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Eigenanalysis for Membranes with Stringers Using the Methods of Fundamental
Solutions and Domain Decomposition
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Abstract: We use a meshless numerical method to an-
alyze the eigenanalysis of thin circular membranes with
degenerate boundary conditions, composed by different
orientations and structures of stringers. The membrane
eigenproblem is studied by solving the two-dimensional
Helmholtz equation utilizing the method of fundamen-
tal solutions and domain decomposition technique as
well. The method of singular value decomposition is
adopted to obtain eigenvalues and eigenvectors of the
resulting system of global linear equation. The pro-
posed novel numerical scheme was first validated by
three circular membranes which are structured with a sin-
gle edge stringer, two opposite edge stringers and an in-
ternal stringer. Present results for those three cases match
very well with the solutions obtained by the analytical ap-
proach as well as by methods of dual boundary element,
and finite element. The analysis is then extended to solve
a completely new problem of a circular membrane with
a cross stringer at the center of the membrane. We illus-
trate the proposed innovative numerical scheme which is
simpler and more efficient to solve Helmholtz problems
with degenerate boundary conditions. The good features
of this scheme are not depending upon the treatments
of mesh, singularity, hypersingularity, numerical integra-
tion and iterative procedure, which are generally required
by other conventional mesh-dependent methods.
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1 Introduction

In recent years, there has been an increasing interest in
the research issues of meshless numerical methods for
solving partial differential equations. In general, the
meshless methods can be divided loosely into two cat-
egories: the boundary-type and the domain-type. One
commonly used scheme in the domain-type category is
the multiquadrics method [Kansa (1990a, 1990b)] which
is chosen from the family of the radial basis functions
(RBFs). On the other hand, a popularly utilized method
in the boundary-type category is the meshless local
Petrov-Galerkin (MLPG) method [Atluri (2004)]. In this
paper, we applied the method of fundamental solutions
(MFS), which is another boundary-type meshless numer-
ical method, to solve Helmholtz problem. The MFS has
been applied to solve the potential flow problems [John-
ston and Fairweather (1984), Karageorghis (1989), Gol-
berg and Chen (1998)], the Helmholtz equations [Kon-
dapalli et al.(1992), Golberg and Chen (1998), Kara-
georghis (2001), Young and Ruan (2005)], the bihar-
monic equations [Karageorghis and Fairweather (1987,
1988, 1989)], the Poisson equations [Golberg (1995)],
the diffusion equations [(Young et al. (2004a, 2004b)],
and the Stokes flow problems [Tsai et al. (2002), Alves
and Silvestre (2004),Young et al. (2004c)]. The MFS has
been widely used to solve the Helmholtz problems with-
out degenerating scales with simple boundary conditions
[Young and Ruan (2005); Young et al. (2005a)], in which
some original ideas of the MFS for Helmholtz problems
are stemmed from the boundary element method (BEM).
Recent researches on the BEM for Helmholtz problems
can be found from: Callsen et al. (2004), Qian et al.
(2004a, 2004b), and Yan et al. (2005). However, the
applications of the MFS for Helmholtz equations with
degenerate boundary conditions have never been inves-
tigated. Hence in this paper we will emphasize the de-
velopment of the MFS to solve Helmholtz problems with
degenerate boundary conditions, such as a circular mem-
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brane with stringers inside in one case, or seepage flows
with sheet piles in another application [Young, et al.
(2005b)]. Furthermore, the singularity near the degener-
ate boundary will be circumvented by using the domain
decomposition method (DDM).

The numerical treatment of degenerate boundary value
problems is always a challenging task in the field of com-
putational engineering. Especially, it is rather difficult
to use directly the conventional mesh-dependent meth-
ods such as the finite element method (FEM), the fi-
nite difference method (FDM), the finite volume method
(FVM) and the BEM to deal with the degenerate bound-
ary problems. Some sophisticated remedies and modifi-
cations must be taken to overcome the difficulty of the
degenerate boundary. For examples, Jones et al. (2001)
proposed a hybrid approach to treat degenerate bound-
ary conditions associated with the seepage flownet at
sheet piles. Rasmussen and Yu (2003) utilized a complex
variable BEM to solve potential problems with degener-
ate boundary conditions, and they observed the failures
of a one-to-one correspondence for the multiple capture
zones. Moreover, Chen et al. (2001) solved the degen-
erate scale problems using the BEM with separable ker-
nels, and Cruse (1987) solved the crack degeneracy prob-
lems by employing the hypersingular BEM.

It is a rather difficult task to deal with the acoustical
eigenanalysis in a computational domain with degener-
ate boundary conditions. Givoli and Vigderguaz (1994)
applied the FEM to analyze the Helmholtz problem with
degenerate boundary conditions by mesh refinement near
the degenerate boundary. Moreover, Kirkup (1997) stud-
ied a two-dimensional boundary value problem with a
discontinuity in the domain by recasting the governing
partial differential equation into an integral equation. On
the other hand, Chen et al. (1999) utilized the dual
boundary element method (DBEM) by making use of
hypersingular integral equations to solve the degener-
ate boundary generated in the presence of a stringer in
a circular membrane. In a similar work, Chen et al.
(2003) obtained eigensolutions for circular membranes
with stringers by employing the conventional BEM along
with the technique of the singular value decomposition
(SVD).

In the present work, we concentrate on developing a
meshless numerical method to handle the Helmholtz
problems with degenerate boundary conditions using the
DDM [Chan et al. (1989, 1990)]. We decompose the

computational domain into a number of sub-domains to
avoid the singularity near the degenerate boundary. Af-
ter DDM is performed, the MFS is then used to ob-
tain the system matrices for all sub-domains. By im-
posing the connection conditions and the boundary con-
ditions for the stringers, a global matrix system of lin-
ear algebraic equations for the whole computational do-
main is obtained. Afterwards the SVD is then applied to
seek the eigenvalues and eigenvectors. Herein the DDM
has avoided the singularity problem, at the same time it
also guarantees smooth solutions in the entire domain
even without iterative procedures, as always required
by other conventional mesh-dependent methods. Hence
the present method is proved to be simple and com-
putationally efficient to solve the degenerate boundary
without handling the problems of singularities, meshes,
and numerical integrations. We have successfully under-
taken the potential problems with the degenerate bound-
ary conditions to solve the seepage flownet analysis by
using the MFS and DDM [Young et al. (2005b)]. The
details about the proposed method are discussed in Sec.
3 after outlining the governing equations in Sec. 2. The
results delineated in Sec. 4 are compared with analyti-
cal solutions and the results using the FEM [Givoli and
Vigdergauz (1994)], DBEM [Chen et al. (1999)] and
conventional BEM [Chen et al. (2003)]. Finally, con-
cluding remarks are summarized in Sec. 5.

2 Governing equations

In order to test the numerical scheme, we consider prob-
lems of a thin vibrating membrane with different orien-
tation of stringers (Fig.1). The presence of stringers in
the membrane gives rise to the degenerate boundaries.
The flat elastic membrane is assumed to occupy a finite
domain Ω. The membrane contains some straight fixed-
edge stringers, which may either reach the boundary or
remain in the interior of the domain. A prescribed lateral
displacement of the boundary results in small-amplitude
time harmonic lateral vibration of the membrane with
wave number given by k = ω/

√
T/ρ, where T is the ten-

sion in the membrane, ρ is its mass density, and ω is the
frequency of motion. On the stringers, which are denoted
by Γd , the lateral displacement φ is vanished. The above
membrane analysis is governed by the two-dimensional
homogeneous Helmholtz equation given as

∇2φ(�x)+k2φ (�x) = 0, in Ω (1)
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Figure 1 : A vibrating membrane (a) with a single
stringer (b) with two opposite edge stringers (c) with an
internal stringer

where Ω is the domain of interest, �x represents the lo-
cation of the field points, φ is the displacement and k is
the wave number. The boundary conditions are given as
follows:

φ (�x) = φ, on ΓD (2)

∂φ (�x)
∂nx

= t, on ΓN (3)

where ΓD is the essential (Dirichlet) boundary with speci-
fied displacement, ΓN is the natural (Neumann) boundary
where the outward normal derivative of the displacement

in the nx outward normal direction is specified, and ΓD

and ΓN comprise the whole boundary Γ of the domain Ω.

In this paper the boundary conditions employed are given
by Eq. 2 that φ is equal to zero for both solid walls and
stringers. That is, the only condition used in this study is
the Dirichlet boundary condition. The Neumann bound-
ary condition is used for the connection of the DDM.

3 Numerical method

The MFS makes use of boundary values to obtain the so-
lution in the interior of the computational domain. When
a membrane is considered as a single computational do-
main, it is required to use the hypersingularity in the case
of degenerate boundary conditions. It is necessary to sat-
isfy the degenerate boundary conditions on the stringers.
In the proposed numerical procedure, the hypersingu-
lar problem is avoided by using the principles of the
DDM. The membrane is decomposed into a number of
sub-domains in which the boundary conditions for the
stringers also appear explicitly. Since the MFS uses the
boundary values only for the interior domain solution,
the individual sub-domains are solved easily with known
boundary conditions. In the present case, the free-space
Green’s function for the Helmholtz equation is written as
follows:

∇2G(�x)+k2G(�x) = −δ(�x−�ξ) (4)

where G(ri j) = −i
4 H(2)

0 (kri j) = −i
4 [J0(kri j)− iY0(kri j)] is

the fundamental solution, δ(�x−�ξ) is the Dirac delta func-
tion,�x is the position of the field point, and�ξ is the po-
sition of the source point. In the fundamental solution,
H(2)

0 is the Hankel function of the second kind of order
zero, J0 is the Bessel function of the first kind of order
zero, and Y0 is the Bessel function of the second kind of
order zero. Using the above expression, an approximate
solution for the Helmholtz equation can be obtained as

φ (xi,yi) =
N

∑
j=1

αφ
jG(ri j) (5)

and the normal derivative is given by the following ex-
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Figure 2 : Figure sketch of the domain decomposition

pression:

∂φ (xi,yi)
∂ni

=
N

∑
j=1

αφ
j
∂G(ri j)

∂ni

∂G(ri j)
∂ni

=
∂G(ri j)

∂r
∂r
∂ni

= −
[
�r ·�n
4r

k

]
[Y1 (kri j)+ iJ1 (kri j)]

(6)

where J1 is the Bessel function of the first kind of order
one, Y1 is the Bessel function of the second kind of or-
der one, φ (xi,yi) is the displacement of the i-th node, ri j

is the distance between the i-th and the j-th nodes and is
defined as ri j =

∣∣�ri −�r j

∣∣, αφ
j is the undetermined coeffi-

cients and N is the number of source points. The distri-
butions of the source nodes can be arranged by the fol-
lowing equation;

�xs =�xb +λ(�xb −�xc) (7)

where�xb and�xs are the spatial coordinates of the bound-
ary and source nodes, respectively. �xc is the center posi-
tion of the computational domain and λ is a pre-assigned
parameter. Once the parameter, λ, is determined, the dis-
tributions of the source nodes is obtained as depicted in
Fig. 2(c).

The application of the MFS along with the DDM to solve
the degenerate problem can be explained by consider-
ing a membrane with a stringer shown in Fig. 1(a). The
stringer generates a degenerate boundary where the dis-
placements are zero. By the proposed numerical scheme,
the membrane is assumed to consist of two sub-domains
Ω1 and Ω2 divided along the section A-A across the
stringer as shown in Fig. 2(a). To resolve the degener-
ate boundary, the computational domain is thereby de-
composed into two sub-domains. However, the compu-
tational domain encompassing the thin membrane is a
single spatial identity. Hence, while applying the MFS
to find the solution for the Helmholtz equation, a care
must be taken to ensure the continuity of the variables
in the sub-domains. In order to satisfy this connecting
condition, the displacements, φ, and the flux values, t, on
the common boundaries of the sub-domains are assumed
to be the same. Owing to the above two relationships,
the sub-domains Ω1 and Ω2 can be related such that they
constitute a single computational domain. For further de-
tails of the principles of the DDM Chan et al. (1989,
1990) are referred. The individual boundary of the sepa-
ration domain is shown in Fig.2 (b). φ1

b, φ1
f and t1

f belong

to Ω1. Similarly, φ2
b, φ2

f and t2
f belong to Ω2. Let points

1. . . 8 be boundary points in φ1
b and let 9, 10 be fictitious

points in φ1
f and t1

f . Let points 1’. . . 8’ be boundary points

in φ2
b and let 9’, 10’ be fictitious points in φ2

f and t2
f . From

Eqs. 5 and 6, approximate solutions using the MFS are
expressed in matrix forms for the following individual
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Table 1 : The first eight eigenvalues for the membrane with a single edge stringer (Nodes = 80)
Method Eigenvalues (a=1.0)

k1 k2 k3 k4 k5 k6 k7 k8
MFS 3.13 3.82 4.49 5.13 5.75 6.29 6.36 6.97

DBEM 3.13 3.83 4.49 5.14 5.75 6.29 6.36 6.96
FEM 3.14 3.82 4.48 5.12 5.74 6.27 6.35 6.95

EXACT π 3.83 4.50 5.14 5.76 2π 6.38 6.92

sub-domains:

[
AΩ1

i j

]{
αΩ1

j

}
=

[
Ai j

∣∣
Γ1

Ai j

∣∣
Γ2

]{
αΩ1

j

}
=

⎧⎪⎨
⎪⎩

φ1
b

φ1
f

t1
f

⎫⎪⎬
⎪⎭ (8)

[
A

Ω2
i j

]{
αΩ2

j

}
=

[
Ai j

∣∣
Γ3

Ai j
∣∣
Γ4

]{
αΩ2

j

}
=

⎧⎪⎨
⎪⎩

φ2
b

φ2
f

t2
f

⎫⎪⎬
⎪⎭ (9)

where coefficient matrices [AΩ1
i j ] and [AΩ2

i j ] contain the
summation of RBFs for the Helmholtz equation for the
sub-domains Ω1 and Ω2, respectively. Γ1 and Γ2 are the
physical and fictitious boundaries on sub-domains Ω1;
Γ3 and Γ4 are the physical and fictitious boundaries on
sub-domains Ω2; φ f , t f are the values of the Dirichlet
and Neumann conditions on the fictitious boundary; and
{αΩ1

j } and {αΩ2
j } are the intensities of sources of Ω1 and

Ω2. We must solve Eqs. (8) and (9) by satisfying the
following connection conditions at the interfaces of the
sub-domains:{

φ1
f

}
=

{
φ2

f

}
(10)

and{
t1

f

}
=

{
t2

f

}
(11)

By using the DDM and combining from Eq. 8 to Eq.11,
the final solution matrix for the entire computational do-
main can be obtained as:⎡
⎣ Ai j |Γ1 0

0 Ai j |Γ3

Ai j |Γ2 −Ai j |Γ4

⎤
⎦[

αΩ1
j

αΩ2
j

]
=

⎡
⎢⎣

φφ1
b

φφ2
b

0

⎤
⎥⎦ (12)

Thus, Eq(12) is a system of global linear equations for
the Helmholtz problem in the whole computational do-
main. In the case of a membrane vibration, we need
to seek eigenvalues for which the intensities {αΩ1

j } and

{αΩ2
j }are nontrivial. Using the SVD technique [Teukol-

sky et al. (1992)] for the system matrix in Eq. 12, we can
plot the minimum singular values versus the wave num-
ber k. From the plot, the eigenvalues are thus obtained
[Chen et al. (2003)]; and the corresponding eigenvectors,
{αΩ1

j } and {αΩ2
j } are also solved by the SVD algorithm.

Then the eigenmodes is obtained by utilizing Eq. 5. It is
worth to notice that iterative procedures and treatment of
hypersingularity are not needed anymore when the DDM
and MFS are employed in this degeneracy problem.

4 Results and discussions

We now test the proposed innovative numerical method
for validation of circular membranes with stringers at dif-
ferent orientations and structures. Various examples dis-
cussed by Givoli and Vigdergauz (1994) and Chen et al.
(2003) are considered for validation purposes as shown
in Fig. 1(a)-(c). Depending upon the locations of these
stringers, the membrane displacements will change ac-
cordingly during vibration. We consider a circular mem-
brane with radius r = 1 in the analysis.

4.1 Validations for membranes with (a) single, (b) two
opposite edge and (c) internal stringers

After Eq. (12) is solved by using the SVD, the wave
number is plotted against the minimum singular values
of the system matrix for a circular membrane with a sin-
gle stringer as shown in Fig. 3. The eigenvalues are
obtained as the minimum singular values of the above
graph. Figs. 4 and 5 show similar plots for cases of a
circular membrane with two opposite edge stringers and
with an internal stringer, respectively. To check the ac-
curacy of the proposed method, the obtained eigenvalues
are compared with analytical and numerical solutions as
shown in Tab. 1. The proposed numerical scheme pre-
dicts the first eight eigenvalues of the circular membrane
precisely with a single stringer. It is also very compara-
ble with the results of the FEM [Givoli and Vigderguaz
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Figure 3 : The singular value versus k (wave number) for the membrane with a single stringer (Nodes = 80)
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Figure 4 : The singular value versus k (wave number) for the membrane with two opposite edge stringers
(Nodes = 80)
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Table 2 : The first four critical wave numbers for the membrane with a single edge stringer (squares), k2 (Nodes =
80)

a=0.1 a=0.2 a=0.3 a=0.4 a=0.6 a=0.7 a=0.8 a=0.9
Mode Method k*k k*k k*k k*k k*k k*k k*k k*k

mode1
MFS 5.919 6.31 7.054 8.1 11.76 13.84 14.52 14.68

DBEM 5.91 6.3 7.02 8.15 11.99 13.92 14.65 14.71

mode2
MFS 14.65 14.63 14.6 14.54 14.66 14.67 25.41 26.32

DBEM 14.72 14.72 14.72 14.72 14.71 14.71 25.68 26.41

mode3
MFS 15.26 16.7 18.54 19.77 20.38 22.7 26.37 40.76

DBEM 15.22 16.69 18.57 19.94 20.5 22.65 26.41 40.73

mode4
MFS 26.32 26.28 26.14 26.13 26.42 26.42 37.88 49.14

DBEM 26.45 26.44 26.44 26.43 26.43 26.42 38.28 49.32

Table 3 : The first eight eigenvalues for the membrane with two opposite edge stringers (Nodes = 80)
Method Eigenvalues (a=0.5)

k1 k2 k3 k4 k5 k6 k7 k8
MFS 2.79 3.83 4.66 5.13 5.43 6.28 6.37 6.96

DBEM 2.79 3.83 4.66 5.14 5.44 6.28 6.38 6.97
FEM 2.82 3.83 4.67 5.12 5.43 6.26 6.35 6.96
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Figure 5 : The singular value versus k (wave number) for the membrane with an internal stringer (Nodes = 80)

(1994)], DBEM [Chen et al. (1999)] and exact solutions.
It is also predicted that the values of the first four criti-
cal wave numbers for the circular membrane with a sin-
gle stringer as a function of radius of the membrane, as
given in Tab. 2. The comparison of the proposed results

with those of FEM and DBEM solutions reveals that the
proposed method is able to predict the eigenvalues accu-
rately. The above analysis can be extended to the case
of a circular membrane with two opposite edge stringers.
The first eight eigenvalues for a = 0.5 and variation of
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Table 4 : The first three critical wave numbers for the membrane with two opposite edge stringers (squares), k2

(Nodes = 80)
a=0.05 a=0.1 a=0.15 a=0.2 a=0.3 a=0.35 a=0.4 a=0.45

Mode Method k*k k*k k*k k*k k*k k*k k*k k*k

mode1
MFS 5.83 6.01 6.4 6.92 9.24 10.75 12.67 14.15

DBEM 5.85 6.05 6.41 6.99 9.05 10.73 12.66 14.17

mode2
MFS 14.68 14.69 14.68 14.67 14.67 14.67 14.67 14.67

DBEM 14.74 14.72 14.72 14.72 14.71 14.71 14.71 14.71

mode3
MFS 14.92 15.77 17.31 19.28 24.3 25.6 26.21 26.34

DBEM 14.95 15.87 17.36 19.42 24.07 25.61 26.34 26.42

Table 5 : The first eight eigenvalues for the membrane with an internal stringer (Nodes = 80)
Method Eigenvalues (a=0.8)

k1 k2 k3 k4 k5 k6 k7 k8
MFS 3.65 3.83 4.52 5.14 5.37 6.38 6.43 6.99

DBEM 3.63 3.84 4.46 5.14 5.33 6.39 6.42 7
FEM 3.66 3.81 4.55 5.07 5.38 6.27 6.35 6.86

wave number with length of ‘a’ are compared with the
results of FEM and DBEM as described in Tab. 3 and
4, respectively. The values of eigenvalues determined by
the proposed method are also in close agreement with
the results of FEM and DBEM. In Tab. 5, we address
results for the eigenvalues obtained for a circular mem-
brane with an internal stringer. We have good agreement
between the FEM and DBEM solutions. The number of
field points, N = 80 and the parameter λ = 0.02 are cho-
sen in all above three validation cases.

After obtaining the eigenvalues, we consider the eigen-
modes for the problems. The eigenmodes of the mem-
brane is affected by the wave number as well as the pres-
ence of stringers. The displacement contours, also called
the mode shapes, for a circular membrane with a single
stringer are depicted in Fig. 6 for various wave num-
bers. The value of the wave number, k increases the mode
shape of the membrane as seen in the above figure. The
presence of the stringer inside the membrane alters the
mode shapes for different values of wave numbers. The
above mode shapes match in good qualitative compari-
son with the results of Givoli and Vigdergauz (1994) and
Chen et al. (2003). The proposed numerical scheme pre-
dicts the displacements very accurately in the presence
of a degenerate boundary generated by a stringer. We
sketch the mode shapes for the membrane with two op-
posite edge stringers with a = 0.5 in Fig. 7 for different
values of wave number. A comparison between Figs. 6
and 7 shows that the two opposite edge stringers modify

the displacement shapes as expected. Though the mode
shapes for the wave number equal to 3.82 in Fig. 6 and
for the wave number equal to 3.83 in Fig. 7 show simi-
lar shapes, the increase in the stiffness of the membrane
with two opposite edge stringers has been correctly pre-
dicted by the form of wide spaced contours in the later
figure. These mode shapes agree qualitatively with the
results of Givoli and Vigdergauz (1994) and Chen et al.
(2003). Fig. 8 shows the mode shapes obtained by the
present numerical scheme for the case of a membrane
with an internal stringer with a = 0.8 for different val-
ues of the wave number. The mode shapes vary with
the values of the wave number and also in good quali-
tative agreement with the existing literature. In all the
above figures, the effect of the wave number on the mode
shapes is made more significantly only for higher values
of wave numbers. The comparison of the proposed re-
sults for wave numbers obtained for different orientations
of the stringers in the membrane with those of the FEM
and DBEM indicate that the proposed numerical scheme
is simple, accurate and efficient.

4.2 Application to a membrane with a cross stringer

After validating the numerical scheme, an entirely brand
new problem is solved to demonstrate the capability of
the present scheme. A circular membrane with a cross
stringer at the center as shown in Fig. 9 is solved for the
eigenmodes with a = 0.8. We choose the number of field
points, N = 60 and the parameter λ = 0.02 in this case.
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Figure 6 : The first eight modes of the single stringer with a = 1 by MFS (Nodes = 80)
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Figure 7 : The first eight modes of the two-edge stringer with a = 0.5 by MFS (Nodes = 80)
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Figure 8 : The first eight modes of the center stringer with a = 0.8 by MFS (Nodes = 80)
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Figure 9 : A vibrating membrane
with a cross stringer.
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Figure 10 : The singular value versus k (wave number) for the membrane with a cross stringer (Nodes=60)

The eigenvalues of this problem as depicted in Fig. 10 are
also obtained by using the SVD technique. After deter-
mining the eigenvalues, the eigenmodes are also obtained
as before and illustrated in Fig. 11. In all other cases
discussed in the previous section, either a single stringer
is present or two stringers are present separately with-
out giving any reinforcement. However the presence of a
cross stringer at the center of the membrane has increased
the stiffness of the membrane. Therefore the eigenmodes
of displacement patterns vary widely with the eigenval-
ues comparing with the previous cases.

4.3 Comparison of wave number vs. mode for differ-
ent stringer positions

When a stringer is placed on the circular membrane, the
eigenvalues vary with respect to the frequency modes.
The first four modes highly influence the displacement
patterns of the membrane. It is important to understand
that how the orientation of a stringer will change the dis-
placement contours so that the stringer position can be
decided depending upon the functional requirement of
the membrane. Without any stringer placed on the mem-
brane, the displacement behavior of the membrane is ex-
pected to be symmetric. Fig. 12 describes the variation
of the wave number with respect to mode number for a
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Figure 11 : The first eight modes of the cross stringer with a = 0.8 by MFS (Nodes = 60)
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circular membrane without stringers and with stringers
placed at different orientations. For the comparison pur-
poses, the length of the stringers is assumed to be con-
stant for all cases. The wave number for the first mode is
the minimum for membrane without stringers, whereas it
is the maximum for the case of the cross stringer. The
wave number varies linearly with mode number for all
the cases up to the second mode, where the wave number
of all the cases, except for the cross stringer, all converge
to the same value. However the value of the cross stringer
is slightly increased. After the third mode, the wave num-
bers for all the cases converge to the same value but being
lower than the case for a membrane without stringers. We
observe from Fig.12 that the presence of stringers affects
to change the value of the wave number only at the initial
modes.

5 Conclusions

The two-dimensional homogeneous Helmholtz equation,
governing the eigenmode behaviors of a thin circular
membrane with different orientations and structures of
stringers, has been solved using the MFS together with
the DDM. This combination has enabled us to deal with
the degenerate boundary conditions generated as a result
of the presence of stringers in the membrane. The eigen-
values and eigenmodes are computed using the SVD for

circular membranes with a single stringer, two oppo-
site edge stringers, and an internal stringer. The first
eight eigenmodes for the circular membrane with a sin-
gle stringer match very well with other numerical and
analytical results available in the literature. The eigen-
values and eigenmodes for the membranes with two op-
posite edge stringers and an internal stringer are also in
close agreements with other numerical results.

After validating the numerical scheme for the existing
examples, the eigenvalues and the eigenmodes are pre-
dicted for the membrane with a cross stringer. The mode
shapes obtained for the new case show different displace-
ment contours since the membrane center is reinforced
by the formation of a cross stringer. Therefore the dis-
placement patterns are different from the three validation
cases as expected.

A comparative study to understand the effect of the pres-
ence of stringers on the membrane indicates that the
stringer affects the eigenvalues only during the initial
modes. This study demonstrates that the present novel
numerical scheme is capable to deal with degenerate
Helmholtz boundary problems without needs to consider
the meshes, singularities, hypersingularity, numerical in-
tegrations, and iterative procedures, which are generally
required by the conventional mesh-dependent numerical
methods such as BEM and FEM.
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