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A new free energy-based model of the kinematic hardening in large strain
elastoplasticity

Igor Karšaj1 ,Carlo Sansour2 and Jurica Sorić1

Abstract: In this paper, a free energy-based formu-
lation incorporating the effect of kinematic hardening is
proposed. The formulation is able to reproduce symmet-
ric expressions for the back stress while incorporating
the multiplicative decomposition of the deformation gra-
dient. Kinematic hardening is combined with isotropic
hardening where an associative flow rule and von Mises
yield criterion are applied. An accurate and trivial wise
objective integration algorithm employing the exponen-
tial map is developed. In order to ensure a high conver-
gence rate in the global iteration approach, an algorith-
mic tangent operator is derived. The computational algo-
rithm is implemented and applied to a shell finite element
which allows the use of complete three-dimensional con-
stitutive laws. Robustness and efficiency of the proposed
algorithm are demonstrated by numerical examples.
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kinematic hardening; isotropic hardening

1 Introduction

Inelastic structural responses and their numerical simu-
lation have been attracting increasing attention in recent
years. A more realistic material modelling demands con-
sideration of sophisticated constitutive models in finite
strain plasticity, where kinematic hardening is employed.
The combined isotropic-kinematic hardening model has
been considered in the available literature from differ-
ent viewpoints (e.g. Atluri (1984b), Dogui and Sido-
roff (1985), Im and Atluri (1987), Eterovic and Bathe
(1990), Wang and Atluri (1994) , Papadopoulos and Lu
(1997), Başar and Itskov (1999), Sorić, Skoko, and Eck-
stein (2002), Tsakmakis and Willuweit (2004)). Kine-
matic hardening is usually described by a so-called back
stress, which is considered as an internal variable and
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for which adequate constitutive equations must be for-
mulated.

The extension of small strain formulations to the large
strain case, in the presence of the back stress, is by no
means trivial and calls for particular attention. In the
large strain case the theoretical development is naturally
carried out in a material framework. Evolution equations
in terms of material time derivatives result, however, in a
back stress tensor which is not symmetric once pushed-
forward to the actual configuration; suggesting that the
formulation is flawed. Expressions for symmetric back
stress can be obtained by considering the stress at the
actual configuration (Cauchy-like or Kirchhoff-like back
stress tensor). In this case the evolution equation for the
back stress necessarily employs the notion of objective
rate.

A simple model for the evolution of the kinematic hard-
ening variable in a rate-type material model has been pre-
sented in Reed and Atluri (1985). An objective numerical
integration scheme is proposed and discussed. Other at-
tempts to derive a numerically efficient integration algo-
rithm employing an objective rate of the hardening vari-
able may be found in (e.g. Eterovic and Bathe (1990),
Papadopoulos and Lu (1997), Tsakmakis (1996), Tsak-
makis and Willuweit (2004)). Beyond the fact that a va-
riety of objective rates exist, with no clear evidence as to
which one is the appropriate choice and with some, as the
Zaremba-Jaumann one, producing oscillatory responses,
the numerical effort in time-integration is considerable.

On the other hand, it is well known that in the small strain
regime (linear theory) the back stress can be efficiently
derived from an extended form of the stored energy func-
tion (see e.g. Nguyen (1993)). Essentially the inelastic
part of the additively decomposed strain is included in
the free energy function. A novel contribution of this pa-
per is the formulation of an extended form of the free
energy which incorporates the effect of kinematic hard-
ening in the large strain regime. The formulation enjoys
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the features of reproducing symmetric expressions for the
back stress (at the actual configuration) and of incorpo-
rating the multiplicative decomposition of the deforma-
tion gradient. The constitutive model is developed and
established at the spatial configuration and then reformu-
lated in a material setting. While formulations at the cur-
rent configuration allow for more insight into obtaining
a symmetric back stress, from a numerical point of view
it is more appropriate to deal with the reference config-
uration. A further advantage of a material setting lies
in its ability to handle anisotropic material laws, allow-
ing for possible extension in the future. The kinematic
hardening is combined with isotropic hardening, where
an associative flow rule and von Mises yield criterion are
applied.

Several stress and work-conjugate strain measures for
analysis of large deformation responses are discussed in
Atluri (1984a). For the first time the rotated Cauchy
stress tensor is suggested as work conjugate stress to the
logarithmic strain. Later, a logarithmic strain measure
was successfully used (e.g. Eterovic and Bathe (1990),
Perić, Owen, and Honnor (1992), Rouainia and Perić
(1998), Sansour and Kollmann (1998), Sansour and Wag-
ner (2003)). It has proven to be very efficient as it al-
lows for almost additive structures within the numerical
treatment, in spite of the fact that the formulation can
be based on the multiplicative decomposition of the de-
formation gradient. However, an approach based on the
logarithm of the elastic strain tensor exhibits some disad-
vantages. First, the approach is based on the assumption
of isotropy of the constitutive law and can’t be further ex-
tended to anisotropy. Second, even if the energy is cho-
sen to be quadratic in the logarithmic strain tensor, it is
not an elliptic function at very large deformations. As the
present formulation is to be extended in the future to deal
with anisotropic inelasticity, the elastic part of the energy
is formulated in terms of the elastic right Cauchy-Green
tensor itself, as has already been dealt with in Sansour
and Wagner (2001). A result of such a choice is that the
expression for the algorithmic tangent operator becomes
very complex and the symmetry of the operator is gener-
ally lost.

For integration of constitutive equations the predictor-
corrector schemes employing the exponential map have
mostly been used (e.g. Eterovic and Bathe (1990), Başar
and Itskov (1999), Sansour and Wagner (2001)). An
alternative computational strategy for integration of the

constitutive model of convex plasticity has recently been
proposed in Liu and Chang (2004). However their model
is restricted to small strain plasticity as well as perfectly
plastic materials. In this paper an accurate and auto-
matically objective integration algorithm employing the
exponential map is developed. The use of the expo-
nential map method was first suggested in Eterovic and
Bathe (1990) for symmetric arguments and then extended
to non-symmetric arguments in Sansour and Kollmann
(1998) and Sansour and Wagner (2001).

The theory and the computational algorithms have been
implemented and applied to a shell finite element de-
veloped in Sansour and Kollmann (1998) and Sansour
and Wagner (2001). The shell formulation allows for the
use of complete three-dimensional constitutive laws. Ro-
bustness and efficiency of the proposed algorithms are
demonstrated by numerical examples.

The paper is organized as follows. In Section 2 kine-
matics of the elastic-inelastic body are reviewed. In Sec-
tion 3 the constitutive framework is fully developed. The
theory is formulated at the current configuration using
spatial quantities which are then pulled-back to the ref-
erence configuration to produce the material counterpart
of the spatial formulation. Section 4 is devoted to the
numerical treatment and is divided into two subsections.
While the first subsection presents the local integration
algorithm, the second considers the derivation of the con-
sistent elastoplastic tangent operator. In Section 5 vari-
ous numerical examples are presented. The paper closes
with some conclusions.

2 Kinematics of the elastic-inelastic body

In this section the fundamental kinematic relations are
summarized briefly and appropriate notation is intro-
duced. Let B ⊂ R

3 define a body. A motion of the
body B is represented by a one-parameter mapping ϕ :
B −→ Bt , where t ∈ R is the time (or time-like) and Bt

is the current configuration at time t. We assume that
the body can be identified with its configuration at time
t = 0, which we refer to as the reference configuration.
That is ϕo is the identity map, At the reference config-
uration, every material point is associated with the posi-
tion vector X ∈ B and at the current configuration with
x ∈ Bt . Thus, the relation holds ϕ : ϕ(X) = x. The tan-
gent map related to ϕ is the deformation gradient F which
maps the tangent space TXB at the reference configura-
tion to the tangent space TxBt at the actual configuration,
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F := TXB −→ TxBt . The deformation gradient is a two-
point tensor.

For the description of the inelastic deformation, the well
established multiplicative decomposition of the deforma-
tion gradient in an elastic part, Fe, and an inelastic part,
Fp, is assumed:

F = FeFp. (1)

For metals, the inelastic part is accompanied by the as-
sumption Fp ∈ SL+(3,R) which reflects the incompress-
ibility of the inelastic deformations, where SL+(3,R) de-
notes the special linear group with determinants equal to
one.

On the basis of the decomposition (1), the following
left Cauchy-Green-type tensors (formulated at the cur-
rent configuration) are defined:

b =FFT, (2)

be =FeFT
e , (3)

where be is to be understood as the elastic deformation
tensor. Correspondingly, right Cauchy-Green-type ten-
sors can be defined as follows

C =FTF, (4)

Ce =FT
e Fe, (5)

Cp =FT
pFp, (6)

where Ce is an elastic tensor and Cp is its analogous plas-
tic counterpart.

Understanding the deformation gradient F as an element
of the general linear group GL+(3,R), linear transfor-
mations with positive determinant, it becomes natural to
define left and right time derivatives as follows

Ḟ =lF, (7)

Ḟ =FL, (8)

where l is the left and L is the right rate, respectively.
Both rates are mixed-variant tensors. In accordance with
(7) and (8) the following relation follows

L = F−1lF. (9)

L is thus the pull-back of the mixed velocity gradient
from the current configuration to the reference config-
uration. Since Fp ∈ SL+(3,R), here too a left and a right

rate of the inelastic part of the deformation gradient can
be defined. The same is true for Fp. We consider the
following rates

Ḟe =leFe, (10)

Ḟp =FpLp. (11)

Taking Eq. (7) into consideration we get immediately

l = le +FLpF−1, (12)

which establishes the mixed-variant push-forward of the
material inelastic rate Lp according to

lp = FLpF−1 , (13)

as the spatial inelastic rate. The relation holds

l = le + lp , (14)

which supports the transformation rule formulated in Eq.
(13).

3 Constitutive relations

3.1 New approach, free energy function, and reduced
dissipation

We assume that the elastic behaviour of the body is
fully characterized by means of a free energy function
ψθbal. This function will depend on the measure of
elastic strains and on further sets of internal variables
which are expected to capture certain physical features
of the micro structure of the material and transfer it to
the macro level. These internal variables can be of scalar
as well as of tensorial nature. We consider isotropic hard-
ening to be characterized by the scalar quantity Z, while
kinematical hardening is supposed to relate to a tenso-
rial strain-like quantity of second order, which we denote
by bq. Accordingly, we assume the existence of a free
energy function ψ(be,bq,Z), where be and bq are strain-
like tensors defined at the actual configuration. While the
definition of be is clear from (3), an adequate definition
for bq remains to be found. Ad-hoc choices fail to en-
sure the symmetry of the back stress. What we need is
an appropriate inelastic quantity which is defined at the
current configuration. A natural choice would be a push-
forward of Fp, or F−1

p to the current configuration. A
natural choice is to accomplish this transformation in a
mixed variant manner. Taking a look at Eq. (13), which
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relates the material rate Lp to the spatial one, it becomes
obvious that the mixed variant transformation is rather
natural and is inherent in the structure of the theory. First
we define a spatial inelastic tensor as

fp = FF−1
p F−1. (15)

We first note that fp is an objective tensor. Then, for any
R ∈ SO(3) (that is R is a rotation tensor) superimposed
on F, we have the modified deformation gradient

F̃ = RF. (16)

The fp transfers now according to

f̃p =RFF−1
p F−1RT

=RfpRT, (17)

which is nothing but the transformation rule of an ob-
jective tensor. Note also that Fp is treated as a material
tensor invariant under rigid body motion.

Having established a spatial inelastic quantity, we choose
bq to be of the form

bq = fpfT
p (18)

The choice is natural and follows the same lines as in the
definition of be. It will be shown that it provides us with
appropriate and symmetric forms for the back stress.

Further, we assume the free energy to be decomposed
into an elastic part, ψe(be), and further plastic parts. The
latter are the sum of a part depending on the kinematic
hardening, ψq(bq), and a part depending on the isotropic
hardening, ψZ(Z). Thus, we have

ψ =ψelastic +ψplastic

ψ =ψe(be)+ψq(bq)+ψZ(Z) (19)

Having identified the free energy function, the evaluation
of the dissipation inequality

D = τττ : l−ρ0ψ̇(be,bq,Z), (20)

follows. The evaluation of Eq. (20) first gives

D = τττ : l−ρ0
∂ψ
∂be

: ḃe−ρ0
∂ψ
∂bq

: ḃq−ρ0
∂ψ
∂Z

· Ż ≥ 0. (21)

Using Eqs. (1), (3), (6), (7), (11), (15), and (18), the time
derivatives of be and bq read

ḃe = lbe − lpbe −belTp +belT, (22)

ḃq = lbq +bqlT− fp(l+ lT)fT
p − lpbq −bqlTp . (23)

By assuming that the functions are isotropic and by in-
serting (22) and (23) in (21), we are provided with

D =
(

τττ−2ρ0
∂ψ
∂be

be −2ρ0
∂ψ
∂bq

bq +2ρ0fT
p

∂ψ
∂bq

fp

)
: l+(

2ρ0
∂ψ
∂be

be +2ρ0
∂ψ
∂bq

bq

)
: lp −ρ0

∂ψ
∂Z

· Ż ≥ 0.

(24)

Assuming now that Eq. (24) has to hold for all possible
processes, it is a classical argument of thermodynamics
to infer then that the following relations have to hold

τττ =2ρ0
∂ψ
∂be

be +2ρ0
∂ψ
∂bq

bq −2ρ0fT
p

∂ψ
∂bq

fp, (25)

Dr =
(

2ρ0
∂ψ
∂be

be +2ρ0
∂ψ
∂bq

bq

)
: lp−ρ0

∂ψ
∂Z

· Ż ≥ 0 .

(26)

With the definitions

Y = −ρ0
∂ψ
∂Z

, (27)

and

γγγ = 2ρ0
∂ψ
∂be

be +2ρ0
∂ψ
∂bq

bq, (28)

Eq. (26) takes the form

Dr = γγγ : lp +Y · Ż ≥ 0, (29)

Accordingly, Y is the conjugate variable to the internal
variable Z and γγγ is the relative stress, which acts as the
conjugate variable of the inelastic rate lp. Since the rela-
tive stress must be of the form

γγγ = τττ−q, (30)

where q is again the back stress, we conclude

q = −2ρ0fT
p

∂ψ
∂bq

fp (31)

as the corresponding expression for it. It is obvious that q
retains symmetry. A basic advantage of the above expres-
sions is already apparent from Eq. (31). The back stress
tensor can be explicitly calculated, avoiding the need to
formulate and integrate an objective rate as in Eterovic
and Bathe (1990), Sorić, Skoko, and Eckstein (2002),
Tsakmakis (1996). It should be mentioned that the ex-
pression for the back stress itself may depend on further
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internal variables. This is especially true if one is inter-
ested in modelling the saturation phenomenon. However,
these extra internal variables will be of scalar nature and
will not diminish the above mentioned advantage.

Now, in accordance with the usual expressions in the
literature (e.g. Perić, Owen, and Honnor (1992), Simo
(1988), Tsakmakis and Willuweit (2004)), the elastic free
energy is assumed to be of the following form

ψe =
1
2

α1 (tr(be −1))2 +
1
2

α2tr(be −1)2 , (32)

where α1 and α2 define the elastic constants. The part
of the free energy related to the kinematic hardening is
assumed to be of the form

ψq =
1
2

c tr b̃q, (33)

where c is the kinematic hardening parameter and the
definition also holds

b̃q =
bq

(detbq)1/3
. (34)

The choice of ψq is dictated by the physical require-
ments, generally accepted to be valid in metal plasticity,
namely tr q = 0.

Altogether, and with (32) and (33), γγγ and q can be ex-
pressed as

γγγ = 2ρ0 (α1tr(be −1)be +α2(be −1)be)

+ρ0
c

(detbq)1/3
dev(bq), (35)

q = −ρ0
c

(detfp)2/3
dev(fT

pfp) , (36)

where dev denotes the deviator. It should be noted that
the constitutive law for the back stress is not linear in
the quantity bq. However, the present form is certainly
a simplification. In this paper we confine ourselves to
this simple form. More sophisticated laws, which include
saturation effects may be developed as well. However,
such a task is left for future work.

3.2 Evolution equations and inelastic behaviour

We turn our attention now to the description of the inelas-
tic behaviour. The existence of a purely elastic domain
E described by means of a convex yield function φ ex-
pressed in terms of the Kirchhoff stress tensor τττ and the
conjugate variables of the internal variables is assumed:

E := {(τττ,q,Y) : φ(τττ,q,Y) ≤ 0}. (37)

As usual for metal plasticity, the von Mises yield function
is assumed, written in the following form:

φ =‖ dev γγγ ‖ −
√

2
3

(σY −Y ) . (38)

Here, σY denotes the initial yield stress, ‖ dev γγγ ‖ is the
norm of the relative stress deviator; we recall

dev γγγ = dev τττ−dev q. (39)

In addition, the following form for Y is assumed:

Y = −HZ − (σ∞ −σY ) · (1−exp(−ηZ)) ,

where H is a linear isotropic hardening parameter and σ∞
the saturation yield stress, while η is a constitutive pa-
rameter quantifying the rate at which the saturation yield
stress is attained during loading.

To derive evolution equations for the internal variables
we rely on the principle of maximum dissipation which
leads to the classical variational equation∫ (−(γγγ : lp +Y · Ż)+λφ(γγγ,Y)

)
ds = stat. (40)

Herein, λ denotes a plastic multiplier and ds denotes an
adequately defined parameterization of the deformation
path. The variational statement leads to the following
associative evolution equations for the plastic strain rate
and the isotropic hardening variable

lp = λ
∂φ
∂γγγ

, (41)

Ż = λ
∂φ
∂Y

. (42)

The equations are complemented with the load-
ing/unloading conditions in Kuhn-Tucker form

λ ≥ 0 , λ φ(γγγ,Y) = 0 , φ(γγγ,Y) ≤ 0 , (43)

and the consistency condition

λφ̇(γγγ,Y) = 0. (44)

With the use of equations (38), (41) and (42) we end up
with evolution equations in the following form

lp = λ
dev γγγ

‖ dev γγγ ‖ , (45)

Ż =

√
2
3

λ. (46)
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These equations, together with the definition of the free
energy function, complete the formulation of the consti-
tutive theory. However, from a numerical point of view,
it is worthwhile to reformulate the equations, without al-
tering the physical content, in a purely material setting,
which is done next.

3.3 Material Form of the Theory

The theory is now reformulated in a purely material set-
ting. For that purpose all equations and variables are
pulled back to the reference configuration. In general,
for any stress-like quantity defined at the current config-
uration, say πππ, the transformation takes the form

ΠΠΠ = FTπππF−T. (47)

The quantity ΠΠΠ defines a material tensor. Following this
transformation rule we generate the following quantities

ΞΞΞ =FTτττ F−T, (48)

ΓΓΓ =FTγγγ F−T, (49)

Q =FTqF−T. (50)

ΞΞΞ defines a quantity, which up to a sign and a spheri-
cal part coincides with Eshelby’s stress tensor (Maugin
(1994), Sansour (2001)). ΓΓΓ is a material relative stress
defined at the reference configuration and Q is a material
back stress, where the relation holds

ΓΓΓ = ΞΞΞ−Q . (51)

It should be mentioned that the transformation is very
much motivated by the validity of the relation

τττ : l = ΞΞΞ : L , (52)

with L being defined in (9). It should also be noted that
the treatment of the stress tensors as mixed-variant quan-
tities is fundamental if one is to arrive at correct form of
the material version of the theory.

In the reference configuration the evolution equations
(41) and (42) take the form

Lp = λ
dev ΓΓΓT

‖ dev ΓΓΓ ‖ = λννν, (53)

Ż =

√
2
3

λ , (54)

where ννν is normal to the yield surface. The yield function
(38) has the physically equivalent form

φ =‖ dev ΓΓΓ ‖ −
√

2
3
(σY +Y ) = 0. (55)

The relative stress (35) and the back stress (36) are now
functions of the quantities CC−1

p , F−1
p and C:

ΓΓΓ = ρ0
[
2α1tr(CC−1

p −1)CC−1
p +2α2(CC−1

p −1)CC−1
p

+
c

(detF−1
p )2/3

dev (CF−1
p C−1F−T

p )

]
, (56)

Q = −ρ0
c

(detF−1
p )2/3

dev (F−T
p CF−1

p C−1). (57)

With an intention of making the numerical procedures
more clear, we decompose the relative stress into an
’elastic’, ΓΓΓel., and a ’plastic’ part, ΓΓΓpl., where we have

ΓΓΓel. =2ρ0α1tr(CC−1
p −1)CC−1

p

+2ρ0α2(CC−1
p −1)CC−1

p , (58)

ΓΓΓpl. =ρ0
c

(detF−1
p )2/3

dev (CF−1
p C−1F−T

p ) , (59)

as the corresponding explicit expressions.

4 Numerical formulation

4.1 Time integration

Integration of the evolution equations is performed by
using the well-known predictor-corrector computational
strategy. After updating the state variable at time tn, the
trial step is computed by freezing of the plastic flow dur-
ing the time interval ∆T between the times tn and tn+1.
Within the plastic corrector step, the right Cauchy-Green
tensor C is held fixed while the internal variables are up-
dated so as to fulfill the constitute law.

The understanding that the unimodular tensor Fp is an
element of the Lie group SL+(3,R3), while Lp is an ele-
ment of the corresponding Lie algebra, motivates the use
of the exponential map for time integration

F−1
p |n+1 = exp(−∆T Lp)F−1

p |n, (60)

where F−1
p |n+1 and F−1

p |n are plastic parts of the defor-
mation gradient at the time step tn+1 and tn. By this
equation the condition of plastic incompressibility is pre-
served exactly. The evaluation of the exponential map is
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carried out using an algorithm for non-symmetric argu-
ments given in Sansour and Kollmann (1998). The cor-
responding derivatives are computed following a sugges-
tion in Sansour and Wagner (2001). The elastic strain
measure CCp

−1 at time step tn+1 is expressed by

CC−1
p |n+1= C |n+1 exp(−∆T Lp)C−1

p |n exp(−∆T LT
p)
(61)

and the isotropic hardening variable is updated according
to

Z |n+1= Z |n +

√
2
3

∆T λ|n+1. (62)

Plastic multiplier at the time step tn+1 is defined as

λ|n+1 = λ|n +∆λ. (63)

In order to obtain the increment of the plastic multiplier
∆λ, the yield function (55) and the evolution equation
(53) are used

Lp = λ
dev ΓΓΓT

‖ dev ΓΓΓ ‖ , (64)

f (λ,Lp) =‖ dev ΓΓΓ ‖ −
√

2
3
(σY +Y ) = 0, (65)

Y (λ) = −HZ |n+1 −(σ∞ −σY ) (1−exp (−ηZ |n+1)) .
(66)

By inserting the update relations of the state variables in
the yield function, a non-linear scalar equation for the
plastic multiplier is obtained which has to be solved em-
ploying Newton’s iterative solution procedure

∂ f
∂λ

·∆λ = − f . (67)

The derivative ∂ f/∂λ is solved with the well-known
chain rule

∂ f
∂λ

=
∂(‖ dev ΓΓΓ ‖)

∂(dev ΓΓΓ)
∂(dev ΓΓΓ)

∂ΓΓΓ
∂ΓΓΓ
∂λ

−
√

2
3

∂Y
∂λ

. (68)

In what follows, the computations are carried out using a
notation with explicit reference to indices. The first two
terms are

∂(‖ dev ΓΓΓ ‖)
∂(dev Γ)a

b =
(dev Γ)a

b

‖ dev Γ ‖ , (69)

∂(dev Γ)a
b

∂Γc
d = δa

cδb
d − 1

3
δc

dδa
b (70)

and the third is

∂Y (λ)
∂λ

= −
√

2
3

∆T [H +η(σ∞ −σY )exp(−ηZ |n+1)] .

(71)

The derivative of the stress tensor with respect to the plas-
tic multiplier results out of the equation

∂Γc
d

∂λ
=

∂Γc
d

∂(Lp)e
f

(
∂(Lp)e

f

∂λ

∣∣∣∣
explicit

+
∂(Lp)e

f

∂νg
h

∂νg
h

∂Γm
n

∂Γm
n

∂λ

)
(72)

which gives

∂Γm
n

∂λ
=

(
δc

mδn
d − ∂Γc

d

∂(Lp)e
f

∂(Lp)e
f

∂νg
h

∂νg
h

∂Γm
n

)−1

∂Γc
d

∂(Lp)e
f

∂(Lp)e
f

∂λ

∣∣∣∣
explicit

. (73)

Here, it is important to point out that ’explicit’ refers to
the derivative of those terms which explicitly include the
quantity with respect to which the derivative is consid-
ered. Some terms in (73) read

∂(Lp)e
f

∂νg
h

∂νg
h

∂Γm
n =

λ
‖ dev ΓΓΓ ‖

[
∂(dev Γ) f

e

∂Γm
n

−(dev Γ) f
e(dev Γ)u

v

‖ dev ΓΓΓ ‖2

∂(dev Γ)u
v

∂Γm
n

] (74)

∂(Lp)e
f

∂λ

∣∣∣∣
explicit

=
(dev Γ) f

e

‖ dev ΓΓΓ ‖ = νe
f . (75)

Finally, and for the sake of brevity, the term ∂ΓΓΓ/∂Lp is
obtained in the Appendix A:.

Now, and since all terms in (67) are obtained, the incre-
ment of the plastic multiplier ∆λ can be determined and
the plastic multiplier at the time step tn+1 can be updated
by equation (63). With ∆λ at hand, the inverse of the
plastic part of deformation gradient, Fp

−1, can be up-
dated. With the latter, all quantities given in this section
can be updated as well.

4.2 Consistent elastoplastic tangent modulus

The algorithmic tangent operator is obtained by lin-
earization of the second Piola-Kirchhoff tensor S with re-
spect to the right Cauchy-Green deformation tensor. The
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tensor S can be written as

S = C−1ΞΞΞ . (76)

Accordingly, its linearization takes the following form

∂S
∂C

=
∂C−1

∂C
ΞΞΞ +C−1 ∂ΞΞΞ

∂C
. (77)

Using indices, this equation can be written as

∂[(C−1)uaΞa
b]

∂Ckl
= −(C−1)uk(C−1)alΞa

b +(C−1)ua ∂Ξa
b

∂Ckl
.

(78)

A general expression for the derivative ∂ΞΞΞ/∂C is ob-
tained according to

∂Ξa
b

∂Ckl
=

∂(Ξel.)a
b

∂(CC−1
p )c

d

(
∂(CC−1

p )c
d

∂Ckl

∣∣∣∣
explicit

+

∂(CC−1
p )c

d

∂(F−1
p )e

f

∂(F−1
p )e

f

∂(Lp)g
h

∂(Lp)g
h

∂Ckl

)
+

∂(Ξpl.)a
b

∂Ckl

∣∣∣∣
explicit

+
∂(Ξpl.)a

b

∂(F−1
p )e

f

∂(F−1
p )e

f

∂(Lp)g
h

∂(Lp)g
h

∂Ckl
. (79)

The terms ∂(Ξel.)a
b
/∂(CC−1

p )c
d

and

∂(CC−1
p )c

d
/∂(F−1

p )e
f

are identical to the terms given
Eq. (88) and Eq. (89) as derived in Appendix
A:, while ∂(F−1

p )e
f
/∂(Lp)g

h is given by Eq. (90).

∂(Ξpl.)i
j
/∂(F−1

p )c
d

is formulated in Appendix B:. Fur-

ther, the explicit derivatives of CC−1
p and of the ’plastic’

part of the stress read

∂(CC−1
p )u

v

∂Crs

∣∣∣∣
explicit

= δu
r(F−1

p )sc(F−1
p )v

c
, (80)

∂(Ξpl.)a
b

Ckl

∣∣∣∣
explicit

=
c

(detF−1
p |n)2/3[

δa
k(F−1

p )l
n
(C−1)no(F−1

p )b
o
−

Cam(F−1
p )m

n
(C−1)nk(C−1)ol(F−1

p )b
o

−(F−1
p )k

a
(F−1

p )l
o
(C−1)ob+

(F−1
p )m

a
Cmn(F−1

p )n
o
(C−1)ok(C−1)bl

]
. (81)

It should be noted that in equation (81) we use charac-
teristic

c

(detF−1
p |n)2/3

=
c

(detF−1
p |n+1)2/3

.

The determination of ∂(Lp)g
h/∂Ckl is carried out using

the following two equations

∂(Lp)i
j

∂Ckl
=

∂(Lp)i
j

∂λ
∂λ

∂Crs
+

∂(Lp)i
j

∂νa
b

∂νa
b

∂Crs
, (82)

∂νa
b

∂Crs
=

∂νa
b

∂Γc
d

[
∂Γc

d

∂Crs

∣∣∣∣
explicit

+
∂Γc

d

∂(Lp)e
f

∂(Lp)e
f

∂Crs

]
. (83)

Inserting Eq. (82) in Eq. (83) gives

∂νa
b

∂Crs
=

∂νa
b

∂Γc
d

[
∂Γc

d

∂Crs

∣∣∣∣
explicit

+
∂Γc

d

∂(Lp)e
f(

∂(Lp)e
f

∂λ
∂λ

∂Crs
+

∂(Lp)e
f

∂νg
h

∂νg
h

∂Crs

)]
. (84)

The use of von Mises flow rule ‖ dev ΓΓΓ ‖ −
√

2
3 (σY −

Y ) = 0 gives

∂λ
∂Crs

=
1√

2
3

∂Y
∂λ − ∂‖dev ΓΓΓ‖

∂λ[
∂(‖ dev ΓΓΓ ‖)
∂(dev Γ)a

b

∂(dev Γ)a
b

∂Γc
d

∂Γc
d

∂(Lp)e
f

∂(Lp)e
f

∂νg
h

∂νg
h

∂Crs

+
∂(‖ dev ΓΓΓ ‖)
∂(dev Γ)a

b

∂(dev Γ)a
b

∂Γc
d

∂Γc
d

∂Crs

∣∣∣∣
explicit

]
, (85)

which is to be inserted in (84). The resulting equation
can be solved for ∂νa

b/∂Crs, which results in

∂νg
h

∂Crs
=

[
δg

aδh
b − ∂νa

b

∂Γc
d

∂Γc
d

∂(Lp)e
f⎛

⎝∂(Lp)e
f

∂λ
1√

2
3

∂Y
∂λ − ∂(‖dev ΓΓΓ‖)

∂λ

∂(‖ dev ΓΓΓ ‖)
∂(dev Γ)p

q

∂(dev Γ)p
q

∂Γu
v

∂Γu
v

∂(Lp)x
y

∂(Lp)x
y

∂νg
h

−
∂(Lp)e

f

∂νg
h

)]−1

⎛
⎝∂νa

b

∂Γc
d

∂Γc
d

∂(Lp)e
f

∂(Lp)e
f

∂λ
1√

2
3

∂Y
∂λ − ∂(‖dev ΓΓΓ‖)

∂λ

∂(‖ dev ΓΓΓ ‖)
∂(dev Γ)p

q
∂(dev Γ)p

q

∂Γu
v +

∂νa
b

∂Γu
v

)
∂Γu

v

∂Crs

∣∣∣∣
explicit

(86)
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Figure 1 : Membrane: geometry and load mode diagram
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Figure 2 : Membrane: load deflection curves for different type of hardening

which can be inserted in (85) and in (82). Having es-
tablished the expressions for ∂νa

b/∂Crs and ∂λ/∂Crs, Eq.
(82) can be inserted in (79) which results in the exact ex-
pression for the consistent elastoplastic tangent operator
as formulated in Eq. (78).

It should be stressed that the resulting expression for the
tangent operator is not symmetric. The expression is
quite involved. This fact is simply a result of the mul-
tiplicative structure of the theory which has its roots in
the multiplicative decomposition of the deformation gra-
dient itself.

5 Numerical examples

The integration algorithms presented have been imple-
mented in a code for shell finite element computations.
The shell theory and the finite element itself have been
presented in previous publications in Sansour and Koll-
mann (1998) and Sansour and Wagner (2001).

The shell formulation is based on a 7-parameter theory

which includes transversal strains and thus enables the
application of a complete three-dimensional constitutive
law. The enhanced strain concept is applied to avoid
locking phenomena.

5.1 Uniaxially loaded membrane

The first example is a thin plate under in-plane line load-
ing, Fig. 1. Due to symmetry conditions only one quar-
ter of the membrane is discretized with 1 element. The
geometry of the plate is given in Fig. 1. The material
data are as follows: Young’s modulus E = 210× 103

N/mm2, Poisson’s ratio ν = 0.3, the initial yield stress
σY = 240 N/mm2, the isotropic hardening parameter H =
8.0×102 N/mm2 and the kinematic hardening parameter
c = 8.0× 102 N/mm2. The plate is subjected to a line
load of q = 5000 N/mm and a loading cycle as presented
in Fig. 1.

The load factor versus displacement curves is plotted in
Fig. 2 for isotropic, kinematic and a combined isotropic
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Figure 3 : Square plate: geometry and deformed configuration at u3 = 140 mm
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and kinematic hardening cases. From the figure the in-
fluence of kinematic hardening is clearly demonstrated.

5.2 Simply supported plate

The deformation of a simply supported square plate,
depicted in Fig. 3, is considered. The length of the
plate is 2L = 508 mm and the thickness is h0 = 2.54
mm. The material data are as follows: Young’s modu-
lus E = 69×103 N/mm2, Poisson’s ratio ν = 0.3, the ini-
tial yield stress σY = 248 N/mm2, the isotropic hardening
parameter H = 3.0×103 N/mm2 and the kinematic hard-
ening parameter c = 3.0×103 N/mm2. The plate is sub-
jected to the conservative load of p0 = 10−2 N/mm2. Due
to symmetry only one quarter of the plate is dicretized by
32×32 elements.

The load versus vertical displacement at the center point
is plotted in Fig. 4. In this figure, the curve computed by

the proposed formulation employing combined isotropic
(H = 3.0× 103 N/mm2) and kinematic hardening (c =
3.0×103 N/mm2) is compared with those obtained by the
use of only isotropic hardening (H = 3.0×103 N/mm2)
or by the elastic-ideal-plastic case. As may be seen, the
influence of the kinematic hardening on the deformation
response is significant. A full agreement of the load dis-
placement curve obtained for an elastic ideal-plastic ma-
terial behaviour with that published in Klinkel (2000) is
evident; in the large strain range small deviations are ex-
pected due to the fact that the employed elastic constitu-
tive law is different.

5.3 Scordelis-Lo roof

A Scordelis-Lo roof subjected to gravity loading is con-
sidered next. Both straight longitudinal edges are free,
and diaphragms, that suppress any movement in direction
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Figure 6 : Scordelis-Lo roof: load deflection curves for the point A

1 and 3, support two circular edges. Because of the sym-
metry, only one-quarter of the roof has been discretized
by 20× 20 elements. The half-length is L = 7600 mm,
the radius is R = 7600 mm and the thickness is h = 0.076
mm. The material properties are: elastic modulus is
E = 210000 N/mm2, Poisson’s ratio ν = 0.0, the yield
stress σY = 4.2 N/mm2, the isotropic hardening param-
eter H = 0.8 kN/mm2 and kinematic hardening parame-
ter c = 0.4 kN/mm2. The value of the reference gravity
load is q0 = 4.0×10−3 N/mm2. The curve for the elas-
tic ideal-plastic case is compared with the one obtained
in Roehl and Ramm (1996). Excellent agreement is ob-
served.

5.4 Hemispherical shell subjected to line load

As next example, a hemispherical shell with a central
opening 30◦ is considered. The shell is clamped along the
bottom end, and axial displacement and rotations are al-
lowed on the upper boundary. A line load with reference
value of q0 = 10 N/mm is applied at the upper boundary.
The loading, geometry and finite mesh are shown in Fig.
7. The computation is performed for elastic ideal-plastic
case, isotropic hardening, kinematic hardening and com-
bined isotropic and kinematic hardening. The material
data are: Young’s modulus E = 212 GPa, Poisson’s ra-
tio ν = 0.2581, the initial yield stress σY = 243 MPa
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and the kinematic and isotropic hardening parameters are
c = 0.1× E and H = 0.1×E. A diagram showing the
load factor versus the vertical displacement at the upper
boundary is plotted in Fig. 8. The Figure shows the great
influence of the hardening parameters on the deforma-
tion, especially when combined isotropic and kinematic
hardening are considered.

6 Conclusion

In this paper a theoretical framework for a free energy-
based formulation of the kinematic hardening is devel-
oped. In addition, numerical schemes has been addressed
in detail. An efficient numerical model for large strain
elastoplastic material response has been presented. The
material model employs the von Mises yield criterion

with combined isotropic and free energy-based kinematic
hardening. The integration algorithm, based on the mul-
tiplicative decomposition of the deformation gradient,
employs the predictor-corrector method. The derived
back stress tensor shows some advantages, in compari-
son with relations available in literature. In contrast to a
rate formulation, here the symmetric back stress tensor
is defined by relations automatically obeying the objec-
tivity condition. The constitutive equations are written in
terms of the spatial quantities: the Kirchhoff stress tensor
and the left Cauchy-Green deformation tensor, while the
local integration algorithm and the consistent elastoplas-
tic tangent modulus are considered at the reference con-
figuration. The applied consistent elastoplastic tangent
modulus ensures high convergence rate in global solution
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procedures. The numerical example shows robustness,
and numerical efficiency of the proposed computational
procedure.
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Appendix A: The Derivative of the relative stress ΓΓΓ
with respect to the plastic rate Lp

This derivative is established using the chain rule:

∂Γi
j

∂(Lp)k
l

=
∂(Γel.)i

j

∂(CC−1
p )a

b

∂(CC−1
p )a

b

∂(F−1
p )c

d

∂(F−1
p )c

d

∂(Lp)k
l

+

+
∂((Γpl.)i

j)
∂(F−1

p )c
d

∂(F−1
p )c

d

∂(Lp)k
l

. (87)

In the following we provide expressions to each single
term involved. We make use of equation (58) to get

∂(Γel.)i
j

∂(CC−1
p )a

b =

2ρ0

{
α1[δa

b(CC−1
p )i

j
+((CC−1

p )r
r −3)δi

aδ j
b]+

+α2[δi
a(CC−1

p )b
j
+((CC−1

p )i
a −δi

a)δ j
b]
}

. (88)

Further, we have

∂(CC−1
p )a

b

∂(F−1
p )c

d

= Cac(F−1
p )bd +Cau(F−1

p )udδb
c , (89)

as well as

∂(F−1
p )c

d

∂(Lp)k
l

=

∂(F−1
p )c

d

∂[exp(−∆T Lp)]e f

∂[exp(−∆T Lp)]e f

∂(−∆T Lp)g
h

∂(−∆T Lp)g
h

∂(Lp)k
l

.

(90)

The first term in the last equation is elaborated by the use
of Eq. (60)

∂(F−1
p )c

d

∂[exp(−∆T Lp)]e f

= (F−1
p |n) f

d
δc

e . (91)

The second term includes the tangent of the exponential
map with respect to its argument, a fourth order tensor.
We consider an expression derived in Sansour and Wag-
ner (2001) which is denoted by DEX. Altogether one
has

∂(F−1
p )c

d

∂(Lp)k
l

= −∆T (DEX)c
f k

l(F−1
p |n) f

d
. (92)

Finally, using Eq. (59) we derive

∂(Γpl.)i
j

∂(F−1
p )c

d

=
c

(detF−1
p |n)2/3

∂dev [Cia(F−1
p )a

b
(C−1)bc(F−1

p ) j
c
]

∂[Cia(F−1
p )a

b(C−1)bc(F−1
p ) j

c]

[Cic(C−1)do(F−1
p ) j

o
−Cim(F−1

p )m
n
(C−1)ndδ j

c] , (93)

where is the first derivative made in the same manner as
in Equation (70).

Appendix B: Derivative of the stress tensor ΞΞΞpl. with
respect to the plastic part of deforma-
tion gradient F−1

p

First, we consider the derivative of the back stress, de-
fined in Eq. (57), with respect to

∂Qi
j

∂(F−1
p )c

d

=
c

(detFp
−1 |n)2/3

∂dev [(F−1
p )a

i
Cab(F−1

p )b
c
(C−1)c j]

∂[(F−1
p )a

iCab(F−1
p )b

c(C
−1)c j]

[δi
lCkn(F−1

p )n
o
(C−1)o j +(F−1

p )m
i
Cmk(C−1)l j] (94)

We recall the relation defined in (51)

ΞΞΞpl. = ΓΓΓpl. +Q . (95)

The derivative of the stress tensor ΞΞΞ with respect to plas-
tic part of deformation gradient F−1

p is then given as:

∂(Ξpl.)i
j

∂(F−1
p )c

d

=
∂(Γpl.)i

j

∂(F−1
p )k

l

+
∂Qi

j

∂(F−1
p )c

d

. (96)

Whereas the first term of the right hand side is already
given in Eq. (93), the second is included in Eq. (94).
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