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Dual Boundary Element Method for Instability Analysis of Cracked Plates

J. Purbolaksono1 and M. H. Aliabadi2,3

Abstract: This paper presents the dual boundary inte-
gral equations for the buckling analysis of the shear de-
formable cracked plates. The domain integrals which
appear in this formulation are transferred to boundary
integrals using the dual reciprocity method. The plate
buckling displacement and hypersingular traction inte-
gral equations are presented as a standard eigenvalue
problem, which would allow direct evaluation of the crit-
ical load factor and buckling modes. Several examples
with different geometries and boundary conditions are
presented to demonstrate the accuracy of the proposed
formulation.

keyword: Buckling, Mindlin Plate, fracture mechan-
ics, hypersingular integral equation

1 Introduction

Boundary element method is a powerful numerical tool
for general stress analysis of crack problems. The dif-
ficulty which appears in modelling of crack problems
is due to coincidence of the crack surfaces that makes
point collocations on two crack surfaces generate iden-
tical equations [Aliabadi (2002)]. To overcome this dif-
ficulty the dual boundary element method [Portela, Ali-
abadi and Rooke (1992), Mi and Aliabadi (1992)].

During the last decade, the Dual Boundary Element
Method (DBEM) has been established as a robust numer-
ical method for fracture mechanics problems. Based on
displacement and traction integral equations, DBEM has
been applied to many fracture mechanics problems e.g.
elastostatics, thermoelastic, elastoplastic, stiffened pan-
els, concrete cracking, composite materials and dynam-
ics, as reviewed by [Aliabadi (1997a), (1997b)]. Appli-
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cations of the dual boundary element method to fracture
mechanics analysis of cracked shear deformable plates
can be found in [Dirgantara and Aliabadi (2000), Dirgan-
tara and Aliabadi (2001), Wen, Aliabadi and Young
(2000)].

Application of the boundary element method to instabil-
ity of plate structures has been reported by [O’Donoghue
and Atluri (1987), Zhang and Atluri (1988), Syngel-
lakis and Elzein (1994), Nerantzaki and Katsikadelis
(1996)] and more recently by [Purbolaksono and Ali-
abadi (2005)]. Buckling analysis of cracked panels has
been investigated by only few researchers analytically
and numerically. [Stahl and Keer (1972)] studied stabil-
ity of simply supported rectangular cracked plates using
an analytical approach. [Vafai and Estekanchi (2002)] in-
vestigated the buckling behaviour of edge cracked plated
subjected to axial loads. [Liu (2001)] presented the buck-
ling analysis of rectangular Mindlin plates having cracks
using differential quadrature element method.

In this paper, a new dual boundary element method for
the buckling analysis of the Reissner shear deformable
cracked plate is presented. The method is an exten-
sion of the boundary integral equations formulation re-
cently presented by the authors [Purbolaksono and Ali-
abadi (2005)] for modelling general buckling of shear
deformable plates. The domain integrals which appear in
the formulation are transferred to boundary integrals us-
ing the dual reciprocity method. The plate buckling dis-
placement and hypersingular traction equations are pre-
sented as a standard eigenvalue problem, which would al-
low direct evaluation of the critical load factor and buck-
ling modes. Several examples with different geometries
and boundary conditions are presented to demonstrate
the accuracy of the formulation.

2 Governing Equations

The governing differential equations for plate buckling
analysis can be written as:

Mαβ,β −Qα = 0 (1)
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Qα,α +(Nαβw3,β),α +q = 0 (2)

Nαβ,β = 0 (3)

where,

Mαβ =
1−ν

2
D(wα,β +wβ,α +

2ν
1−ν

wγ,γδαβ) (4)

Qα = C(wα +w3,α) (5)

Nαβ =
1−ν

2
B(uα,β +uβ,α +

2ν
1−ν

uγ,γδαβ) (6)

B = Eh/(1−ν2) is known as the tension stiffness; D =
Eh3/

[
12

(
1−ν2

)]
is the bending stiffness of the plate;

C =
[
D(1−ν)λ2

]
/2 is the shear stiffness; λ =

√
10/h is

shear factor; h is the thickness of the plate; ν is Poisson’s
ratio; Nαβ are stress resultants for two-dimensional plane
stress elasticity; Qα and Mαβ are stress resultants plate
bending problems; uα and w3 are translation of displace-
ments in x1, x2 (in-plane) and x3 (out of plane), wα are
rotations in xα direction; and δαβ is the Kronecker delta
function. Indicial notation is used throughout this paper.
Greek indices will vary from 1 to 2 and Roman indices
from 1 to 3.

3 The Dual Boundary Integral Equations

A cracked body shown in Figure 1 is considered with Γ+

and Γ− referring to the upper and lower crack surfaces
respectively, and Γb denotes the rest of the boundary. As
the source point x+ is coincident with x− ∈ Γ−, extra
free terms 1

2uα(x−) and 1
2wj(x−) will appear in equations

(7) and (8) [see Aliabadi (2000)]. The collocation at x−

will also give the same integral equations as equations
(7) and (8). This situation will provide an ill-conditioned
system of algebraic equations. The boundary integrals of
the displacement components uα and wi for collocation
points at x+ on the upper crack surface Γ+ are written as
follows

1
2

uθ(x+)+
1
2

uθ(x−)+−
∫

Γ
T ∗

θα(x+,x)uα(x)dΓ

=
∫

Γ
U∗

θα(x+,x)tα(x)dΓ
(7)

Figure 1 : A cracked body.

and

1
2

wi(x+)+
1
2

wi(x−)+−
∫

Γ
P∗

i j(x+,x)wj (x)dΓ

=
∫

Γ
W ∗

i j(x+,x)p j (x)dΓ

+λ
∫

Ω
W ∗

i3(x+,X)(Nαβ,αw3,β +Nαβw3,βα)dΩ

+λ
∫

Ω
W ∗

i3(x+,X)q(X)dΩ

(8)

where −∫ denotes the Cauchy principal value integral; T ∗
θα,

U∗
θα, P∗

i j and W ∗
i j are the fundamental solutions and are

listed in Appendix A.

The in-plane stress resultants at domain point X ′ are writ-
ten as

Nαβ(X′) =
∫

Γ
U∗

αβγ(X′,x)tγ(x)dΓ

−
∫

Γ
T ∗

αβγ(X′,x)uγ(x)dΓ
(9)

The deflection w3 at the domain points X ′ is required as
an additional equation to arrange an eigenvalue equation
as follows:

w3(X′) =
∫

Γ
W ∗

3 j(X′,x)p j(x)dΓ

−
∫

Γ
P∗

3 j(X′,x)wj(x)dΓ

+λ
∫

Ω
W ∗

33(X′,X)q(X)dΩ

+λ
∫

Ω
W ∗

33(X′,X)(Nαβ,αw3,β +Nαβw3,βα)dΩ

(10)

The traction integral equations is used for collocations at
x− ∈ Γ−. For collocations on x− ∈Γ−, the in-plane stress
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resultants boundary integral equation can be expressed as

1
2

Nαβ(x−)+
1
2

Nαβ(x+)+ =
∫

Γ
T ∗

αβγ(x−,x)uγ(x)dΓ

= −
∫

Γ
U∗

αβγ(x−,x)tγ(x)dΓ
(11)

where =
∫

stands for the Hadamard principal value integral.

The plate bending stress resultants boundary integral
equation can be written as follows

1
2

Mαβ(x−)+
1
2

Mαβ(x+)+ =
∫

Γ
P∗

αβγ(x−,x)wγ(x)dΓ

+−
∫

Γ
P∗

αβ3(x−,x)w3(x)dΓ

= −
∫

Γ
W ∗

αβγ(x−,x)pγ(x)dΓ+
∫

Γ
W ∗

αβ3(x−,x)p3(x)dΓ

+λ
∫

Ω
W ∗

αβ3(x−,X)qdΩ

+λ
∫

Ω
W ∗

αβ3(x−,X)(Nθψ,θw3,ψ +Nθψw3,ψθ)dΩ

(12)

and

1
2

Qβ(x−)+
1
2

Qβ(x+)+−
∫

Γ
P∗

3βγ(x−,x)wγ(x)dΓ

+=
∫

Γ
P∗

3β3(x−,x)w3(x)dΓ

=
∫

Γ
W ∗

3βγ(x−,x)pγ(x)dΓ+−
∫

Γ
W ∗

3β3(x−,x)p3(x)dΓ

+λ
∫

Ω
W ∗

3β3(x−,X)qdΩ

+λ
∫

Ω
W ∗

3β3(x−,X)(Nθψ,θw3,ψ +Nθψw3,ψθ)dΩ

(13)

where λ is critical load factor and U∗
αβγ, T ∗

αβγ, P∗
αβγ, P∗

αβ3,
W ∗

αβγ and W ∗
αβ3 are the fundamental solutions and are

listed in Appendix A.

Multiplying equations (11-13) by the outward normal
nβ(x−) and denoting that nβ(x+) =−nβ(x−), the traction
integral equations for a boundary source point at lower
crack surface x− are as follows:

1
2

tα(x−)− 1
2

tα(x+)+nβ(x−) =
∫

Γ
T ∗

αβγ(x−,x)uγ(x)dΓ

= nβ(x−) −
∫

Γ
U∗

αβγ(x−,x)tγ(x)dΓ

(14)

and

1
2

pα(x−)− 1
2

pα(x+)+nβ(x−) =
∫

Γ
P∗

αβγ(x−,x)wγ(x)dΓ

+ nβ(x−)−
∫

Γ
P∗

αβ3(x−,x)w3(x)dΓ

= nβ(x−)−
∫

Γ
W ∗

αβγ(x−,x)pγ(x)dΓ

+nβ(x′)
∫

Γ
W ∗

αβ3(x−,x)p3(x)dΓ

+λnβ(x−)
∫

Ω
W ∗

αβ3(x−,X)qdΩ

+λnβ(x−)
∫

Ω
W ∗

αβ3(x−,X)(Nθψ,θw3,ψ +Nθψw3,ψθ)dΩ

(15)

1
2

p3(x−)− 1
2

p3(x+)+nβ(x−)−
∫

Γ
P∗

3βγ(x−,x)wγ(x)dΓ

+nβ(x−) =
∫

Γ
P∗

3β3(x−,x)w3(x)dΓ

= nβ(x−)
∫

Γ
W ∗

3βγ(x−,x)pγ(x)dΓ

+nβ(x−)−
∫

Γ
W ∗

3β3(x−,x)p3(x)dΓ

+λnβ(x−)
∫

Ω
W ∗

3β3(x−,X)qdΩ

+λnβ(x−)
∫

Ω
W ∗

3β3(x−,X)(Nθψ,θw3,ψ +Nθψw3,ψθ)dΩ

(16)

To arrange an eigenvalue equation, the derivatives of w3

have to be expressed in terms of w3(X). The w3,β(X)
and w3,αβ(X) terms are approximated by a radial basis
function f (r) as follows;

w3(x1,x2) =
M

∑
m=1

f (r)mΨm (17)

where f (r) = 1 + r is the a radial basis function, and M
is the total number of selected points.

r =
√

(x1 −xm
1 )2 +(x2 −xm

2 )2 (18)

The Ψm are coefficients which are determined by values
at the selected points M as follows

ΨΨΨ = F−1w3 (19)
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Therefore, the first derivative of deflection w3,β is ex-
pressed as

w3,β(x1,x2) = f(r),β(F−1w3) (20)

The second derivative of deflection w3,αβ can be derived
in a similar way as above

ΨΨΨ = F−1w3,β (21)

Therefore,

w3,αβ(x1,x2) = f(r),α(F−1w3,β) (22)

Substituting equation (20) into equation (22), gives:

w3,αβ(x1,x2) = f(r),αF−1(f(r),βF−1w3) (23)

Similar to the above expressions, the derivative of in-
plane stress resultants Nαβ,α can be expressed as

Nαβ,α(x1,x2) = f(r),αF−1Nlinear
αβ (24)

The equation (8) can be expressed as

1
2

wj(x+)+
1
2

wj(x−)+−
∫

Γ
P∗

i j(x+,x)wj (x)dΓ

=
∫

Γ
W ∗

i j(x+,x)p j (x)dΓ

+λ
∫

Ω
W ∗

i3(x+,X) fb(X)dΩ

(25)

where

fb = q+Nαβ,αf(r),βF−1w3

+Nαβf(r),αF−1f(r),βF−1w3
(26)

The equations (12) and (13) are written as

1
2

Mαβ(x−)+
1
2

Mαβ(x+)+ =
∫

Γ
P∗

αβγ(x−,x)wγ(x)dΓ

+−
∫

Γ
P∗

αβ3(x−,x)w3(x)dΓ

= −
∫

Γ
W ∗

αβγ(x−,x)pγ(x)dΓ(x)+
∫

Γ
W ∗

αβ3(x−,x)p3(x)dΓ

+λ
∫

Ω
W ∗

αβ3(x−,X) fbdΩ

(27)

and

1
2

Qβ(x−)+
1
2

Qβ(x+)+−
∫

Γ
P∗

3βγ(x−,x)wγ(x)dΓ

+ =
∫

Γ
P∗

3β3(x−,x)w3(x)dΓ

=
∫

Γ
W ∗

3βγ(x−,x)pγ(x)dΓ(x)+−
∫

Γ
W ∗

3β3(x−,x)p3(x)dΓ

+λ
∫

Ω
W ∗

3β3(x−,X) fbdΩ

(28)

The traction boundary integral equations (15) and (16)
are written as

1
2

pα(x−)− 1
2

pα(x+)+nβ(x−) =
∫

Γ
P∗

αβγ(x−,x)wγ(x)dΓ

+nβ(x−)−
∫

Γ
P∗

αβ3(x−,x)w3(x)dΓ

= nβ(x−)−
∫

Γ
W ∗

αβγ(x−,x)pγ(x)dΓ

+nβ(x′)
∫

Γ
W ∗

αβ3(x−,x)p3(x)dΓ

+λnβ(x−)
∫

Ω
W ∗

αβ3(x−,X) fbdΩ

(29)

1
2

p3(x−)− 1
2

p3(x+)+nβ(x−)−
∫

Γ
P∗

3βγ(x−,x)wγ(x)dΓ

+nβ(x−) =
∫

Γ
P∗

3β3(x−,x)w3(x)dΓ

= nβ(x−)
∫

Γ
W ∗

3βγ(x−,x)pγ(x)dΓ

+nβ(x−)−
∫

Γ
W ∗

3β3(x−,x)p3(x)dΓ

+λnβ(x−)
∫

Ω
W ∗

3β3(x−,X) fbdΩ

(30)

The deflection equation w3 at the domain points X′ can
be written as follows

w3(X′) =
∫

Γ
W ∗

3 j(X′,x)p j(x)dΓ

−
∫

Γ
P∗

3 j(X′,x)wj(x)dΓ

+λ
∫

Ω
W ∗

33(X′,X) fb(X) dΩ

(31)

Equations (7) and (8) and (14, 29, 30) represent displace-
ment and traction integral equations respectively on the



Dual Boundary Element Method for Instability Analysis of Cracked Plates 77

crack surfaces, and together with the use of the displace-
ment integral equations as follows

cθα
(
x′

)
uα(x′)+−

∫
Γ

T ∗
θα(x′,x)uα(x)dΓ

=
∫

Γ
U∗

θα(x′,x)tα(x)dΓ
(32)

and

ci j(x′)wj(x′)+
∫

Γ
−P∗

i j(x′,x)wj (x)dΓ

=
∫

Γ
W ∗

i j(x′,x)p j (x)dΓ

+λ
∫

Ω
W ∗

i3(x′,X) fb(X)dΩ

(33)

for collocation points on the rest of the boundary Γb (see
Figure 1), form the dual boundary integral formulation.

4 Transformation of The Domain Integrals

The dual reciprocity method for shear deformable plate
developed by [Wen, Aliabadi and Young (2000)] can be
used to evaluate the domain integrals appearing in the
dual boundary integral equation formulation. Assume
that the term fb are the body forces, therefore they can
be approximated by

fb =
M

∑
m=1

f (r)mφm (34)

where f (r) is a radial basis function (see Appendix), the
φm

j are a set of unknown coefficients, r is denoted as
the equation (18), M is the total number of the selected
points.

The φm
j are coefficients which are determined by values

at the selected points M as follows

φ = F−1fb (35)

As the source point x+ ∈ Γ+ is coincident with x− ∈ Γ−,
it is important to note when the dual reciprocity tech-
nique is applied to a structure containing cracks, domain
integrals will contain extra free terms as in equations (25-
28).

The domain integral in equation (25) is rewritten as:
∫

Ω
W ∗

i3(x′,X) fb(X)dΩ

=
M

∑
m=1

[
1
2

ŵm j(x+)+
1
2

ŵm j(x−)

+−
∫

Γ
P∗

i j(x′,x)ŵm j(x)dΓ

−
∫

Γ
W ∗

i j(x′,x)p̂m j(x)dΓ]F−1 fb

(36)

The domain integral in equation (27) is rewritten as:
∫

Ω
W ∗

αβ3(x−,X) fb2(X)dΩ

= {
M

∑
m=1

[
1
2

M̂mαβ(x−)+
1
2

M̂mαβ(x+)

+ =
∫

Γ
P∗

αβγ(x−,x)ŵmγ(x)dΓ

+−
∫

Γ
P∗

αβ3(x−,x)ŵm3(x)dΓ

−−
∫

Γ
W ∗

αβγ(x−,x)p̂mγ(x)dΓ

−
∫

Γ
W ∗

αβ3(x−,x)p̂m3(x)dΓ](F−1fb)m}

(37)

The domain integral in equation (28) is rewritten as:
∫

Ω
W ∗

3β3(x−,X) fb2(X)dΩ

= {
M

∑
m=1

[
1
2

Q̂mβ(x−)+
1
2

Q̂mβ(x+)

+−
∫

Γ
P∗

3βγ(x−,x)ŵmγ(x)dΓ

+ =
∫

Γ
P∗

3β3(x−,x)ŵm3(x)dΓ

−
∫

Γ
W ∗

3βγ(x−,x)p̂mγ(x)dΓ

−−
∫

Γ
W ∗

3β3(x−,x)p̂m3(x)dΓ](F−1fb)m}

(38)

An alternative method for transformation of domain in-
tegrals to boundary ones has recently been proposed
[Ochiai and Sladek (2004)].

5 Numerical Implementation

Crack modelling strategy, special crack-tip elements,
crack modelling consideration of the dual reciprocity
technique, treatment of the singularities used in this work
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are similar with those described in [Dirgantara and Ali-
abadi (2000)] which follow the general guidelines orig-
inally reported in [Portela and Aliabadi (1992), Mi and
Aliabadi (1992)]. They can be summarized as follows:

• crack surfaces are discretized with discontinuous
quadratic elements to satisfy continuity conditions
of displacements and its derivatives on all nodes for
the existence of principal value integrals;

• the traction equations are applied for collocation on
one of the crack surfaces;

• the displacement equations are applied for colloca-
tion on the opposite crack surface and other non-
crack boundaries;

• continuous quadratic elements are applied along the
remaining boundary of the body, except at the inter-
section between a crack and an edge, where discon-
tinuous or semi-discontinuous elements are required
on the edge in order to avoid a common node at in-
tersection, and also at boundary corner, where semi-
discontinuous elements are used in order to avoid a
common node at the corner;

• special crack tip discontinuous elements to accu-
rately represent the

√
r behaviour of the displace-

ment field are used [see Aliabadi (2002)].

6 Numerical Implementation

The numerical implementation of the dual boundary el-
ement method for buckling analysis of cracked plated is
presented in this section. The first step is to solve the dual
boundary integrals of in-plane problem and then calcu-
late the stress resultants at the domain points. The second
step is to solve the dual boundary integral formulation for
buckling problems.

6.1 Determination of the in-plane stresses

After discretizing the boundaries and introducing bound-
ary conditions into equations (32), (7) and (14), the sys-
tem of algebraic equation can be arranged in terms of the
known and unknown quantities as follows:

[A]{X}= {F} (39)

where matrix X contains the unknown vectors of dis-
placements u and tractions t. The vector F is obtained by

multiplying the related coefficient matrices by the known
vectors of displacements u or tractions t.

Once equation (39) has been solved, in-plane stresses
N11, N12, and N22 in the domain (equation (9)) can be
calculated. The stresses are required to solve the cracked
plate buckling problem.

6.2 Solving the plate buckling problem

After applying the boundary conditions to equations (33),
(25), (29) and (30), they can be written in a matrix form
as:

[C]{w}+[Hp]{w}= [Gp]{p}+λ[Gp
eq]{fb} (40)

in which Hpand Gp are boundary element influence ma-
trices for plate bending, ŵ and p̂ are matrices of node
values of particular solution on the boundary and Gp

eq =
(Hpŵ−Gpp̂)F−1. The q(X) quantities are initialized to
zero and the term fb(X) is expressed in term of w3(X),
as follows

fb(X) = fbw(X)w3(X) (41)

where fbw = Nαβ,αf(r),βF−1 +Nαβf(r),αF−1(f(r),βF−1)
Equation (40) can be arranged in a similar manner as
equation (39), and give

[B]3N×3N {Y}3N = λ [K]3N×L{w3}L (42)

K = Gp
eqfbw (43)

where the matrix B contains the coefficient matrices Hp

and Gp. N and L are the number of boundary elements
and domain points, respectively.

The equation (31) can be also written in matrix form as
follows:

[I]{w3}L = [BB]L×3N {Y}3N +λ [KK]L×L {w3}L (44)

where matrix [I] is an identity matrix. The matrix [BB]
contains coefficient matrices related to fundamental solu-
tions. The matrix [KK] are obtained by multiplication of
coefficient matrices related to the fundamental solutions
with matrix fbw.

The equation (42) can be rearranged in term of unknown
vector {Y}3N ,

{Y}3N = λ [B]−1
3N×3N [K]3N×L{w3}L (45)

where matrix B−1 is the inverse matrix of B.
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The substitution of the equation (45) into the equation
(44) yields:

[I]{w3}L = λ [BB]L×3N [B]−1
3N×3N [K]3N×L{w3}L

+λ [KK]L×L {w3}L

(46)

Then,

[I]{w3}L = λ([BB]L×3N [B]−1
3N×3N [K]3N×L

+[KK]L×L){w3}L

(47)

The equation (47) can be written as a standard eigenvalue
problem equation as follows:

([ψ]− 1
λ

[I]){w3}L = 0 (48)

where [ψ] = [BB]L×3N [B]−1
3N×3N [K]3N×L +[KK]L×L.

Analysis of shear deformable cracked plate buckling
problems has been presented as a standard eigenvalue
problem. Buckling coefficients correspond to the prob-
lem can be obtained by the solution of equation (48).

7 Numerical Examples

Several numerical examples are presented to demonstrate
the accuracy of the proposed method for analysis of plate
buckling problems with different geometries and bound-
ary conditions. The calculated values of K are compared
with analytical [Stahl and Keer (1972)] and differential
quadrature element method [Liu (2001)] results. In the
following examples, the buckling coefficient K is defined
by

K =
b2

h2E
σcr

where σcr is critical compression load, b is the width of
plate.

7.1 Convergence study of simply supported rectangu-
lar cracked plates subjected to compression loads

In this example, convergence of the proposed formula-
tion is assessed by solving a simply supported cracked
plates as shown in Figure 2. Two configurations of rect-
angular plate with aspect ratio a/b = 2 are considered
here: (i) a longitudinal central crack with 2c/a = 0.25
and (ii) a transverse central crack with 2c/b = 0.25. Both
models are discretized into 8 elements on the long sides

2c

a

b

2c

a

b

( i )

( ii )

Nxx

Nxx

Nxx

Nxx

Figure 2 : Rectangular plates with a central crack sub-
jected to compression loads.

and 4 elements on the short sides. Each model has dif-
ferent meshes on the crack surfaces. The BEM results
are shown in Figure 3. As it can be seen, buckling co-
efficients for model (i) in Figure 2 are not sensitive to
the number of elements on the crack surfaces and con-
vergence is achieved with only 8 elements on the crack
surfaces. The convergence for model (ii) can be achieved
with as few as 14 elements on the crack surfaces.

7.2 Simply supported rectangular plates with a longi-
tudinal central crack

Here, the problem of the rectangular plate with a lon-
gitudinal central crack subjected to compression load is
studied again. The model is similar to that shown in Fig-
ure 2 (i) but the aspect ratio of the plate are varied. Two
configurations are considered: (a) the plate with aspect
ratio a/b = 1 and (b) the plate with aspect ratio a/b =
2. [Stahl and Keer (1972)] have analysed the first case.
Both cases were analysed by [Liu (2001)]. Buckling co-
efficients for different aspect ratios of crack length to the
length of plate 2c/a are presented in Figures 4 and 5. Fig-
ures 6 and 7 present the change in the buckling modes
of rectangular plate with aspect ratio a/b = 2. For the
case of short cracks (aspect ratio 2c/a up to 0.25), the
buckling modes are illustrated in Figure 6. When the as-
pect ratio 2c/a is greater than 0.25, the buckling modes
change as shown in Figure 7. It can be seen from the Fig-
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 Figure 3 : Convergence study for the problem of cracked plates buckling.
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 Figure 4 : Variation of buckling coefficients for the plate (aspect ratio a/b = 1) with a longitudinal central
crack.
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 Figure 5 : Variation of buckling coefficients for the plate (aspect ratio a/b = 2) with a longitudinal central
crack.
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MODE  A

Figure 6 : Mode A: initial mode of simply supported
rectangular plate with a longitudinal central crack.

MODE  B

Figure 7 : Mode B: second mode of simply sup-
ported rectangular plate with a longitudinal central
crack.

ures that the present results are in very good agreements
(less than 1% difference) with those presented in [Stahl
and Keer (1972) and Liu (2001)].

7.3 Simply supported rectangular plates with a longi-
tudinal edge crack

In this example, a rectangular plate with a longitudinal
edge crack subjected to compression loads is studied.
The model is shown in Figure 8. Two configurations of
the edge crack plate are considered: (a) aspect ratio a/b
= 1 and (b) aspect ratio a/b = 2. The second case has
been analysed by [Stahl and Keer (1972), and Liu (2001)]
has investigated both cases. Buckling coefficients for dif-
ferent aspect ratios of crack length to the length of plate
c/a are presented in Figures 9 and 10. It can be seen
from the Figures that good agreements ( less than 1.5%
difference) are achieved with those presented in [Stahl
and Keer (1972) and Liu (2001)].

c

a

bNxxNxx

Figure 8 : Rectangular plate with a longitudinal edge
crack.

7.4 Rectangular plates with a longitudinal central
crack and different boundary conditions

A rectangular plate with a longitudinal central crack sub-
jected to compression loads with different boundary con-
ditions is presented. The model is similar to that shown
in Figure 2 (i) with aspect ratio of the plate a/b = 2.
Buckling coefficients for different aspect ratios of crack
length to the length of plate 2c/a are presented in Figure
11. The legends in the Figure 11 are defined as:

cccc : sides and ends clamped
ssss : sides and ends simply supported
cscs : ends clamped, sides simply supported
scsc : sides clamped, ends simply supported

As it can be seen, the buckling coefficients decrease with
increasing 2c/a for all four different boundary condi-
tions. The buckling coefficient is the highest for cccc
and the lowest for ssss.

7.5 Rectangular plates with a longitudinal edge crack
and different boundary conditions

Here, a rectangular plate with a longitudinal edge crack
subjected to compression loads with different boundary
conditions is analysed. The model is similar to that
shown in Figure 8 with aspect ratio of the plate a/b = 2.
Buckling coefficients for different aspect ratios of crack
length to the length of plate c/a are presented in Figure
12. The buckling coefficients are shown to decrease with
increasing crack length to width ratio.
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Figure 9 : Variation of buckling coefficients for the plate (aspect ratio a/b = 1) with edge crack.
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Figure 10 : Variation of buckling coefficients for the plate (aspect ratio a/b = 2) with edge crack.
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Figure 11 : Variation of buckling coefficients for the plate (aspect ratio a/b = 2) with a longitudinal central
crack and different boundary conditions.
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7.6 Rectangular plate with two collinear cracks

In this example, a rectangular plate with two collinear
cracks subjected to compression load with different
boundary conditions is analysed. The model is shown in
Figure 13 with aspect ratio of the plate a/b = 2. Buck-
ling coefficients for different aspect ratios of crack length
to the length of plate 2c/a and 2e = 0.5a are presented
in Figure 14. The buckling coefficients for ssss boundary
conditions are almost half of those obtained for cccc.

7.7 Rectangular plates with a transverse edge crack

In this example, a rectangular plate with a transverse
edge crack as shown in Figure 15 subjected to compres-
sion loads is analysed. Aspect ratio of the plate is a/b
= 2. Two boundary conditions are applied: (a) all sides
simply supported (ssss) and (b) one side is clamped and
the other side and both ends are simply supported (sssc).
Buckling coefficients in different aspect ratios of crack
length to the length of plate c/b are presented in Figure
16. As expected the values of K for ssss boundary condi-
tions are lower than cccc.

7.8 Simply supported rectangular plates with a trans-
verse central crack

In this example, a simply supported rectangular plate
with a transverse central crack subjected to compression
loads is analysed. The model is similar to that shown
in Figure 2 (ii) with aspect ratio of the plate a/b = 2.
Buckling coefficients for different aspect ratios of crack
length to the length of plate c/b are presented in Figure
17. Mode A in Figure 17 denotes initial modes for the
case of a short crack (c/b = 0.0 to c/b = 0.25) as shown
in Figure 18. It can be seen from Figure 17, as the crack
length reaches ratio c/b between 0.25−0.275, the buck-
ling coefficient has a big jump. After the crack length
reaches ratio c/b = 0.275, the buckling modes change as
shown in Figure 19. This phenomena occurs due to the
change of buckling mode.

Conclusions

In this paper, the dual boundary element formulation for
buckling analysis of shear deformable plates was pre-
sented. The traction integral equations were applied on
one of the crack surface, while the displacement integral
equations were applied on the other crack surface and on

all non-crack boundaries to allow for single region mod-
elling of cracked plates.

Discontinuous elements were used to discretize crack
surfaces, while continuous elements were used to model
all non-crack boundaries, except for corner boundaries
and the intersection between a crack and an edge, where
semi-discontinuous elements were used. The plate buck-
ling equations were presented as a standard eigenvalue
problem. The eigenvalue problem of the plate yields the
critical buckling load factor and buckling modes.

Several examples of cracked plates buckling with differ-
ent geometries and boundary conditions were presented.
The BEM results presented were shown to be in good
agreements with analytical and other numerical results.
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MODE  A

Figure 18 : Mode A: an initial mode of simply
supported rectangular plate with a transverse central
crack.

MODE  B

Figure 19 : Mode B: second mode of simply sup-
ported rectangular plate with a transverse central
crack.
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Appendix A: Fundamental Solutions

Appendix A:.1 Plate Bending Problem

The expressions for the kernels W ∗
i j and P∗

i j are given by
[Vander Weeën (1982)] as follows:

W ∗
αβ =

1
8πD(1−ν)

{[8B(z)− (1−ν)(2lnz−1)]δαβ

− [8A(z)+2(1−ν)]r,αr,β}
W ∗

α3 = −W ∗
3α =

1
8πD

(2lnz−1)rr,α

W ∗
33 =

1
8πD(1−ν)λ2 [(1−ν)z2(lnz−1)−8ln z]

(A1)

and

P∗
γα =

−1
4πr

[(4A(z)+2zK1(z)+1−ν)(δαγr,n + r,αnγ)

+(4A(z)+1+ν)r,γnα

−2(8A(z)+2zK1(z)+1−ν)r,αr,γr,n]

P∗
γ3 =

λ2

2π
[B(z)nγ−A(z)r,γr,n]

P∗
3α =

−(1−ν)
8π

[(
2
(1+ν)
(1−ν)

lnz−1

)
nα +2r,αr,n

]

P∗
33 =

−1
2πr

r,n

(A2)

The expression of W ∗
i jk, P∗

i jk and Q∗
iβ are [Vander Weeen

(1982)]:

W ∗
αβγ =

1
4πr

[(4A(z)+2zK1(z)+1−ν)

× (δβγr,α +δαγr,β)
−2(8A(z)+2zK1(z)+1−ν)r,αr,βr,γ

+(4A(z)+1+ν)δαβr,γ]

W ∗
αβ3 =

−(1−ν)
8π

[(
2
(1+ν)
(1−ν)

lnz−1

)
δαβ +2r,αr,β

]

W ∗
3βγ =

λ2

2π
[B(z)δγβ−A(z)r,γr,β]

W ∗
3β3 =

1
2πr

r,β

(A3)

P∗
αβγ =

D(1−ν)
4πr2 {(4A(z)+2zK1(z)+1−ν)

× (δγαnβ +δγβnα)
+(4A(z)+1+3ν)δαβnγ− (16A(z)+6zK1(z)

+ z2K0(z)+2−2ν)
× [(nαr,β +nβr,α)r,γ +(δγαr,β +δγβr,α)r,n]
−2(8A(z)+2zK1(z)+1+ν)
× (δαβr,γr,n +nγr,αr,β)

+4(24A(z)+8zK1(z)+ z2K0(z)+2−2ν)
× r,αr,βr,γr,n}

P∗
αβ3 =

D(1−ν)λ2

4πr
[(2A(z)+ zK1(z))(r,βnα + r,αnβ)

−2(4A(z)+ zK1(z))r,αr,βr,n +2A(z)δαβr,n]

P∗
3βγ =

−D(1−ν)λ2

4πr
[(2A(z)+ zK1(z))(δγβr,n + r,γnβ)

+2A(z)nγr,β −2(4A(z)+ zK1(z))r,γr,βr,n]

P∗
3β3 =

D(1−ν)λ2

4πr2

[
(z2B(z)+1)nβ

− (z2A(z)+2)r,βr,n
]

(A4)

Q∗
αβ =

−r
64π

{(4lnz−3)[(1−ν)(r,βnα + r,αnβ)

+(1+3ν)δαβr,n]+4[(1−ν)r,αr,β +νδαβ]r,n}
Q∗

3β =
1

8π
[(2lnz−1)nβ +2r,βr,n]

(A5)

where

A(z) = K0(z)+
2
z

[
K1(z)− 1

z

]

B(z) = K0(z)+
1
z

[
K1(z)− 1

z

] (A6)

in which K0(z) and K1(z) are modified Bessel functions
of the second kind [Abramowitz and Stegun (1965)],
z = λr, λ is the shear factor defined in section 2, r is the
absolute distance between the source and the field points,
r,α = rα/r, where rα = xα(x)−xα(x′) and r,n = r,αnα.

Expanding the modified Bessel functions for small argu-
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ments:

K0(z) =
[
−γ− ln(

z
2
)
]
+

[
−γ+1− ln(

z
2
)
] (z2/4)

(1!)2

+
[
−γ+1+

1
2
− ln(

z
2
)
]

(z2/4)2

(2!)2

+
[
−γ+1+

1
2

+
1
3
− ln(

z
2
)
]

(z2/4)3

(3!)2 + · · ·

(A7)

K1(z) =
1
z
−

[
−γ+

1
2
− ln(

z
2
)
]

(z2/4)1/2

0!1!

−
[
−γ+1+

1
4
− ln(

z
2
)
]

(z2/4)3/2

1!2!

−
[
−γ+1+

1
2

+
1
6
− ln(

z
2
)
]

(z2/4)5/2

2!3!
+ · · ·

(A8)

where γ = 0.5772156649 is the Euler constant. Substitute
equations (A7 − A8) into (A6) and take the limit as r →
0:

lim
r→0

A(z) =
−1
2

,

lim
r→0

B(z) = −1
2

[
lim
r→0

ln(
z
2
)+ γ+

1
2

] (A9)

As it can be seen, A(z) is a smooth function, whereas,
B(z) is a weakly singular O(lnr). Therefore W ∗

i j is
weakly singular and P∗

i j has a strong (Cauchy principal
value) singularity O(1/r).

In this work, the modified Bessel functions are evaluated
using polynomial approximations given by [Abramowitz
and Stegun (1965)] .

Appendix A:.2 Two-dimensional Plane Stress Prob-
lem

The expressions for the kernels U∗
θα and T ∗

θα are well
known (Kelvin solution) for two-dimensional plane
stress problems, and are given as:

U∗
θα =

1
4πB(1−ν)

[
(3−ν) ln

(
1
r

)
δθα +(1+ν) r,θr,α

]

(A10)

T ∗
θα =− 1

4πr
{r,n [(1−ν)δθα +2(1+ν) r,θr,α]

+ (1−ν) [nθr,α −nαr,θ]}
(A11)

where U∗
θα are weakly singular kernels of order O(ln

1
r
)

and T ∗
θα are strongly singular in order O(1/r) .

The expressions for the kernels U∗
αβγ and T ∗

αβγ are :

U∗
αβγ =

1
4πr

[
(1−ν)

(
δγαr,β +δγβr,α −δαβr,γ

)
+ 2(1+ν) r,αr,βr,γ

] (A12)

T ∗
αβγ =

B(1−ν)
4πr2

{
2r,n

[
(1−ν)δαβr,γ

+ ν
(
δγαr,β +δγβr,α

)−4(1+ν) r,αr,βr,γ
]

+2ν
(
nαr,βr,γ +nβr,αr,γ

)
+(1−ν)

(
2nγr,αr,β +nβδαγ +nαδβγ

)
− (1−3ν)nγδαβ

}
(A13)

Appendix B: Particular solutions

Particular solutions derived by [Wen, Aliabadi and
Young (2000)] are used for the dual reciprocity technique
in this work and are given in the following sections.

Appendix B:.1 Particular solutions for plate bending

Governing equation for shear deformable plate bending
problem can be written as

ŵ = Heϕ (B1)

where particular solutions of displacement
ŵ = {ŵ1, ŵ2, ŵ3}�, e = {e1,e2,e3}� is arbitrary
constant vector and components of matrix H are

Hαβ = 2δαβ �4 −[(1+ν)�2 +(1−ν)λ2)]
∂2

∂xα∂xβ

H3α = −Hα3 = −(1−ν)(�2 −λ2)
∂

∂xα

H33 = (�2 −λ2)[2�2 −(1−ν)λ2]/λ2 (B2)

The function ϕ can be defined from equation (B1) such
that

D(1−ν)(�2−λ2)�4 ϕ+F(r) = 0 (B3)

If e1 = 0,e2 = 0 and e3 = 1, the particular solution used
in equations (36-38) can be written as

ŵmα = − 1
D

∂ψ
∂xα

ŵm3 =
1

(1−ν)Dλ2 [2�2 ψ− (1−ν)λ2ψ] (B4)
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where

�4ψ(r)+F(r) = 0 (B5)

The particular solutions of moment and shear force can
be determined from the stress resultant-displacement re-
lationship for shear deformable plate bending. The trac-
tions on the boundary can be obtained by

p̂mα = M̂αβnβ, p̂m3 = Q̂αnα (B6)

If radial basis function F(r) = 1 + r, The function ψ(r)
can be solved from equation (B5)

ψ(r) = −
(

r4

64
+

r5

225

)
(B7)

and the rotations and deflection can be deduced

ŵ3
m1 = −

(
1

16
+

r
45

)
x1r2

D

ŵ3
m2 = −

(
1

16
+

r
45

)
x2r2

D
(B8)

ŵ3
m3 = −

(
1
2

+
2r
9

)
r2

(1−ν)λ2D
+

(
1

64
+

r
225

)
1
D

The particular solutions of moments M̂αβ and shear
forces Q̂β can be determined by the stress resultant-
displacement relationship for shear deformable plate
bending to give

M̂3
m11 =−

[(
1
8

+
r

15

)(
x2

1 +νx2
2

)
+(1+ν)

(
r2

16
+

r3

45

)]

M̂3
m12 = −(1+ν)

(
1
8

+
r

15

)
(x1x2)

M̂3
m22 =−

[(
1
8

+
r

15

)(
νx2

1 +x2
2

)
+(1+ν)

(
r2

16
+

r3

45

)]

(B9)

Q̂3
m1 = −x1

2

(
1+

2r
3

)

Q̂3
m2 = −x2

2

(
1+

2r
3

)

and the tractions on the boundary can be obtained from
relationships in equation (B6).

For the derivative of function F,α = xα/r, the solution
ψα(r) can be found

ψα(r) = −r3xα

45
(B10)

and particular solutions ŵα
mk are

ŵ1
m1 = −(3x2

1 + r2)
r

45D

ŵ1
m2 = −x1x2r

15D
(B11)

ŵ1
m3 = −[30− (1−ν)λ2r2]

rx1

45(1−ν)λ2D

and the particular solutions of moments M̂αβ and shear
forces Q̂β are

M̂1
m11 = − x1

15

[
ν
(

x2
1

r
+3r

)
+

(
x2

2

r
+ r

)]

M̂1
m12 = −(1−ν)

x2

15

(
x2

1

r
+ r

)

M̂1
m22 = − x1

15

[
ν
(

x2
1

r
+3r

)
+

(
x2

2

r
+ r

)]
(B12)

Q̂1
m1 = −1

3

(
x2

1

r
+ r

)

Q̂1
m2 = −1

3
x1x2

r
for α = 1, and

ŵ2
m1 = −x1x2r

15D

ŵ2
m1 = −(3x2

2 + r2)
r

45D
(B13)

ŵ2
m3 = −[30− (1−ν)λ2r2]

rx2

45(1−ν)λ2D

and the particular solutions of moments M̂αβ and shear
forces Q̂β are

M̂2
m11 = − x2

15

[
ν
(

x2
1

r
+ r

)
+

(
x2

2

r
+3r

)]

M̂2
m12 = −(1−ν)

x1

15

(
x2

2

r
+ r

)

M̂2
m22 = − x2

15

[
ν
(

x2
1

r
+ r

)
+

(
x2

2

r
+3r

)]
(B14)

Q̂2
m1 = −1

3
x1x2

r

Q̂2
m2 = −1

3

(
x2

2

r
+ r

)

for α = 2.
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Appendix B:.2 Particular solutions for two-
dimensional plane stress

An expression displacement particular solution ûγ
mα can

be found in polar coordinates with the use of the Galerkin
vector Gαβ as

ûγ
mα(r) = Gγ

βα,γγ(r)− 1+ν
2

Gγ
γα,βγ(r) (B15)

where Gαβ satisfies

�4Gγ
βα +

2
(1−ν)B

xγ

r
δγβ = 0 (B16)

and a solution is determined by

Gγ
βα = − r3xγ

45(1−v)B
δαβ (B17)

Substituting equation (B17) into equation (B15), then the
displacement particular solutions can be arranged as

û1
m1 = − 2

(1−ν)B

[
rx1

3
− 1+ν

30

(
x3

1

r
+3x1r

)]

û1
m2 =

(1+ν)
15(1−ν)B

(
x2

1x2

r
+x2r

)
(B18)

and using strain displacement relationships for two-
dimensional plane stress, the strain are obtained as

ε̂1
m11 = − 2

(1−ν)

[(
x2

1

r
+

r
3

)

− 1+ν
30

(
−x4

1

r3 +
6x2

1

r
+3r

)]

ε̂1
m12 = − 2

(1−ν)

[
x1x2

6r
− 1+ν

30

(
−x3

1x2

r3 +
3x1x2

r

)]

ε̂1
m22 =

2
(1−ν)

1+ν
30

(
−x2

1x2
2

r3 +2r

)
(B19)

The particular solution for membrane stress resultant can
be derived by substituting equation (B19) into the stress
resultant-strain relationships for two-dimensional plane
stress to give:

N̂1
m11 = B

[
(1−ν)ε̂1

m11 +νε̂1
mαα

]

N̂1
m12 = B(1−ν)ε̂1

m12

N̂1
m22 = B

[
(1−ν)ε̂1

m22 +νε̂1
mαα

]
(B20)

and the traction particular solutions are obtained from

t̂1
mα = N̂1

mαβnβ (B21)

In the same way, displacement particular solutions û2
mα

can be obtained as follows:

û2
m1 =

(1+ν)
15(1−ν)B

(
x2

2x1

r
+x1r

)

û2
m2 = − 2

(1−ν)B

[
rx2

3
− 1+ν

30

(
x3

2

r
+3x2r

)]
(B22)

and the strains are

ε̂2
m11 =

2
(1−ν)

1+ν
30

(
−x2

1x2
2

r3
+2r

)

ε̂2
m12 = − 2

(1−ν)

[
x1x2

6r
− 1+ν

30

(
−x3

2x1

r3 +
3x1x2

r

)]

ε̂2
m22 =− 2

(1−ν)

[(
x2

2

r
+

r
3

)
− 1+ν

30

(
−x4

2

r3 +
6x2

2

r
+3r

)]

(B23)

The particular solution for membrane stress resultant are

N̂2
m11 = B

[
(1−ν)ε̂2

m11 +νε̂2
mαα

]

N̂2
m12 = B(1−ν)ε̂2

m12

N̂2
m22 = B

[
(1−ν)ε̂2

m22 +νε̂2
mαα

]
(B24)

and finally the traction particular solutions are obtained
from

t̂2
mα = N̂2

mαβnβ (B25)


