate and history of the inputs. The two-
layer structure is schematically shown in Fig. 3.

The model of plasticity is known as rate-independent.
The stress response depends on the strain path but is in-
dependent of what strain rate on the path. Let us con-
sider two independent variables t and t ′, where t and t ′

have a monotonic relation, i.e., dt ′/dt > 0. To be a rate-
independent plasticity model K and A should be also
rate-independent as degree-one homogeneous functions
of rate quantities:

A(t ′)dt ′ = A(t)dt, (40)

K(t ′)dt ′ = K(t)dt. (41)

Multiplying Eqs. (35)-(37) by dt/dt ′ we get the same
equations:

d
dt ′

X(t ′) = A(t ′)X(t ′)+K(t ′), (42)

d
dt ′

Xa(t ′) = A(t ′)Xa(t ′), (43)

d
dt ′

Xb(t ′) = A(t ′)Xb(t ′)+K(t ′), (44)

but with a dependence on t replaced merely by a depen-
dence on t ′ of X, Xa and Xb. Therefore, both t and t ′
can be equally well the independent variable of plasticity
equations, and it makes no distinction between the use of
t or t ′. However, for convenience, the independent vari-
able no matter what it is will be simply called “time” and
given the symbol t.

The ΩΩΩ appeared in A is a skew-symmetric tensor reflect-
ing the corotational rates used in the model; see, e.g., Liu
and Hong (1999, 2001) and references therein. Since the
dependence of ΩΩΩ on t is through the deformation rate of
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A =⇒ =⇒ X = Xa + Xb

Ẋa = AXa

Ẋb = AXb + K(A,Xa,Xb)

�

Figure 3 : A two-layer structure of the input and output relations of the augmented linear systems based on the
Poincaré group theory.

material, ΩΩΩ and A are both rate-independent.

2.4 A mathematical model in the space of Q

In the following sections we focus on the complex prob-
lem of kinematic hardening plasticity, restrict ourselves
to a small strain theory and thus not consider the finite
strain plasticity as discussed by Atluri (1984), Im and
Atluri (1987) and Karšaj, Sansour and Sorić (2005).

The spaces we work are five-dimensional stress and
strain vector spaces (Liu 2003a):

Q =

⎡
⎢⎢⎢⎢⎣

a1s11 +a2s22

a3s11 +a4s22

s23

s13

s12

⎤
⎥⎥⎥⎥⎦ ,Qa =

⎡
⎢⎢⎢⎢⎣

a1s11
a +a2s22

a
a3s11

a +a4s22
a

s23
a

s13
a

s12
a

⎤
⎥⎥⎥⎥⎦ ,

Qb =

⎡
⎢⎢⎢⎢⎣

a1s11
b +a2s22

b
a3s11

b +a4s22
b

s23
b

s13
b

s12
b

⎤
⎥⎥⎥⎥⎦ , (45)

q =

⎡
⎢⎢⎢⎢⎣

a1e11 +a2e22

a3e11 +a4e22

e23

e13

e12

⎤
⎥⎥⎥⎥⎦ ,qe =

⎡
⎢⎢⎢⎢⎣

a1ee
11 +a2ee

22
a3ee

11 +a4ee
22

ee
23

ee
13

ee
12

⎤
⎥⎥⎥⎥⎦ ,

qp =

⎡
⎢⎢⎢⎢⎣

a1ep
11 +a2ep

22
a3ep

11 +a4ep
22

ep
23

ep
13

ep
12

⎤
⎥⎥⎥⎥⎦ . (46)

They are independent components of s, sa, sb e, ee and ep,
which are, respectively, the deviatoric tensors of stress,
active stress, back stress, strain, elastic strain, and plastic
strain, all symmetric and traceless.

In Eqs. (44)-(49),

a1 : = sin(θ+
π
3
),

a2 : = sinθ,

a3 : = cos(θ+
π
3
),

a4 : = cosθ,

(47)

where θ can be any real number. If choosing θ =
0 we have the stress space Q := (

√
3s11/2, s11/2 +

s22, s23, s13, s12)T of the Il’yushin type (Hong and Liu,
1997).

Depending on the number of non-zero stress compo-
nents in Eq. (45) (and correspondingly non-zero strain
components in Eq. (46)) which we consider for a physi-
cal problem, for example, the simple shear problem, the
axial tension-compression problem, the biaxial tension-
compression-torsion problem, etc., the dimensions n may
be an integer with 1 ≤ n ≤ 5, and no matter which case
is we use n to denote the physical problem dimensions.

In order to transform the differential equations in the
space of (X,Xa,Xb) to the flow model in the space of
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(Q,Qa,Qb,qa
0,qb

0) we need the following projective rela-
tions between these two sets:

Xa =
[

Xs
a

X0
a

]
:= X0

a

[
Qa
Q0

a

1

]

= exp

(
kaqa

0

Q0
a

)[
Qa
Q0

a

1

]
,

(48)

Xb =
[

Xs
b

X0
b

]
:= X0

b

[
Qb
Q0

b

1

]

= exp

(
kbqb

0

Q0
b

)[
Qb
Q0

b

1

]
.

(49)

The above representations include four material con-
stants of Q0

a, Q0
b, ka and kb and two time-like variables

of q0
a and q0

b to be discussed below. Corresponding to the
elastic modulus ke > 0, we may call kb > 0 the kinematic
modulus and ka := ke +kb > 0 the active modulus.

From the above two definitions it follows that

Qa =
Q0

aXs
a

X0
a

, (50)

Qb =
Q0

bXs
b

X0
b

, (51)

Q = Qa +Qb =
Q0

aXs
a

X0
a

+
Q0

bXs
b

X0
b

, (52)

q̇a
0 =

Q0
aẊ0

a

kaX0
a

, (53)

q̇b
0 =

Q0
bẊ0

b

kbX0
b

, (54)

where Xs
a = (X1

a ,X2
a , . . . ,Xn

a )T and Xs
b =

(X1
b ,X2

b , . . .,Xn
b )T are respectively the n-vector parts

of Xa and Xb, and X0
a and X0

b are respectively the scalar
parts of Xa and Xb. By definitions we have X0

a > 0 and
X0

b > 0. Corresponding to Eq. (38) in the space of X,
Eq. (52) represents an usual decomposition of stress
Q into an active (relative) stress Qa and a back stress
Qb. Eq. (53) is obtained by taking the differential of
qa

0 = Q0
a/ka lnX0

a , and Eq. (54) is obtained by taking the
differential of qb

0 = Q0
b/kb lnX0

b .

Now, utilizing Eqs. (36), (37), (48), (49), (28), (53) and

(54) we obtain

◦
Qa +

kaq̇a
0

Q0
a

Qa = keq̇, (55)

q̇a
0 =

ke

kaQ0
a

QT
a q̇, (56)

◦
Qb +

kbq̇b
0

Q0
b

Qb =
keQ0

b

Q0
a

q̇+
Q0

b

exp(kbqb
0/Q0

b)
Ks, (57)

q̇b
0 =

ke

kbQ0
a

QT
b q̇ +

Q0
bK0

kb exp(kbqb
0/Q0

b)
, (58)

where
◦

Qa:= Q̇a −ΩΩΩQa, (59)
◦

Qb:= Q̇b −ΩΩΩQb. (60)

In above, a surmounted circle “◦” represents a cer-
tain corotational derivative with respect to the skew-
symmetric spin matrix ΩΩΩ, Ks := (K1,K2, . . . ,Kn)T is an
n-vector part of K, and K0 is a scalar part of K.

2.5 Kinematic hardening rules

The models derived in Sections 2.3 and 2.4 are based on
the group theory and their projective relatizations. How-
ever, they are not yet to be plasticity models. To fit the
requirements of plasticity we should impose the follow-
ing extra conditions:

XT
a gXa ≤−r, (61)

Ẋ0
a ≥ 0, (62)(
XT

a gXa + r
)

Ẋ0
a = 0, (63)

Ẋ0
b ≥ 0, (64)

Ẋb = 0 if Ẋ0
a = 0. (65)

The first three equations consist of a complementary trio
in the augmented space of Xa. With the aid of Eqs. (48)
and (49), the above equations lead to the following five
equations in the space of Q:

‖Qa‖2 ≤ (Q0
a)

2− r(Q0
a)

2

exp(2kaqa
0/Q0

a)
, (66)

q̇a
0 ≥ 0, (67)[
‖Qa‖2− (Q0

a)
2 +

r(Q0
a)2

exp(2kaqa
0/Q0

a)

]
q̇a

0 = 0, (68)

q̇b
0 ≥ 0, (69)

Q̇b = 0 and q̇b
0 = 0 if q̇a

0 = 0. (70)
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In summary this model includes five material constants
of Q0

a, ka, Q0
b, kb and r, and one rate-independent ma-

terial function K. For r < 0 the strain softening can
be modeled, and for 0 < r < 1 the strain hardening can
be modeled. For these two cases the limiting values of
‖Qa‖ are both Q0

a, and the initial yield strengths are both√
1− rQ0

a. For r = 0 we have a purely kinematic hard-
ening model without considering the isotropic hardening
or softening. Accordingly, q̇a

0 in Eq. (55) must subject to
the on-off switching criteria of plasticity:

q̇a
0 =

ke

kaQ0
a

QT
a q̇

if ‖Qa‖2 = (Q0
a)

2− r(Q0
a)

2

exp(2kaqa
0/Q0

a)

and QT
a q̇ > 0,

(71)

q̇a
0 = 0

if ‖Qa‖2 < (Q0
a)

2− r(Q0
a)

2

exp(2kaqa
0/Q0

a)

or QT
a q̇ ≤ 0.

(72)

While q̇a
0 = 0 presents the elastic state, q̇a

0 > 0 corre-
sponds to the plastic state. While the second condition
in Eq. (71) is known as the straining condition, the first
condition in Eq. (71) is known the yield condition. De-
pending on the value of r, the size of yield surface may
expand, fix, or contract.

Similarly, under the condition of q̇0
a > 0, q̇b

0 in Eq. (57)
must subject to the following switching criteria:

q̇b
0 =

ke

kbQ0
a

QT
b q̇ +

Q0
bK0

kb exp(kbqb
0/Q0

b)

if q̇0
a > 0

and
ke

kbQ0
a

QT
b q̇ +

Q0
bK0

kb exp(kbqb
0/Q0

b)
> 0,

(73)

q̇b
0 = 0 if q̇0

a = 0

or
ke

kbQ0
a

QT
b q̇+

Q0
bK0

kb exp(kbqb
0/Q0

b)
≤ 0.

(74)

The on and off phases of plasticity correspond to q̇a
0 > 0

and q̇a
0 = 0, respectively. By letting q̇a

0 = 0 in the plastic
phase equation (55), we simply obtain an elastic phase

equation, namely,

◦
Qa= keq̇

if ‖Qa‖2 < (Q0
a)

2− r(Q0
a)

2

exp(2kaqa
0/Q0

a)

or QT
a q̇ ≤ 0.

(75)

By the switching criterion (74), from Eq. (57) we have

◦
Qb=

keQ0
b

Q0
a

q̇+
Q0

b

exp(kbqb
0/Q0

b)
Ks

if q̇a
0 > 0

and
ke

kbQ0
a

QT
b q̇ +

Q0
bK0

kb exp(kbqb
0/Q0

b)
≤ 0.

(76)

It amounts to performing a switch between these two
types of kinematic hardening rules: one with q̇b

0 > 0 in
Eq. (57) and one with q̇b

0 = 0, which leading to the above
equation.

2.6 A model with corotational stress rate and kine-
matic hardening

Combining Eqs. (52), (55), (57) and (76) we obtain the
following flow model of plasticity:

Q = Qa +Qb, (77)
◦

Qa +
kaq̇a

0

Q0
a

Qa = keq̇, (78)

◦
Qb +

kbq̇b
0

Q0
b

Qb =
keQ0

b

Q0
a

q̇+
Q0

b

exp(kbqb
0/Q0

b)
Ks, (79)

q̇b
0 =

〈
ke

kbQ0
a

QT
b q̇ +

Q0
bK0

kb exp(kbqb
0/Q0

b)

〉
≥ 0, (80)

‖Qa‖2 ≤ (Q0
a)

2− r(Q0
a)

2

exp(2kaqa
0/Q0

a)
, (81)

q̇a
0 ≥ 0, (82)[
‖Qa‖2− (Q0

a)
2 +

r(Q0
a)2

exp(2kaqa
0/Q0

a)

]
q̇a

0 = 0, (83)

Q̇b = 0, q̇b
0 = 0, if q̇a

0 = 0, (84)

where 〈x〉 := (x + |x|)/2 denotes the MacCauley bracket
of x, and

Ks = Ks(q̇,Qa,Qb,qa
0,qb

0), (85)

K0 = K0(q̇,Qa,Qb,qa
0,qb

0) (86)
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are two given continuous functions. Remind that
Eqs. (77)-(84) to be a rate-independent model, Ks and
K0 should be rate-independent, that is,

Ks(t ′)dt ′ = Ks(t)dt, (87)

K0(t ′)dt ′ = K0(t)dt, (88)

where t and t ′ are two different time scales with
dt ′/dt > 0.

2.7 Non-associated flow rule

From Eqs. (52), (55) and (57) it follows that

◦
Q =

(
ke +

keQ0
b

Q0
a

)
q̇− kaq̇a

0

Q0
a

Qa − kbq̇b
0

Q0
b

Qb

+
Q0

b

exp(kbqb
0/Q0

b)
Ks.

(89)

Now, using

q̇ = q̇e + q̇p, (90)
◦
Q= keq̇e, (91)

one obtains

q̇p =
kaq̇a

0

keQ0
a

Qa +
kbq̇b

0

keQ0
b

Qb − Q0
b

Q0
a

q̇

− Q0
b

ke exp(kbqb
0/Q0

b)
Ks.

(92)

It indicates that the plastic flow is non-associated. An
associated flow rule is that q̇p is proportional to Qa.

Taking the inner product of Eq. (57) with Qb and using
Eq. (73), we get

QT
b Q̇b =

(
kbQ0

b −
kb

Q0
b

QT
b Qb

)
q̇b

0

+
Q0

b

exp(kbqb
0/Q0

b)
QT

b Ks − (Q0
aQ0

b)
2K0

exp(kbqb
0/Q0

b)
.

(93)

If QT
b Qb = (Q0

b)
2 the first term on the right-hand side dis-

appears, and thus d‖Qb‖/dt = o(1) under the following
condition:

Q0
bQT

b Ks − (Q0
aQ0

b)
2K0 = o(exp(kbqb

0/Q0
b)), (94)

where a = o(b) means that a/b → 0. Because K is
bounded, and the exponential term exp(kbqb

0/Q0
b) ap-

proaches to a very large value when qb
0 is large enough,

the above condition is satisfied. Thus the norm of Qb

has a limiting value. In addition to the usual yield hy-
persphere this model also implies a limiting surface exis-
tent. Unlike to the two-surface theories which postulate a
priori the existence of a limiting surface, the present for-
mulation based on the group theory results directly the
existence of a limiting surface, and is able to describe the
nonlinearity of kinematic hardening continuously.

2.8 Symmetry switching between SE(n) and
PISOo(n,1)

The complemantary trio may render the validity of the
ISOo(n,1) symmetry to be restricted on the moving cone,
when the dynamical system is in the plastic phase. In the
elastic phase Eq. (55) becomes

Q̇a = ΩΩΩQa +keq̇, (95)

and Qb is fixed. It is clear from the previous deriva-
tion that ΩΩΩ belongs to the real Lie algebra so(n) of
the n-dimensional special orthogonal (or proper rotation)
group SO(n), which is the group of rotations of the n-
space of (Q1,Q2, . . . ,Qn) around its origin (0,0, . . .,0).
Hence, in the elastic phase we have

G =
[

Gs
s Gs

0
01×n 1

]
(96)

with

Ġs
s = ΩΩΩGs

s, (97)

Ġs
0 = ΩΩΩGs

0 +
1
qy

q̇. (98)

where Gs
s ∈ SO(n), Gs

0 ∈ T (n), and G ∈ SE(n), and the
dynamical system has an internal symmetry character-
ized by the special Euclidean (or proper motion) group
SE(n), which is the semi-direct product of the translation
group T (n) with the proper rotation group SO(n).

As a result the large deformation kinematic hardening
model of elastoplasticity obtained in Section 2.6 has a
symmetry switching between the special Euclidean group
SE(n) acting on the closed n-ball of admissible states
in the state space of Q and the projective proper or-
thochronous Poincaré group PISOo(n,1) acting on the
yield hypersphere.
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3 Existent kinematic hardening rules

After deriving the flow model of elastoplasticity by a
consideration of the Poincaré group and its projection, it
is now a good position to compare our model with some
existent kinematic hardening models. In the literature of
plasticity a great effort was devoted to the constitutive
equations of elastoplastic materials. In order to model the
complex behavior of materials under a vast range of load-
ing conditions, some different kinds of kinematic harden-
ing models were proposed in the past, and those rules are
summarized by the following equation (Liu, 1993):

Q̇b =−c1q̇a
0Qb +c2q̇p +c3q̇a

0qp

+c4Q̇ +c5q̇a
0Q,

(99)

where c1, . . . ,c5 are material constants. It encompasses
the following kinematic hardening rules proposed in the
literature as special cases:

(i) Q̇b = c4Q̇ Melan (1938)
(ii) Q̇b = c2q̇p Prager (1956)
(iii) Q̇b = c1q̇a

0(Q−Qb) Ziegler (1959)
(iv) Q̇b = c2q̇p +c4Q̇ Phillips and Lee (1979)
(v) Q̇b = c2q̇p −c1q̇a

0Qb

Armstrong and Frederick (1966)
(vi) Q̇b = c2q̇p +c3q̇a

0qp

Mróz, Shrivastava and Dubey (1976)
(vii) Q̇b = −c1q̇a

0Qb +c2q̇p +c3q̇a
0qp

Walker (1981)
(viii) Q̇b = −c1q̇a

0Qb +c4Q̇ +c5q̇a
0Q
Tseng and Lee (1983)

(ix) Q̇b = −c1q̇a
0Qb +c2q̇p +c4Q̇
Ramaswamy, Stouffer and Laflen (1990)

(x) Q̇b = −c1q̇a
0Qb +c2q̇p +c5q̇a

0Q
Trampczyński and Mróz (1992)

(xi) Q̇b = −c1q̇a
0Qb +c2q̇p +c4Q̇ +c5q̇a

0Q
Freed, Chaboche and Walker (1991)

(xii) Q̇b = −c1q̇a
0Qb +c2q̇p +c3q̇a

0qp +c4Q̇+c5q̇a
0Q

Kurtyka and Życzkowski (1996)

An integral representation of the above kinematic hard-
ening rules combined with the von Mises yield criterion
have been derived by Liu (1993). In Table 1 we write
the above kinematic hardening rules by pointing out the
zeros of c1, . . . ,c5.

We should note that there exists only one intrinsic time
qa

0 in the conventional plasticity theory. In order to give
a comparison between the model in Section 2 with some
kinematic hardening rules listed in Table 1 and also some

recent modifications of the kinematic hardening rule of
Armstrong and Frederick (1966), we may consider the
following three types:

qb
0 = 0, qa

0 �= 0, type I, (100)

qa
0 = qb

0 �= 0, type II, (101)

qa
0 �= qb

0 �= 0, type III. (102)

The results of the above formulations will be given
below to compare with some kinematic hardening rules
proposed in the literature. And for this purpose we let
ΩΩΩ = 0 hereafter.

3.1 Type I models

In this section we give a direct extension of the Prager
kinematic hardening rule presented in the space of X
and compare it with some nonlinear kinematic harden-
ing rules in the space of Q. In the frame of Section 2, we
revisit the bilinear model as analyzed by Hong and Liu
(1999b), where the non-homogeneous term K is found to
be

K =

[ kbq̇a
0

(Q0
a)2 Qa − ke

Q0
a
q̇

− ke
(Q0

a)2 QT
b q̇

]
. (103)

An extension of the Prager kinematic hardening rule can
be made via the following assignments:

Ks =
kbq̇a

0

(Q0
a)2 Qa − ke

Q0
a

q̇+Ks
e, (104)

K0 = − ke

(Q0
a)2 QT

b q̇. (105)

We have fixed X0
b = 1 due to qb

0 = 0, and added one extra
term Ks

e in Eq. (104) to extend the bilinear model speci-
fied by Eq. (103).

Substituting Eq. (104) into Eq. (79) we find that

Q̇b =
kbq̇a

0

Q0
a

Qa +Q0
aKs

e, (106)

which can be expressed in terms of q̇p by using Eq. (92)
with q̇b

0 = 0,

Q̇b = kbq̇p +
kaQ0

a

ke
Ks

e. (107)

It is easy to check that in the case of bilinear model, i.e.,
Ks

e = 0, the Prager kinematic hardening rule Q̇b = kbq̇p

is recovered.
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Table 1 : Some nonlinear kinematic hardening rules
(i) Q̇b = c4Q̇ c1 = c2 = c3 = c5 = 0
(ii) Q̇b = c2q̇p c1 = c3 = c4 = c5 = 0
(iii) Q̇b = c1q̇a

0(Q−Qb) c2 = c3 = c4 = 0, c5 = c1

(iv) Q̇b = c2q̇p +c4Q̇ c1 = c3 = c5 = 0
(v) Q̇b = c2q̇p −c1q̇a

0Qb c3 = c4 = c5 = 0
(vi) Q̇b = c2q̇p +c3q̇a

0qp c1 = c4 = c5 = 0
(vii) Q̇b = −c1q̇a

0Qb +c2q̇p +c3q̇a
0qp c4 = c5 = 0

(viii) Q̇b = −c1q̇a
0Qb +c4Q̇ +c5q̇a

0Q c2 = c3 = 0
(ix) Q̇b = −c1q̇a

0Qb +c2q̇p +c4Q̇ c3 = c5 = 0
(x) Q̇b = −c1q̇a

0Qb +c2q̇p +c5q̇a
0Q c3 = c4 = 0

(xi) Q̇b = −c1q̇a
0Qb +c2q̇p +c4Q̇ +c5q̇a

0Q c3 = 0
(xii) Q̇b = −c1q̇a

0Qb +c2q̇p +c3q̇a
0qp +c4Q̇ +c5q̇a

0Q c1, . . . ,c5 �= 0

Now, we let

Q0
aKs

e = a1q̇a
0Qa +a2q̇ +a3Q̇a +a4q̇a

0q, (108)

where a1, . . .,a4 are material constants. Obviously,
the above Ks and K0 meet the requirement of rate-
independence in Eqs. (87) and (88). It together with
Eq. (107) generate Eq. (99) with the following c1, . . .,c5:

c1 =
a1ka

ke +a3ka
, (109)

c2 =
kekb +a2ka

ke +a3ka
, (110)

c3 =
a4ka

ke +a3ka
, (111)

c4 =
a2ka

ke(ke +a3ka)
+

a3ka

ke +a3ka
, (112)

c5 =
a4ka

ke(ke +a3ka)
+

a1ka

ke +a3ka
, (113)

where ka = ke + kb as mentioned is the active modulus.
Of course we need a3 �=−ke/ka to avoid the zero denom-
inators. Utilizing the above information some kinematic
hardening rules listed in Table 1 can be realized through
type I formulation as shown in Table 2.

3.2 Type II models

Let

exp(kbqb
0/Q0

b) = exp(kaqa
0/Q0

a), (114)

Ks = exp(kaqa
0/Q0

a)Ks
e, (115)

K0 =
exp(kaqa

0/Q0
a)

qy

(
Qa

Q0
a
− Qb

Q0
b

)T

q̇. (116)

For this model one has Q0
b = kbQ0

a/ka because of qa
0 = qb

0.
Thus using Eqs. (90) and (91), Eq. (79) changes to

Q̇b +
kbq̇a

0

Q0
b

Qb =
keQ0

b

Q0
a

q̇p +
Q0

b

Q0
a

Q̇ +Q0
bKs

e. (117)

Depending on Q0
b, kb and Ks

e the above kinematic hard-
ening rule may be an extension of some kinematic hard-
ening rules listed in Table 1. For the comparison purpose
we let

Q0
bKs

e = a1q̇a
0Qa +a2q̇ +a3Q̇a +a4q̇a

0q, (118)

where a1, . . .,a4 are material constants. The above equa-
tion together with Eq. (117) generate Eq. (99) again, but
with the following c1, . . .,c5:

c1 =
kb

(1+a3)Q0
b

+
a1

1+a3
, (119)

c2 =
keQ0

b

(1+a3)Q0
a
+

a2

1+a3
, (120)

c3 =
a4

1+a3
, (121)

c4 =
Q0

b

(1+a3)Q0
a
+

a2

ke(1+a3)
+

a3

1+a3
, (122)

c5 =
a4

ke(1+a3)
+

a1

1+a3
. (123)

Similarly, Ks and K0 meet the requirement of rate-
independence in Eqs. (87) and (88). In above, a3 should
be not equal to −1 to avoid the zero denominators. Uti-
lizing the above information some kinematic hardening
rules listed in Table 1 can be obtained through type II
formulation as shown in Table 2.
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Table 2 : Comparing the nonlinear kinematic hardening rules with type I and type II formulations
Type I Type II

(i) a1 = a4 = 0, a2 = −kekb/ka not applicable
(ii) a1 = a2 = a3 = a4 = 0 not applicable
(iii) a1 = a2 = a3 = a4 = 0 not applicable
(iv) a1 = a4 = 0 not applicable
(v) not applicable a1 = a4 = 0, a3 = −a2/ke −Q0

b/Q0
a

(vi) not applicable a1 = −kb/Q0
b, a3 = −a2/ke −Q0

b/Q0
a, a4 = kekb/Q0

b
(vii) a2 = −kea3, a4 = −kea1 a1 = −a4/ke, a3 = −a2/ke −Q0

b/Q0
a

(viii) a4 = 0, a2 = −kekb/ka a4 = 0, a2 = −keQ0
b/Q0

a

(ix) not applicable a1 = a4 = 0
(x) a4 = 0, a2 = −kea3 a4 = 0, a3 = −a2/ke −Q0

b/Q0
a

(xi) a4 = 0 a4 = 0
(xii) applicable applicable

3.3 Overlook on the kinematic hardening rules with
two intrinsic times

When the characterization of qb
0 is allowed to be different

from qa
0, it leaves us a freedom to specify qb

0 indepen-
dently.

3.3.1 Type IIIA models

The model derived in Section 2 is a rather general one,
which leaves the form of K unspecified. In this section
we give an example. The simplest one is obtained by
letting K in Eq. (39) to be

K = c0AXa, (124)

where c0 is a constant. If c0 = 0 an isotropic hardening
model is recovered. Substituting Eqs. (28) and (48) into
the above equation we obtain

Ks =
kec0 exp(kaqa

0/Q0
a)

Q0
a

q̇, (125)

K0 =
kec0 exp(kaqa

0/Q0
a)

(Q0
a)2 QT

a q̇. (126)

For this case we have the following kinematic hardening
rule:

Q̇b +
kbq̇b

0

Q0
b

Qb

=
keQ0

b

Q0
a

[
1+c0 exp

(
kaqa

0/Q0
a −kbqb

0/Q0
b

)]
q̇.

(127)

3.3.2 Type IIIB models

Let

Ks =
exp(kbqb

0/Q0
b)

Q0
b

[
a0q̇−

(
a0

ke
+

Q0
b

Q0
a

)
Q̇a

]
,

K0 = 0,

(128)

where a0 satisfying

a0 < ke

(
1− Q0

b

Q0
a

)
< 0 (129)

is a material constant. Thus, Eq. (79) becomes

Q̇b +
kbq̇b

0

Q0
b

Qb =
(

keQ0
b

Q0
a

+a0

)
q̇

−
(

a0

ke
+

Q0
b

Q0
a

)
Q̇a,

(130)

which upon using Eqs. (90), (91) and (77) further
changes to

Q̇b +c1q̇b
0Qb = c2q̇p, (131)

where

c1 :=
kekbQ0

a

Q0
b(keQ0

a −keQ0
b −a0Q0

a)
> 0, (132)

c2 :=
keQ0

aa0 +k2
e Q0

b

keQ0
a −keQ0

b −a0Q0
a

> 0 (133)

are material constants.

Eq. (131) is an extension of the famous kinematic hard-
ening rule proposed by Armstrong and Frederick (1966),
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but in the present model the dynamic recovery term is
controlled by q̇b

0 rather than that by q̇a
0 as the usual one.

The dynamic recovery term is not always working even
in the plastic loading state, the criterion of which, by
Eq. (80) and K0 = 0, is

q̇b
0 =

ke

kbQ0
a

〈
QT

b q̇
〉
. (134)

Figure 4 gives a schematical plot in the two-dimensional
stress space of (Q1,Q2) to describe the evolution of back
stress under two consequential proportional paths. De-
pending on the loading history there exist three possibil-
ities:

q̇a
0 = q̇b

0 = 0 segments OA and BC,

q̇a
0 > 0, q̇b

0 > 0 segments AB and DE,

q̇a
0 > 0, q̇b

0 = 0 segment CD.

In the case of QT
b q̇ < 0 the dynamic recovery term is

turned-off even in the plastic phase.

The above formulation provides a very natural and use-
ful modification of the kinematic hardening rule of Arm-
strong and Frederick. In this occasion we should also
mention the modifications proposed by Chaboche (1991)
and Ohno and Wang (1993). In their modifications the
back stress is divided into several subparts, i.e.,

Qb =
m

∑
i=1

Qi
b, (135)

and each Qi
b obeys the following rules:

Q̇i
b +ai〈‖Qi

b‖−bi〉mi q̇a
0

Qi
b

‖Qi
b‖

= biq̇p,

Chaboche (1991),

(136)

Q̇i
b +aiH(‖Qi

b‖−bi)〈(Qi
b)

T n〉q̇a
0

Qi
b

‖Qi
b‖

= biq̇p,

Ohno and Wang (1993).

(137)

The above ai, bi, ci and mi are material constants; bi is
a threshold value of ‖Qi

b‖, H is the Heaviside step func-
tion, and n is the plastic strain rate direction. It should
note that both rules include only one intrinsic time qa

0,
and the practical applications require the superposition of
a fairly large number of independent sub-back stresses;
see, for example, the comments by Chaboche (1994).

Both rules use a critical state of the dynamic recovery
term to improve the simulation of ratcheting behavior. If
we let

q̇b
0 :=

〈‖Qi
b‖−bi〉mi

‖Qi
b‖

q̇a
0, Chaboche (1991), (138)

q̇b
0 := H(‖Qi

b‖−bi)
〈(Qi

b)
T n〉

‖Qi
b‖

q̇a
0,

Ohno and Wang (1993),

(139)

the kinematic hardening rules obtained are similar to
Eq. (131) when applied it to the sub-back stress Qi

b; how-
ever, according to the above definitions qb

0 is not indepen-
dent to qa

0. For a typical loading history there also exist
three possibilities:

q̇a
0 = q̇b

0 = 0, (140)

q̇a
0 > 0, q̇b

0 > 0, (141)

q̇a
0 > 0, q̇b

0 = 0. (142)

The main difference between the present model with
those of Chaboche (1991) and Ohno and Wang (1993) is
that our model exhibits two independent intrinsic times
rather than the usual one intrinsic time formulation.
Comparisons between the present model with the ones
of Chaboche (1991) and Ohno and Wang (1993) are sum-
marized in Table 3. Recent progress of the Ohno-Wang
model and its numerical computation are discussed by
Chen, Jiao and Kim (2005) and Abdel-Karim (2005).

4 Numerical computations

For calculation purpose we may approximate the spec-
ified controlled-strain path by many rectilinear strain
paths, such that q̇(t) at each time step is constant. We
first consider elastic phase. Under a specified strain path
of q(t) and initial stresses of Qa(ti) and Qb(ti) and a fixed
qa

0(ti), the elastic responses can be obtained by

Qa(t) = Qa(ti)+ke[q(t)−q(ti)], (143)

Q(t) = Qa(t)+Qb(ti), (144)

since the back stress is fixed to be Qb(ti). The end time
of elastic phase denoted by ton can be determined accord-
ing to the criterion (71) as follows. First solve for t the
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Figure 4 : Based on the kinematic hardening rule derived from the Poincaré group theory the evolution of back stress
in the space of (Q1,Q2) is described for two sequential rectilinear strain paths. This model includes two intrinsic
times qa

0 and qb
0. In the segment CD the dynamic recovery term in the back stress equation is switched off, i.e. q̇b

0 = 0.

following algebraic equation

‖Qa(ti)‖2 +2ke[q(t)−q(ti)]T Qa(ti)

+k2
e‖q(t)−q(ti)‖2

= (Q0
a)

2 − r(Q0
a)

2

exp(2kaqa
0(ti)/Q0

a)
,

(145)

which has been obtained by substituting the elastic equa-
tion (143) into the yield condition ‖Qa‖2 = (Q0

a)
2 −

r(Q0
a)

2/exp(2kaqa
0/Q0

a).

However, the solution t of Eq. (145) must satisfy
QT

a (t)q̇(t) > 0 in order to be a switch-on time ton. If
there exists no solution to Eq. (145) or the solution t to
Eq. (145) doesn’t satisfy QT

a (t)q̇(t) > 0, then the strain
path will not switch on the plastic mechanism.

Below we concentrate on the plastic phase with q̇a
0 > 0.

In view of Eqs. (50)-(52), calculating Xa and Xb is suf-
ficient to obtain the responses of Q, and we don’t need
the numerical solutions of Eqs. (77)-(86). Because A as
shown in Eq. (28) is time-dependent, the closed-form so-
lutions of Xa and Xb obtained by solving Eqs. (36) and
(37) are usually not available.

Denote by Ion an open, maximal, continuous time inter-
val during which the mechanism of plasticity is on ex-
clusively. The solution of the augmented active stress
equation (36) with its A defined in Eq. (28) with ΩΩΩ = 0
can be expressed in the following augmented active stress
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Table 3 : The modifications of the kinematic hardening rule of Armstrong and Frederick
present model Chaboche (1991) Ohno and Wang (1993)

limiting of Qb yes yes yes
threshold of ‖Qi

b‖ no ‖Qi
b‖ = bi ‖Qi

b‖ = bi

intrinsic times qa
0,qb

0 qa
0, q̇b

0 = 〈‖Qi
b‖−bi〉mi

‖Qi
b‖

q̇a
0 qa

0, q̇b
0 = H(‖Qi

b‖−bi)
〈QT

b n〉
‖Qi

b‖
q̇a

0

three possible values q̇a
0 = q̇b

0 = 0 q̇a
0 = q̇b

0 = 0 q̇a
0 = q̇b

0 = 0
of intrinsic times’ rates q̇a

0 > 0, q̇b
0 > 0 q̇a

0 > 0, q̇b
0 > 0 q̇a

0 > 0, q̇b
0 > 0

q̇a
0 and q̇b

0 q̇a
0 > 0, q̇b

0 = 0 q̇a
0 > 0, q̇b

0 = 0 q̇a
0 > 0, q̇b

0 = 0
switch of recovery term QT

b q̇ > 0 ‖Qi
b‖ = bi ‖Qi

b‖ = bi and (Qi
b)

T q̇p > 0
constancy of ‖Qi

b‖ no no ‖Qi
b‖ = bi after switching

transition formula:

Xa(t) = G(t)G−1(ti)Xa(ti), ∀ t, ti ∈ Ion, (146)

in which G(t), known as the fundamental solution of
Eq. (36), is a transformation matrix satisfying

Ġ(t) = A(t)G(t), (147)

G(0) = In+1. (148)

At the same time the solution of the augmented back
stress equation (37) with the same A can be expressed in
the following augmented back stress transition formula:

Xb(t) = G(t)G−1(ti)Xb(ti)

+
∫ t

ti
G(t)G−1(ξ)K(ξ)dξ, ∀ t, ti ∈ Ion.

(149)

Consider a rectilinear strain path

q(t) = q(ti)+(t − ti)q̇ (150)

with a nonzero constant rate

q̇ = constant �= 0, (151)

starting from q(ti) at time ti. The constitutive response
can be determined exactly (Hong and Liu, 2000), and
it may be recast in the form of Eq. (146) with the
augmented active stress transition matrix for the plastic
phase being

G(t)G−1(ti) =

⎡
⎣ In + a−1

‖q̇‖2 q̇q̇T bq̇
‖q̇‖

bq̇T

‖q̇‖ a

⎤
⎦ , (152)

where

a : = cosh[(t− ti)‖q̇‖/qy],
b : = sinh[(t− ti)‖q̇‖/qy].

(153)

Now let us consider a general path of strain and find the
responses of the considered models. To devise the nu-
merical schemes for a time-stepping integration, let us
denote the time increment by ∆t and develop a mapping
to update Q(t) to Q(t +∆t) at the next time step.

We may approximate a general strain path by a piecewise
rectilinear strain path. Referring to Eq. (152), we obtain
the desired mapping

G(t +∆t)G−1(t) =

⎡
⎣ In + a−1

‖q̇‖2 q̇q̇T bq̇
‖q̇‖

bq̇T

‖q̇‖ a

⎤
⎦ (154)

with

a := cosh(∆t‖q̇‖/qy), b := sinh(∆t‖q̇‖/qy). (155)

For the non-homogeneous equation (37) we can apply
the trapezoidal quadrature to the integral in Eq. (149) to
obtain

Xb(t +∆t) = G(t +∆t)G−1(t)Xb(t)

+
∆t
2

[
K(t +∆t)+G(t +∆t)G−1(t)K(t)

]
.

(156)

Thus a numerical scheme for the plastic phase may be de-
vised as follows. For each time increment we first calcu-
late the mapping (154), then update the augmented active
stress vector by

Xa(t +∆t) = G(t +∆t)G−1(t)Xa(t), (157)

and then calculate the active stress vector Qa(t + ∆t)
via Eq. (50). Second, use the mapping (154) to update
the augmented back stress vector by Eq. (156), and
then calculate the back stress vector Qb(t + ∆t) via
Eq. (51). Finally, summing Qa(t + ∆t) and Qb(t + ∆t)
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we can obatin the next time response of Q(t + ∆t). This
algorithm automatically satisfies the yield condition at
each time step without needing of iteration.

5 A smoothing technique

According to the model of type IIIB we give the stress
responses as shown in Fig. 5(a) under a constant am-
plitude of strain input. The material constants used
were ke = 40000 MPa, kb = 5000 MPa, Q0

a = 200 MPa,
Q0

b = 30 MPa, c0 = 0.2, and r = 0.75. From Fig. 5(a) it
can be seen that the stress-strain curve is too over-square
at the elastic-plastic transition points, and hence is not
consistent with the usual axial tension-compression ex-
perimental testing results of metals. The reason for the
above defect is that the curve of ‖Qa‖ vs. qa

0 as shown in
Fig. 5(b) is not smooth enough at the elastic-plastic tran-
sition points, while q̇a

0 jumps from zero values to finite
values as shown in Fig. 5(c).

The yield surface

‖Qa‖2 = (Q0
a)

2 [
1− r exp

(−2kaqa
0/Q0

a

)]
(158)

is an invariant set in the space of (‖Qa‖,qa
0). Taking the

inner product of Eq. (55) with Qa and using Eq. (71) lead
to

d‖Qa‖2

dt
= 2keQT

a q̇
(

1− ‖Qa‖2

(Q0
a)2

)
. (159)

A set S in R
n+1 is said to be an invariant set of Eq. (55)

if, for any point p ∈ S the solution curve passing through
p belongs to S for t in (−∞,∞). In view of Eq. (159) it is
obvious that

S : = {(Qa,qa
0) | ‖Qa‖2

= (Q0
a)

2 [
1− r exp

(−2kaqa
0/Q0

a

)]} (160)

is an invariant set of Eq. (55). By Eq. (159) there are
three disconnected sets:

‖Qa(t)‖2 < (Q0
a)

2 [
1− r exp

(−2kaqa
0(t)/Q0

a

)]
, (161)

‖Qa(t)‖2 = (Q0
a)

2 [
1− r exp

(−2kaqa
0(t)/Q0

a

)]
, (162)

‖Qa(t)‖2 > (Q0
a)

2 [
1− r exp

(−2kaqa
0(t)/Q0

a

)]
. (163)

The state specified by Eq. (158) is the ω-limit set for ar-
bitrary initial conditions under the condition QT

a q̇ > 0,
and the α-limit set for arbitrary initial conditions under

the condition QT
a q̇ < 0. Due to this characteristic of the

yield surface in the conventional plasticity theory, it is not
supprised that the curve of ‖Qa(t)‖ vs. qa

0 is not smooth
at the transition points as shown in Fig. 5(b). This in turn
leads to the non-smoothness of Q1

a vs. q1, Q1
b vs. q1 as

well as Q1 vs. q1 as shown in Fig. 5(a).

In order to circumvent the above deficiency of non-
smoothness we propose a piecewise-constant yield stress
as follows for rectilinear strain path (Liu, 2003b):

(Qm
a )2 := ‖Qa(toff)‖2

−
ρ2B2 −

[
(ρ−1)B+

√
B2−4AC

]2

4ρ2A
,

(164)

where

A : = k2
e‖q̇‖2, B := 2keQT

a (toff)q̇, (165)

C : = ‖Qa(toff)‖2

− (Q0
a)

2
[

1− r exp

(−2kaqa
0(toff)

Q0
a

)]
. (166)

In above, toff is the latest unloading (switching-
off) time and we can let toff = 0 initially. ρ >
1 is a smoothing factor; when ρ = 1, (Qm

a )2 =
(Q0

a)
2
[
1− r exp

(−2kaqa
0(toff)/Q0

a

)]
, and we return to the

original non-smooth models. Through this modification
it can be seen that q̇a

0 is varying smoothly from the zero
value in the elastic phase to the positive value in the plas-
tic phase as shown in Fig. 5(d), while, comparing it with
Fig. 5(c), the original model leads to the jumps of q̇a

0 = 0
in the elastic phase to finite values of q̇a

0 in the plastic
phase. Thus, the stress-strain curves obtained by the in-
tegrations of Eqs. (55), (57) or (76) are non smooth as
shown in Fig. 5(a). For the smoothing model of type IIIB
with ρ = 2 the stress-strain curves are shown in Fig. 5(e),
which are more smooth than that plotted in Fig. 5(a). The
curve of ‖Qa‖ vs. qa

0 is shown in Fig. 5(f), which reveals
that the transitions from elasticity to plasticity are more
smooth. The thick black curves in Figs. 5(b) and 5(f) are
the invariant curves.

The specification of Qm
a to be a new yield stress is equiv-

alent to shorten the switching-on time by

ton = toff +
−B+

√
B2−4AC

2ρA
. (167)

This equation is the solution of the following equation
for t:

A(t− toff)2 +B(t− toff)+‖Qa(toff)‖2−(Qm
a )2 = 0, (168)
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Figure 5 : For type IIIB model we compare the responses of the one without smoothing and the one with smoothing
technique.
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which is obtained by substituting the elastic constitu-
tive equation Qa(t) = Qa(toff)+keq̇(t− toff) into the new
yield condition ‖Qa(t)‖2 = (Qm

a )2. From Eq. (164) it can
be seen that Qm

a has a memory of the last reversal active
stress point Qa(toff). In Fig. 6 we show a stress-strain
curve with ρ = 1.5. The monotonic loading curve is the
boundary of all other unloading-reloading curve, and in
the plane of (qa

0,‖Qa‖) it is an invariant curve as demon-
strated above and shown in Fig. 6(b). The unloading-
reloading curve will eventually approach to the mono-
tonic loading curve if there has enough loading time; see
Fig. 6(a).

In order to further understand the behaviors of the
smoothing models we first subject these models to the
one-dimensional shear loadings with the shear strains
given in Figs. 7(a), 7(b) and 7(c), and then to the two-
dimensional loadings with the strains given in Figs. 8(a),
8(b) and 8(c). The material constants used were listed in
Table 4 and we fixed the smoothing factor to be ρ = 2.
Corresponding to the four types as discussed in Section
3, we have displayed the four hysteretic curves in Fig. 7
for each shear loading case. Similarly, we have displayed
the four stress paths in the plane (Q1,Q2) in Fig. 8 for
each loading case. Under the strain loading in Fig. 8(b),
the corresponding hysteretic curves of Q1 vs. q1 and Q2

vs. q2 were plotted in Fig. 9. At the same time, the hys-
teretic curves of Q1 vs. q1 and Q2 vs. q2 corresponding
to the loading in Fig. 8(c) were plotted in Fig. 10.

Finally, we display the one-dimensional hysteretic
curves under the shear loading in Fig. 11(a). For each
admissible kinematic hardening model of type I and
type II the material constants were summarized in Table
5. The smoothing factor is also fixed to be ρ = 2. In
Fig. 11(j) we use r = −0.1, which leads to the cyclic
softening of stress-strain curve.

6 Concluding remarks

This paper was starting from the Poincaré group acting
on the Minkowski space. Through the construction of a
Lie algebra we were able to derive three differential equa-
tions systems (35)-(37) in the augmented state spaces.
The general solution X = Xa +Xb of Eq. (35) is the sum
of the complementary solution Xa of Eq. (36) and the
particular solution Xb of Eq. (37).

Upon projecting the model in the space of (X,Xa,Xb)

into the model in the stresses and intrinsic times space of
(Q,Qa,Qb,qa

0,qb
0) we have derived a flow theory of plas-

ticity with large deformation and kinematic hardening by
leaving the translation term K specified free but subject
to a rate-independent requirement. The resultant models
possess two intrinsic times qa

0 and qb
0 with the constraints

of q̇a
0 ≥ 0 and q̇b

0 ≥ 0; the first qa
0 controls the switch of

plasticity with q̇a
0 = 0 in the elastic phase and q̇a

0 > 0 in
the plastic phase, and the second qb

0 controls the pace of
back stress during the plastic phase with q̇b

0 = 0 for the
kinematic hardening rule without considering the recov-
ery term and q̇b

0 > 0 for the kinematic hardening rule with
a recovery term.

Corresponding respectively to qb
0 = 0, qb

0 = qa
0 and

qb
0 �= qa

0 the kinematic hardening rules including the
modifications of the Armstrong-Frederick kinematic
hardening rule, can be classified into three types: type I,
type II and type III. Combining with the smoothing tech-
nique introduced by Liu (2003b) we have modified the
three types models by considering a smoothing factor.
The numerical computations of the models responses
were derived and some examples were plotted to show
the cyclic behaviors of newly proposed models. Since
the numerical method is based on the Poincaré group
properties, it retains the yield condition automatically.
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Figure 11 : Under an one-dimensional shear loading history in (a), the hysteretic curves were shown for the smooth-
ing type I and type II models.
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Table 5 : The material constants used in Figure 11 for types I and II models
ke kb Q0

a Q0
b r a1 a2 a3 a4

Type I(i) 20000 5000 200 20 0.75 0 -4000 4 0
Type I(ii) and (iii) 20000 5000 200 20 0.75 0 0 0 0
Type I(iv) 20000 5000 200 20 0.75 0 4000 4 0
Type I(vii) 20000 5000 200 20 0.75 0.5 -4000 0.2 -10000
Type I(viii) 20000 5000 200 20 0.75 200 -4000 4 0
Type I(x) 20000 5000 200 20 0.75 100 -4000 0.2 0
Type I(xi) 20000 5000 200 20 0.75 100 4000 2 0
Type II(v) 20000 5000 200 40 0.75 0 2000 -0.3 0
Type II(vi) 20000 5000 200 40 -0.1 -125 0 -0.2 10000
Type II(vii) 20000 5000 200 40 0.75 -1 2000 -0.3 20000
Type II(viii) 20000 5000 200 40 0.75 100 -4000 0.5 0
Type II(ix) 20000 5000 200 40 0.75 0 5000 -0.5 0
Type II(x) 20000 5000 200 40 0.75 50 2000 -0.3 0
Type II(xi) 20000 5000 200 40 0.75 50 100 0.3 0
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energy-based model of the kinematic hardening in large
strain elastoplasticity. CMES: Computer Modeling in
Engineering & Sciences, vol. 8, pp. 45-60.

Kurtyka, T.; Życzkowski, M. (1996): Evolution equa-
tions for distortional plastic hardening. Int. J. Plasticity,
vol. 12, pp. 191-213.

Liu, C.-S. (1993): The elastoplastic evolution and sta-
bility of materials under mechanical and thermal envi-
ronments. Ph.D. Dissertation, Department of Civil Engi-
neering, National Taiwan University.

Liu, C.-S. (2001a): The g-based Jordan algebra and
Lie algebra with application to the model of visco-
elastoplasticity. J. Marine Sci. Tech., vol. 9, pp. 1-13.

Liu, C.-S. (2001b): Cone of non-linear dynamical sys-
tem and group preserving schemes. Int. J. Non-Linear
Mech., vol. 36, pp. 1047-1068.

Liu, C.-S. (2003a): Symmetry groups and the pseudo-
Riemann spacetimes for mixed-hardening elastoplastic-
ity. Int. J. Solids Struct., vol. 40, pp. 251-269.

Liu, C.-S. (2003b): Smoothing elastoplastic stress-strain
curves obtained by a critical modification of conventional
models. Int. J. Solids Struct., vol. 40, pp. 2121-2145.

Liu, C.-S. (2004a): A consistent numerical scheme for
the von Mises mixed-hardening constitutive equations.
Int. J. Plasticity, vol. 20, pp. 663-704.
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