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On Three-Dimensional Fracture Mechanics Analysis by an Enriched Meshless
Method

Wen-Hwa Chen1 and Cheng-Hung Chen2

Abstract: An enriched meshless method, using mesh-
less interpolations and a global Galerkin approach, is
developed for the analysis of three-dimensional fracture
problems. The displacement field which accounts for the
stress singularity nearby the crack front and the bound-
ary layer effect at the intersection between the crack front
and the free surface of the structure is adopted to enrich
the trial functions. The three-dimensional stress inten-
sity factors can thus be treated as independent unknown
parameters and calculated with the nodal displacements
directly. To estimate the accuracy of the method devel-
oped, several representative three-dimensional cracks are
analyzed. These include single-edge crack, embedded
elliptical and semi-elliptical surface cracks, and quarter-
elliptical corner crack, etc. The variation of the three-
dimensional stress intensity factors along the crack front
is drawn in details. The influence of crack sizes and
boundary layer effect on the three-dimensional stress in-
tensity factors is also studied. Excellent agreements be-
tween the calculated results and those available in the lit-
erature demonstrate the high accuracy and applicability
of the method developed.

keyword: Meshless Method, Fracture Mechanics
Analysis, Boundary Layer Effect, Stress Intensity Fac-
tors

1 Introduction

Many numerical methods have been developed to deal
with practical fracture mechanics problems with irreg-
ular geometries and complicated boundary conditions.
Among these methods, the finite element method is ex-
tensively applied popularly (Atluri et al., 1975; 1979;
Barsoum, 1976; Chen et al., 1984). Another useful
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method, developed extensively for 3-D non-planar crack
growth under fatigue, is the Schwartz-Neumann alternat-
ing method (see, for instance, Han et al., 2002; Atluri,
2005).

The meshless method has been recently studied to over-
come some of the shortcomings of the finite element
method, such as the labor intensive process of mesh gen-
eration in complex 3-D structures. It does not require a
mesh because the trial functions are derived based on a
moving least square (MLS) approximation method or a
variety of other meshless approximations of trial func-
tions (Atluri, 2004a; Han et al., 2004). The meshless lo-
cal Petrov-Galerkin (MLPG) method (Kim et al., 2000;
Lin et al., 2000; Ching et al., 2001; Atluri et al., 2002;
2003; 2004a, b; 2005; Han et al., 2002; 2004; Li et
al., 2003) and the element-free Galerkin method (EFGM)
(Belytschko et al., 1994; Liu et al., 1994; Chen et al.,
2001) are two of the most well-knowns. The MLPG
method is a union of local weak form and does not need
to construct cells for numerical integration, and it is con-
sidered as a truly meshless method. In the MLPG finite
volume mixed method (Atluri et al., 2004b), the local
weak form is shown to be computable in a very simple
way, by performing integrations only over the surface of
each overlapping cell. As for EFGM, however, since it is
based on a global weak form, the equilibrium within the
global domain is satisfied approximately. Hence, after
constructing a grid of background cells, stable numerical
calculation can be achieved through the integrations over
each background cell. The EFGM method is adopted in
this work.

By applying the EFGM to analyze the cracked structure,
different distribution of nodal densities in the vicinity
of the crack front, in general, will affect the determina-
tion of stress intensity factors (Organ et al., 1996; Flem-
ing et al., 1997). Fleming et al. (1997) employed en-
riched trial functions and basis functions to analyze two-
dimensional fracture problems. By his approach, how-
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ever, the calculation of the enriched basis functions will
not only encounter ill-conditioning but also increase the
dimension of the calculated matrix, especially in analyz-
ing the three-dimensional fracture problems (Sukumar et
al., 1997). In addition, by the enriched trial functions as
used in Fleming et al. (1997), the modified nodal coef-
ficients need be first determined to specify the displace-
ment field.

The objective of this work is therefore to present an en-
riched element-free Galerkin method which can be em-
ployed to analyze three-dimensional fracture problems
efficiently and accurately. The trial functions are en-
riched with the displacement field which accounts for the
stress singularity nearby the crack front. The boundary
layer stress singularity (Folias, 1975) at the intersection
between the crack front and free surface of the cracked
structure is also embedded. The three-dimensional stress
intensity factors and nodal displacements can be calcu-
lated directly. Excellent agreements between the present
computed results and the referenced solutions are drawn.

2 Formulation of Enriched Element-Free Galerkin
Method

As depicted in Fig. 1, a three-dimensional linear elas-
tic structure Ω is enclosed by a surface boundary Γ. Ω
includes an enriched domain Ωs surrounding the crack
front and a regular domain Ωr. The singular stress field
(Williams, 1957) in the enriched domain Ωs nearby the
crack front is noted.

According to the principle of minimum total potential en-
ergy (Fung, 1965), when this elastic conservative system
is in stable equilibrium, the total potential energy Π of
the structure Ω is found as

Π = U −W = min.,

where U represents the strain energy of the system and
W is the work done by the external forces. U and W can
be respectively written as

U =
1
2

∫
Ωr+Ωs

{ε}T [E]{ε}dΩ

and

W =
∫

Ωr+Ωs

{u}T{F
}

dΩ +
∫

Γtr+Γts

{u}T{T
}

dΓ,

where {u} is the displacement vector, {ε} is the strain
tensor, [E] is the matrix of the material constants, {F}

is the body force vector, and
{

T
}

is the prescribed sur-
face traction vector that acts on the boundaries Γtr and
Γts. Γts represents the surface traction boundary in the
enriched domain Ωs near the crack front and Γtr denotes
the surface traction boundary in the regular domain Ωr.
Accordingly, the total potential energy Π can be written
as

Π =
∫

Ωr+Ωs

(
1
2
{ε}T [E]{ε}−{u}T{F

})
dΩ

−
∫

Γtr+Γts

{u}T{T
}

dΓ
(1)

Since the trial functions of the enriched EFGM are de-
rived by applying the MLS approximation method, the
trial functions between any node i in the structure and
any node j on the boundary do not satisfy the Kronecker
delta property for satisfying the displacement boundary
conditions (Belytschko et al., 1994). The penalty method
(Zhu et al., 1998) is therefore adopted herein to improve
the boundary conditions. After the prescribed displace-
ment boundary conditions are determined by the penalty
method, the total potential energy Π in Eqn (1) can be
modified as Π∗, say,

Π∗ =
∫

Ωr+Ωs

(
1
2
{ε}T [E]{ε}−{u}T{F

})
dΩ

−
∫

Γtr+Γts

{u}T{T
}

dΓ

+
α
2

∫
Γur+Γus

({u}−{u})T ({u}−{u})dΓ

= min.

(2)

where {u} is the prescribed displacement vector on the
boundaries Γur and Γus. Γur is the prescribed displace-
ment boundary in the regular domain, and Γus represents
the prescribed displacement boundary in the enriched do-
main Ωs nearby the crack front.

If the displacement boundary conditions are satisfied,
that is {u}−{u}= {0} on the boundary Γur +Γus, Π∗ =
Π and no penalty energy needs to be added to the total
potential energy Π. In contrast, if {u}−{u} �= {0} on
the boundary Γur + Γus, the displacement boundary con-
dition can be satisfied through the compensation of the
given penalty energy with parameter α.

The displacement field of any point in the regular domain
Ωr and the enriched domain Ωs can be interpolated by
considering the vector of nodal displacements {q} of all
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nodes in the structure:

{u}= [Φ]{q} in Ωr (3)

and

{u}= [Φ]{q}+[Ψ]{K} in Ωs, (4)

where [Φ] and [Ψ] are the trial function matrix for the
displacement field in the regular domain Ωr and en-
riched domain Ωs. {K} represents the vector of three-
dimensional stress intensity factors for all nodes on the
crack front in the enriched domain Ωs. The derivation of
the trial function matrix [Φ] and [Ψ] will be discussed in
the next section.

The strain–displacement relationship yields

{ε} = [Br]{q} in Ωr (5)

and

{ε} = [Br]{q}+[Bs]{K} in Ωs. (6)

Substituting Eqns (3)∼(6) into Eqn (2), the modified total
potential energy Π∗ can be rewritten as

Π∗ =
1
2

∫
Ωr

{q}T [Br]
T [E] [Br]{q}dΩ

−
∫

Ωr

([Φ]{q})T {F
}

dΩ

−
∫

Γtr

([Φ]{q})T {T
}

dΓ

+
α
2

∫
Γur

([Φ]{q}−{u})T ([Φ]{q}−{u})dΓ

+
1
2

∫
Ωs

([Br]{q}+[Bs]{K})T [E]

([Br]{q}+[Bs]{K})dΩ

−
∫

Ωs

([Φ]{q}+[Ψ]{K})T {F
}

dΩ

−
∫

Γts

([Φ]{q}+[Ψ]{K})T {T
}

dΓ

+
α
2

∫
Γus

([Φ]{q}+[Ψ]{K}−{u})T

([Φ]{q}+[Ψ]{K}−{u})dΓ
= min.

(7)

Since the strain energy is positive-definite, the modified
total potential energy Π∗ given by Eqn (7) becomes min-
imum when the system is stationary. The stationary con-
ditions of Π∗ with respect to {q}T and {K}T are

∂ Π∗

∂{q}T =
∂ Π∗

∂{K}T = {0} .

That is[
[Kr]+ [K∗

r ] [Krs]+ [K∗
rs]

[Ksr]+ [K∗
sr] [Ks]+ [K∗

s ]

] { {q}
{K}

}

=
{ {Qr}+{Q∗

r}
{Qs}+{Q∗

s}
}

,

(8)

where

[Kr] =
∫

Ωr+Ωs

[Br]
T [E] [Br]dΩ,

[Krs] =
∫

Ωs

[Br]
T [E] [Bs]dΩ,

[Ksr] =
∫

Ωs

[Bs]
T [E] [Br]dΩ,

[Ks] =
∫

Ωs

[Bs]
T [E] [Bs]dΩ,

{Qr} =
∫

Ωr+Ωs

[Φ]T
{

F
}

dΩ+
∫

Γtr+Γts

[Φ]T
{

T
}

dΓ,

{Qs} =
∫

Ωs

[Ψ]T
{

F
}

dΩ+
∫

Γts

[Ψ]T
{

T
}

dΓ,

[K∗
r ] = α

∫
Γur+Γus

[Φ]T [S] [Φ]dΓ,

[K∗
rs] = α

∫
Γus

[Φ]T [S] [Ψ]dΓ,

[K∗
sr] = α

∫
Γus

[Ψ]T [S] [Φ]dΓ,

[K∗
s ] = α

∫
Γus

[Ψ]T [S] [Ψ]dΓ,

{Q∗
r} = α

∫
Γur+Γus

[Φ]T [S]{u}dΓ,

{Q∗
s} = α

∫
Γus

[Φ]T [S]{u}dΓ,

and

[S] =

⎡
⎣ S1 0 0

0 S2 0
0 0 S3

⎤
⎦ .

S1, S2 and S3 represent the indicator of prescribed dis-
placement boundary conditions on the boundary Γur or
Γus in x, y and z directions, respectively. Thus, they can
be assigned as either 1 or 0.

For a three-dimensional cracked structure, once the load
vectors {Qr}+ {Q∗

r} and {Qs}+ {Q∗
s} are known, the

vector of nodal displacements {q} of the entire structure
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Figure 1 : The meshless model of the structure with a
crack

and the vector of three-dimensional stress intensity fac-
tors {K} of the nodes on the crack front can be computed
from Eqn (8) subjected to the prescribed displacement
boundary conditions. If the structure contains no crack,
the enriched domain Ωs vanishes and Eqn (8) is reduced
to

([Kr]+ [K∗
r ]){q}= {Qr}+{Q∗

r} .

3 Enriched Trial Functions

As indicated in Fig. 1, if the material point xxx is located
in the enriched domain Ωs, the displacement components
uα(xxx)(α = 1,2,3) of xxx can be derived as

uα(xxx) =
m

∑
i=1

pi(xxx)aα
i (xxx)+

nc

∑
j=1

III

∑
k=I

hα
k j(xxx)kk

j, (9)

where pi(xxx) is a complete monomial basis of order m and
aα

i (xxx) denotes the undetermined coefficients. hα
k j(xxx) rep-

resents the basis function for the displacement field of
the nc nodes on the crack front. The suffix j denotes
the correspondence with node j on the crack front and
k(k = I, II, III) specifies the modes of cracks, i.e.

hα
k j(xxx) =

III

∑
β=I

tα
β jd

β
k j,

Figure 2 : The local polar coordinates of the node j on
the crack front

where tα
β j and dβ

k j are the relationship terms between the
global coordinates x − y − z and the t-axis of the local
coordinates t−n−b (see Appendix A). If xxx is in the reg-
ular domain Ωr, the second term on the right-hand side
of Eqn (9) will vanish. Eqn (9) can be written in matrix
form as

uα(xxx) = {p(xxx)}T {aα(xxx)}+{hα(xxx)}T {K} , (10)

where

{hα(xxx)}T =
[

hα
I1(xxx) hα

II1(xxx) hα
III1(xxx) · · ·

hα
Inc

(xxx) hα
IInc

(xxx) hα
IIInc

(xxx)
]

1×3nc

and

{K}T =
⌊

kI
1 kII

1 kIII
1 · · · kI

nc
kII

nc
kIII

nc

⌋
1×3nc

.

As shown in Fig. 1, each node i in the structure Ω is as-
sociated with a support domain Ωi. The union of the sup-
port domains Ωiof each node i in the vicinity of xxx consti-
tutes a sub-domain Ωxxx in which xxx has influence.

If xxx is located in the enriched domain Ωs, the approxi-
mate displacement field in Ωxxx will be influenced by the
approximate function {p(xxxi)}T {aα(xxx)}+{hα(xxxi)}T {K}
and the nodal displacement components qα

i (α = 1,2,3)
of each node i. The difference between the ap-
proximate displacement function {p(xxxi)}T {aα(xxx)} +
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{hα(xxxi)}T {K} and the nodal displacement components
qα

i (α = 1,2,3) can be minimized in a least-square sense
with respect to the weight value wi(xxx) of each node i.
Hence, the weighted least square discrete L2 error norm
can be expressed as

J
({aα(xxx)})

=
n

∑
i=1

wi(xxx)
(
{p(xi)}T{aα(xxx)}+{hα(xi)}T{K}−qα

i

)2

=([P]{aα(xxx)}+[Hα]{K}−{qα})T [W ]
([P]{aα(xxx)}+[Hα]{K}−{qα}),

where the vector of nodal displacement field {qα}(α =
1,2,3) of the n nodes inΩxxx constitutes the vector of nodal
displacements {q} which can be computed from Eqn (8).
That is

{qα}T =
[

qα
1 qα

1 · · · qα
1

]
1×n.

The matrices [P], [W ] and [Hα] can be respectively given
by

[P] =

⎡
⎢⎢⎢⎣

{p(xxx1)}T

{p(xxx2)}T

...
{p(xxxn)}T

⎤
⎥⎥⎥⎦

n×m

,

[P] =

⎡
⎢⎢⎢⎣

w1(xxx) 0 0 0
0 w2(xxx) 0 0

0 0
. . . 0

0 0 0 wn(xxx)

⎤
⎥⎥⎥⎦

n×m

,

and

[Hα] =

⎡
⎢⎢⎢⎣

{hα(xxx1)}T

{hα(xxx2)}T

...
{hα(xxxn)}T

⎤
⎥⎥⎥⎦

n×m

.

If xxx is in the regular domain Ωr, the function
{hα(xxxi)}T {K} and the matrix [Hα]{K} will disappear.

Since [W ] is positive definite, the minimization of the
weighted discrete function J ({aα(xxx)}) can be obtained
by the stationary condition with respect to {aα(xxx)}, i.e.

∂J
({aα(xxx)})

∂{aα(xxx)}T = {0}.

This leads to

(
[P]T [W ] [P]

)
{aα(xxx)}=

(
[P]T [W ]

)
({qα}− [Hα]{K}) .

If the inverse of matrix
(
[P]T [W ] [P]

)
exists, then

{aα(xxx)} =
(
[P]T [W ] [P]

)−1

(
[P]T [W ]

)
({qα}− [Hα]{K}) .

(11)

Notably, the nodes in the vicinity of xxx cannot be co-line

or co-plane; otherwise, the rank of
(
[P]T [W ] [P]

)
would

be less than m and its inverse will not exist. Besides,
because the vector {aα(xxx)} has m undetermined coeffi-
cients, the number of nodes taken in Ωxxx can not be less
than m, i.e. n ≥ m.

Substituting Eqn (11) into Eqn (10), uα(xxx) can be ex-
pressed as

uα(xxx) ={p(xxx)}T
(
[P]T [W ] [P]

)−1

(
[P]T [W ]

)
({qα}− [Hα]{K})+{hα(xxx)}T {K}

={p(x)}T ([P]T [W ][P]
)−1 ([P]T [W ]

){qα}

+
(
{hα(xxx)}T −{p(xxx)}T

(
[P]T [W ] [P]

)−1

(
[P]T [W ]

)
[Hα]

)
{K} .

The above displacement components can be rearranged
in the vector form {u} as

{u}=
⌊

u1(xxx) u2(xxx) u3(xxx)
⌋T

=

⎡
⎣ φ1(xxx) 0 0 · · ·

0 φ1(xxx) 0 · · ·
0 0 φ1(xxx) · · ·

φn(xxx) 0 0
0 φn(xxx) 0
0 0 φn(xxx)

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1
1

q2
1

q3
1
...

q1
n

q2
n

q3
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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+

⎡
⎣ ψ1

11(xxx) ψ1
21(xxx) ψ1

31(xxx) · · ·
ψ2

11(xxx) ψ2
21(xxx) ψ2

31(xxx) · · ·
ψ3

11(xxx) ψ3
21(xxx) ψ3

31(xxx) · · ·

ψ1
1nc

(xxx) ψ1
2nc

(xxx) ψ1
3nc

(xxx)
ψ2

1nc
(xxx) ψ2

2nc
(xxx) ψ2

3nc
(xxx)

ψ3
1nc

(xxx) ψ3
2nc

(xxx) ψ3
3nc

(xxx)

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kI
1

kII
1

kIII
1
...

kI
nc

kII
nc

kIII
nc

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [Φ]{q}+[Ψ]{K} .

The trial functions φi(xxx)(i = 1,2, · · · ,n) and their en-
riched parts ψα

i j(xxx)(i, α = 1,2,3 and j = 1,2, · · · ,nc) can
be respectively expressed as

φi(xxx) =
m

∑
j=1

p j(xxx)
((

[P]T [W ] [P]
)−1(

[P]T [W ]
))

ji
(12)

and

ψα
i j(xxx) = hα

i j(xxx)−
m

∑
k=1

pk(xxx)

((
[P]T [W ] [P]

)−1(
[P]T [W ]

)
[Hα]

)
k j

δiα.

(13)

4 Calculation Procedure

The EFGM constructs a grid of cells for the structure Ω
such that the numerical integration can be performed by
the Gauss quadrature. When the structure Ω is appropri-
ately separated into numerous cells Ωci, each cell Ωci had
better be regular for programming, but the boundaries of
the cells need be consistent with the overall geometric
boundary. If part of the structure or the crack is in Ωci,
Ωci can be made to match the geometry (Kaljević et al.,
1997). Fig. 3 presents the grid of cells. After all of the
cells are assembled in the structure, Eqn (2) can be writ-
ten as

Π∗ =
Nc

∑
i=1

∫
Ωci

(
1
2
{ε}T [E]{ε}−{u}T{F

})
dΩci

−
L1

∑
i=1

∫
Γti

{u}T{T
}

dΓti

+
L2

∑
i=1

α
2

∫
Γui

({u}−{u})T ({u}−{u})dΓui

= min .,

(14)

Figure 3 : The divided cells and their boundaries

where Nc is the total number of cells in the structure;
L1 is the number of divided surface traction boundaries
Γti and L2 is the number of division of the displacement
boundaries Γui. By numerical experiments, the penalty
parameter α used herein is 1012. This value is within
the range 3× 1010∼3× 1014 as suggested by Zhu et al.
(1998). The selected quadrature order nQ and the number
of nodes in the cell ncell should satisfy the relationship
nQ ≥ 3

√
ncell +3 (Chen et al., 2001).

As for the calculation procedure, firstly the nodes are
configured, and the basis function matrix [P] and the
weight function matrix [W ] are established. After con-
sidering the continuity and numerical stability of the trial
functions φi(xxx), the spline function is selected as the
weight function wi(xxx) to form the matrix [W ] as follows
(Atluri et al., 1999)

wi(xxx) =

⎧⎨
⎩

1−6(
di

ri
)2 +8(

di

ri
)3 −3(

di

ri
)4 0 ≤ di ≤ ri

0 ri ≤ di

,

where di = |xxx−xxxi| , di is the distance between xxx and the
node i, and ri is the radius of the support domain Ωi of the
node i. If the node in the cell is located in the regular do-
main Ωr, then the trial function matrix [Φ], the stiffness
matrix [Kr] + [K∗

r ] and the loading vector {Qr}+ {Q∗
r}

can be computed in that order. If the node in the cell
is located in the enriched domain Ωs, then the enriched
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trial function matrix [Ψ], the stiffness matrix [Ks]+ [K∗
s ]

and the loading vector {Qs}+ {Q∗
s} need be calculated

additionally. Finally, the system of simultaneous alge-
braic equations as shown by Eqn (8) are assembled and
the vector of all nodal displacement {q} in the structure
and the vector of three-dimensional stress intensity fac-
tors {K} on the crack front can be calculated directly.

5 Results And Discussions

The accuracy and applicability of the enriched EFGM
technique developed herein are demonstrated by solving
several representative three-dimensional fracture prob-
lems. The discussed cracks include single-edge crack,
embedded elliptical and semi-elliptical surface cracks,
and quarter-elliptical corner crack, etc. For compari-
son, the Young’s modulus of all structures is taken as
3.0× 107psi, and the Poisson’s ratio of the single-edge
crack is 0.33, while the Poisson’s ratio of other types of
cracks is taken as 0.3. Gauss quadrature is used to per-
form the numerical integration for each cell. 6× 6× 6
integration points are selected for single-edge crack. For
other types of cracks, however, 8 × 8 × 8 integration
points are adopted.

5.1 Single-edge crack

Figure 4 presents a thick plate with a single-edge
through-thickness crack subjected to a uniform tension at
both ends. The dimensions of the plate and the crack with
slanted angle β are W ×L×H and a, respectively. The re-
lated geometric parameters are a

/
W = 0.5, L

/
W = 1.75

and H
/

W = 1.5. Depending on the slanted angle β = 0◦

or β �= 0◦, due to symmetry, only one quarter or one half
of the thick plate need be analyzed using 207 nodes or
378 nodes, respectively.

Figure 5 plots the variation of the normalized mode-I
stress intensity factors across the thickness of the single-
edge crack (β = 0◦). The normalized mode-I stress in-
tensity factor is maximum at the midplane, and is about
1.39 % lower than that obtained from the plane strain so-
lution. In addition, the present computed mode-I normal-
ized stress intensity factor continues to decrease grad-
ually and falls rapidly to about 0.20 at the free sur-
face of the thick plate due to the boundary layer effect
as compared with the zero value predicted by an ap-
proximate three-dimensional theory of plate (Hartranft
and Sih, 1970) for a central crack in an infinite thick

Figure 4 : The meshless model of a thick plate with a
single-edge crack

plate. For comparisons, the solutions of the finite element
method/nodal force method (Raju and Newman, 1977)
and the coupled finite element method/EFGM (Sukumar
et al., 1997) are also shown in Fig. 5. It is worth-
while to note that the methods adopted by Raju and New-
man (1977) and Sukumar et al. (1997) cannot accurately
describe the boundary layer effect occurred at the free
surface of the thick plate. Furthermore, the normalized
mode-II and III stress intensity factors calculated herein
are 10−4 ∼ 10−5 and therefore can be ignored in the anal-
ysis.

Figure 6 shows the variation of the normalized mode-I
stress intensity factors at the midplane and free surface of
the thick plate with a single-edge crack for various crack
sizes a

/
W and slanted angles β. The maximum differ-

ence between the present computed normalized mode-
I stress intensity factors at the midplane of the thick
plate and those obtained from the plane strain solutions
(Bowie, 1973) is about 4.1%. The normalized mode-
I stress intensity factors at the free surface of the thick



184 Copyright c© 2005 Tech Science Press CMES, vol.8, no.3, pp.177-190, 2005

plate are substantially lower than those of plane strain
solutions. Additionally, as the crack size increases, the
normalized mode-I stress intensity factors also increase.
However, as the slanted angle β increases, the normal-
ized mode-I stress intensity factors decline and make the
fracture more difficult.

Figure 7 displays the variation of the normalized mode-
II stress intensity factors of the single-edge crack at the
midplane and the free surface of the thick plate for var-
ious crack sizes a

/
W and slanted angles β. At the mid-

plane of the thick plate, the maximum difference between
the mode-II normalized stress intensity factors and the
plane strain solutions of Bowie (1973) is 3.7%. Impor-
tantly, when the slant angle β = 0◦, the loading σ is per-
pendicular to the crack a and the normalized mode-II
stress intensity factors vanish. When the slant angle is
β = 30◦ or 45◦, the normalized mode-II stress intensity
factors increase with the crack size a

/
W . However, when

a
/

W > 0.5, the normalized mode-II stress intensity fac-
tors for the slant angle β = 30◦ exceed those for β = 45◦

due to the interaction of the crack front and the boundary.
Again, the negligible normalized mode-III stress inten-
sity factors calculated herein are about 10−4 ∼ 10−5.

5.2 Embedded elliptical surface crack

As shown in Fig. 8(a), the geometric dimensions of the
structure with the embedded elliptical surface crack are
2L×2L×2L, and the major-axis and minor-axis lengths
of the elliptical crack are 2c and 2a. The cases for
the structure with a semi-elliptical surface crack and a
quarter-elliptical corner crack are displayed in Fig. 8(b)
and 8(c), respectively. As an example, the meshless
model with 448 nodes for the case of the quarter-elliptical
corner crack is drawn in Fig. 8(d). Due to symmetry,
only a half of the structure is considered in the analysis.

Figure 9 presents the variation of the normalized mode-
I stress intensity factors kI/kcir for an embedded ellipti-
cal surface crack when c/a = 1.0, 2.0 and 4.0. kcir(=
2
πσ

√
πa) is the analytic solution for an infinite body with

a penny-shaped crack of radius a (Sneddon, 1946). For
the case of c/a = 1.0, since the object of the analysis
herein is a finite body, the present computed normalized
mode-I stress intensity factors are approximately 2.9%
higher than the analytic solution derived for an ellipti-
cal surface crack embedded in an infinite body by Ir-
win (1962) as expected. When c/a = 2.0 or 4.0, the
normalized mode-I stress intensity factors on the major

axis (ϕ = 0◦) are minimum, and those on the minor axis
(ϕ = 90◦) are maximum. As compared with the above
analytic solutions, the maximum differences at these lo-
cations are 2.9% and 3.8%, respectively. The normalized
mode-II and III stress intensity factors calculated herein
are both about 10−4 ∼ 10−5.

5.3 Semi-elliptical surface crack

Figure 10 displays the variation of the normalized mode-I
stress intensity factor kI/σ

√
πa

E(ϕ) for the semi-elliptical sur-
face crack for the cases of c/a = 1.0, 2.0 and 4.0. E(ϕ)
is the elliptic integral of the second kind. As compared
with those referenced solutions obtained using the finite
element method / nodal force method (Raju and New-
man, 1979), the maximum differences are 3.3%, 3.5%
and 3.2%, respectively.

Since the boundary layer effect at the intersection be-
tween the crack front and the free surface of the struc-
ture was not taken into account in Raju and Newman
(1979), the maximum differences between the normal-
ized mode-I stress intensity factors calculated herein and
the referenced solutions are evident at the location ϕ = 0◦

and ϕ = 180◦. However, when the semi-elliptical surface
crack becomes narrow (c/a = 4.0), the boundary layer
effect nearly vanishes.

5.4 Quarter-elliptical corner crack

Figure 11 describes the variation of the normalized
mode-I stress intensity factors kI/σ

√
πa

E(ϕ) for the quarter-
elliptical corner crack when c/a = 1.0, 2.0 and 4.0. As
compared with the referenced solutions in the literature
(Newman and Raju, 1983), the maximum differences are
5.0%, 4.5% and 5.6%, respectively. The distinct bound-
ary layer effect at the intersections between the crack
front and free surfaces (ϕ = 0◦ and ϕ = 90◦) can be
viewed.

6 Concluding Remarks

An enriched element-free Galerkin method (EFGM)
has been successfully developed to deal with three-
dimensional fracture problems by incorporating the sin-
gularity behavior of the stress field near the crack front
and the boundary layer effect at the intersection between
the crack front and the free surface of the structure.
By applying the enriched trial functions developed, the
three-dimensional stress intensity factors are treated as



On Three-Dimensional Fracture Mechanics Analysis by an Enriched Meshless Method 185

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Plane strain
Plane stress
Sukumar et al. (1997)
Raju and Newman (1977)
Analytic (infinite body)
    (Hartranft and Sih, 1970)
Present

Z H/

/σ

  π
a

kI
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Figure 8 : The structure with various elliptical-shaped surface cracks
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Figure 9 : The variation of the normalized mode-I stress intensity factors of the embedded elliptical surface crack
along the crack front

undetermined parameters and can be computed with the
nodal displacements directly and accurately. As a re-
sult, those factors that may influence the determination
of stress intensity factors significantly, such as the crack
size, the location of crack front and the boundary layer
effect can be studied in details.

To further investigate practical three-dimensional frac-
ture problems by the enriched EFGM developed, some
future works should be probed. For example, a system-
atic and efficient means for selecting appropriate number
of nodes in the sub-domain Ωxxx needs to be established
(Chen et al., 2001). That will affect the computational ac-
curacy greatly. Besides, a further extension to explore the
three-dimensional crack propagation problem for elastic
or elastoplastic material is recommended.
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Appendix A: Displacement Field Nearby The
Crack Front

As seen in Fig. 2, the linear elastic stress field around
the point P near the crack front behaves a singular be-
havior r−

1
2 (Williams, 1957). r is the radial distance

from the crack front to the point P on the n− b plane;
t−n−b denote the local coordinate system with the ori-
gin at node j on the crack front. (t,n,b) represent the
coordinates in tangent, normal and binormal directions,
respectively. In addition, a boundary layer effect is found
at the intersection point between the crack front and the
free surface of the structure for an infinite plate with a
central through-thickness crack (Folias, 1975). That is,
the stress field is proportional to a singularity r−( 1

2 +2ν)

while the displacement field is proportional to r
1
2−2ν. ν

is the Poisson’s ratio. To elucidate the boundary layer
effect, after neglecting the effect of higher order terms,
the three-dimensional global displacement components
uα(α = 1,2,3) at point P near node j on the crack front
can be written as

uα =
nc

∑
j=1

III

∑
k=I

III

∑
β=I

tα
β jd

β
k jk

k
j.
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In matrix form
⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭= [T ] [D]

⎧⎨
⎩

kI
j

kII
j

kIII
j

⎫⎬
⎭ ,

The matrices [T ] and [D] can be derived as

[T ] =

⎡
⎣ 0 cosω −sinω

0 sinω cosω
1 0 0

⎤
⎦

and

[D] =
1
2µ

√
2r
π

r−2ν

⎡
⎣ 0

cos θ
2 (1−2ν+ sin2 θ

2 )
sin θ

2 (2−2ν−cos2 θ
2 )

0 2sinθ
2

sinθ
2 (2−2ν+cos2 θ

2 ) 0
−cos θ

2 (1−2ν− sin2 θ
2 ) 0

⎤
⎦ ,

where ω is the angle between the z-axis of the global co-
ordinates x−y− z and the t-axis of the local coordinates
t −n−b on the x− z (or n− t) plane, as indicated in Fig.
2. µ is the shear modulus, and (r,θ) is the local polar
coordinates of the point P on the n−b plane.
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